Intelligent Network Traffic Identification Based on Advanced Machine Learning Approaches

Authors

  • Venkata Deepak Namburi University of Central Missouri, Department of Computer Science. Author
  • Aniruddha Arjun Singh Singh ADP, Sr. Implementation Project Manager, aniruddha. Author
  • Vaibhav Maniar Oklahoma City University, MBA / Product Management. Author
  • Vetrivelan Tamilmani Principal Service Architect, SAP America. Author
  • Rami Reddy Kothamaram California University of management and science, MS in Computer Information systems. Author
  • Dinesh Rajendran Coimbatore Institute of Technology, MSC. Software Engineering. Author

DOI:

https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P113

Keywords:

Cybersecurity, Network Intrusion Detection, RNN, Deep Learning, Machine Learning

Abstract

Network Traffic Analysis (NTA) refers to the process whereby the traffic of the network is logged and analyzed, to identify security risks or performance issues.  There are, however, instances when machine learning (ML) is applied in the mechanization of NTA. Network information may be categorized, anomalies detected, and malicious actions identified using machine learning. They could also be employed in foreseeing the same traffic patterns in the future, which can be exploited and utilized to improve network performance. The article gives a recurrent neural network (RNN)-based intrusion detection system (IDS) on the NSL-KDD dataset. The methodology consists of a lengthy preprocessing stage, which involves treating missing values, performing dimensionality reduction, applying one-hot encoding, normalizing the data, selecting features, as well as dividing the training and test sets. The RNN is then trained to identify sequential dependencies in network traffic, enabling it to distinguish between malicious and legitimate activities.  These experimental findings show that the suggested model has the following values: F1-score of 99.97%, accuracy of 99.98%, precision of 99.98%, and recall of 99.99% when compared with more traditional ML models like Naive Bayes (NB) and Support Vector Machine (SVM). These findings prove that RNN is efficient and applicable to skewed classes and multidimensional time series patterns in network intrusion detection. The study also identifies the possibility that deep learning (DL) solutions can be used to scale up IDS and enhance its accuracy in real-world network systems

Downloads

Download data is not yet available.

References

[1] M. S. S. Priya, B. K. Sahu, B. Kumar, and M. Yadav, “Network Intrusion Detection System using XG Boost,” Int. J. Eng. Adv. Technol., vol. 9, no. 1, pp. 4070–4073, Oct. 2019, doi: 10.35940/ijeat.A1307.109119.

[2] D. D. Rao, “Multimedia-Based Intelligent Content Networking for Future Internet,” in 2009 Third UKSim European Symposium on Computer Modeling and Simulation, 2009, pp. 55–59. doi: 10.1109/EMS.2009.108.

[3] A. Thakkar and R. Lohiya, “A Review of the Advancement in Intrusion Detection Datasets,” Procedia Comput. Sci., vol. 167, pp. 636–645, 2020, doi: https://doi.org/10.1016/j.procs.2020.03.330.

[4] H. P. Kapadia, “Cross-Platform UI/UX Adaptions Engine for Hybrid Mobile Apps,” Int. J. Nov. Res. Dev., vol. 5, no. 9, pp. 30–37, 2020.

[5] S. S. S. Neeli, “Serverless Databases: A Cost-Effective and Scalable Solution,” Int. J. Innov. Res. Eng. Multidiscip. Phys. Sci., vol. 7, no. 6, p. 7, 2019.

[6] C. Yin, Y. Zhu, J. Fei, and X. He, “A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks,” IEEE Access, vol. 5, pp. 21954–21961, 2017, doi: 10.1109/ACCESS.2017.2762418.

[7] A. Thapliyal, P. S. Bhagavathi, T. Arunan, and D. D. Rao, “Realizing Zones Using UPnP,” in 2009 6th IEEE Consumer Communications and Networking Conference, 2009, pp. 1–5. doi: 10.1109/CCNC.2009.4784867.

[8] H. Shapoorifard and P. Shamsinejad, “Intrusion Detection using a Novel Hybrid Method Incorporating an Improved KNN,” Int. J. Comput. Appl., vol. 173, no. 1, pp. 5–9, Sep. 2017, doi: 10.5120/ijca2017914340.

[9] S. S. S. Neeli, “Real-Time Data Management with In-Memory Databases : A Performance-Centric Approach,” J. Adv. Dev. Res., vol. 11, no. 2, p. 49, 2020.

[10] L. Wang, “Big Data in Intrusion Detection Systems and Intrusion Prevention Systems,” J. Comput. Networks, vol. 4, no. 1, pp. 48–55, Aug. 2017, doi: 10.12691/jcn-4-1-5.

[11] S. S. S. Neeli, “Decentralized Databases Leveraging Blockchain Technology,” vol. 8, no. 1, pp. 1–8, 2020.

[12] M.-J. Kang and J.-W. Kang, “Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security,” PLoS One, vol. 11, no. 6, p. e0155781, Jun. 2016, doi: 10.1371/journal.pone.0155781.

[13] A. Kushwaha, P. Pathak, and S. Gupta, “Review of optimize load balancing algorithms in cloud,” Int. J. Distrib. Cloud Comput., vol. 4, no. 2, pp. 1–9, 2016.

[14] Z. Liu, N. Thapa, A. Shaver, K. Roy, X. Yuan, and S. Khorsandroo, “Anomaly Detection on IoT Network Intrusion Using Machine Learning,” in 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), IEEE, Aug. 2020, pp. 1–5. doi: 10.1109/icABCD49160.2020.9183842.

[15] D. Szostak, K. Walkowiak, and A. Wlodarczyk, “Short-Term Traffic Forecasting in Optical Network using Linear Discriminant Analysis Machine Learning Classifier,” in 2020 22nd International Conference on Transparent Optical Networks (ICTON), IEEE, Jul. 2020, pp. 1–4. doi: 10.1109/ICTON51198.2020.9203040.

[16] K. Singh and K. J. Mathai, “Performance Comparison of Intrusion Detection System Between Deep Belief Network (DBN)Algorithm and State Preserving Extreme Learning Machine (SPELM) Algorithm,” in Proceedings of 2019 3rd IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2019, 2019. doi: 10.1109/ICECCT.2019.8869492.

[17] K. A. Taher, B. M. Y. Jisan, and M. Mahbubur, “Network Intrusion Detection using Supervised Machine Learning Technique with Feature Selection,” in 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST), IEEE, Jan. 2019, pp. 643–646. doi: 10.1109/ICREST.2019.8644161.

[18] S. Troia, R. Alvizu, Y. Zhou, G. Maier, and A. Pattavina, “Deep Learning-Based Traffic Prediction for Network Optimization,” in International Conference on Transparent Optical Networks, 2018. doi: 10.1109/ICTON.2018.8473978.

[19] M. Zaman and C.-H. Lung, “Evaluation of machine learning techniques for network intrusion detection,” in NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium, IEEE, Apr. 2018, pp. 1–5. doi: 10.1109/NOMS.2018.8406212.

[20] S. S. Panwar, P. S. Negi, and Y. P. Raiwani, “Implementation of Machine Learning Algorithms on CICIDS-2017 Dataset for Intrusion Detection using WEKA,” Int. J. Recent Technol. Eng., vol. 8, no. 3, pp. 2195–2207, Sep. 2019, doi: 10.35940/ijrte.C4587.098319.

[21] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, “Deep Recurrent Neural Network for Intrusion Detection in SDN-based Networks,” in 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), IEEE, Jun. 2018, pp. 202–206. doi: 10.1109/NETSOFT.2018.8460090.

[22] M. A. Khan, M. R. Karim, and Y. Kim, “A Scalable and Hybrid Intrusion Detection System Based on the Convolutional-LSTM Network,” Symmetry (Basel)., vol. 11, no. 4, p. 583, Apr. 2019, doi: 10.3390/sym11040583.

[23] S. Das, M. Ashrafuzzaman, F. T. Sheldon, and S. Shiva, “Network Intrusion Detection using Natural Language Processing and Ensemble Machine Learning,” in 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020, 2020. doi: 10.1109/SSCI47803.2020.9308268.

[24] Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Big Text Data Analysis for Sentiment Classification in Product Reviews Using Advanced Large Language Models. International Journal of AI, BigData, Computational and Management Studies, 2(2), 55-65.

[25] Gangineni, V. N., Tyagadurgam, M. S. V., Chalasani, R., Bhumireddy, J. R., & Penmetsa, M. (2021). Strengthening Cybersecurity Governance: The Impact of Firewalls on Risk Management. International Journal of AI, BigData, Computational and Management Studies, 2, 10-63282.

[26] Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., & Gangineni, V. N. (2021). An Advanced Machine Learning Models Design for Fraud Identification in Healthcare Insurance. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 26-34.

[27] Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., & Polam, R. M. (2021). Advanced Machine Learning Models for Detecting and Classifying Financial Fraud in Big Data-Driven. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 39-46.

[28] Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2021). Enhancing IoT (Internet of Things) Security Through Intelligent Intrusion Detection Using ML Models. International Journal of Emerging Research in Engineering and Technology, 2(1), 27-36.

[29] Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2021). Smart Healthcare: Machine Learning-Based Classification of Epileptic Seizure Disease Using EEG Signal Analysis. International Journal of Emerging Research in Engineering and Technology, 2(3), 61-70.

[30] Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., & Kamarthapu, B. (2021). Big Data and Predictive Analytics for Customer Retention: Exploring the Role of Machine Learning in E-Commerce. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 26-34.

[31] Penmetsa, M., Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., & Pabbineedi, S. (2021). Next-Generation Cybersecurity: The Role of AI and Quantum Computing in Threat Detection. International Journal of Emerging Trends in Computer Science and Information Technology, 2(4), 54-61.

[32] Polu, A. R., Vattikonda, N., Gupta, A., Patchipulusu, H., Buddula, D. V. K. R., & Narra, B. (2021). Enhancing Marketing Analytics in Online Retailing through Machine Learning Classification Techniques. Available at SSRN 5297803.

[33] Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.

[34] Polu, A. R., Vattikonda, N., Buddula, D. V. K. R., Narra, B., Patchipulusu, H., & Gupta, A. (2021). Integrating AI-Based Sentiment Analysis With Social Media Data For Enhanced Marketing Insights. Available at SSRN 5266555.

[35] Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Vattikonda, N., & Gupta, A. K. (2021). INTEGRATING AI-BASED SENTIMENT ANALYSIS WITH SOCIAL MEDIA DATA FOR ENHANCED MARKETING INSIGHTS. Journal Homepage: http://www. ijesm. co. in, 10(2).

[36] Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Narra, B., & Vattikonda, N. (2021). An Analysis of Crime Prediction and Classification Using Data Mining Techniques.

[37] Rajiv, C., Mukund Sai, V. T., Venkataswamy Naidu, G., Sriram, P., & Mitra, P. (2022). Leveraging Big Datasets for Machine Learning-Based Anomaly Detection in Cybersecurity Network Traffic. J Contemp Edu Theo Artific Intel: JCETAI/102.

[38] Sandeep Kumar, C., Srikanth Reddy, V., Ram Mohan, P., Bhavana, K., & Ajay Babu, K. (2022). Efficient Machine Learning Approaches for Intrusion Identification of DDoS Attacks in Cloud Networks. J Contemp Edu Theo Artific Intel: JCETAI/101.

[39] Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Penmetsa, M. (2020). Big Data-Driven Time Series Forecasting for Financial Market Prediction: Deep Learning Models. Journal of Artificial Intelligence and Big Data, 2(1), 153–164.DOI: 10.31586/jaibd.2022.1341

[40] Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2022). Advance of AI-Based Predictive Models for Diagnosis of Alzheimer’s Disease (AD) in Healthcare. Journal of Artificial Intelligence and Big Data, 2(1), 141–152.DOI: 10.31586/jaibd.2022.1340

[41] Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2022). Designing an Intelligent Cybersecurity Intrusion Identify Framework Using Advanced Machine Learning Models in Cloud Computing. Universal Library of Engineering Technology, (Issue).

[42] Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2022). Leveraging Artificial Intelligence Algorithms for Risk Prediction in Life Insurance Service Industry. Available at SSRN 5459694.

[43] Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Data Security in Cloud Computing: Encryption, Zero Trust, and Homomorphic Encryption. International Journal of Emerging Trends in Computer Science and Information Technology, 2(3), 70-80.

[44] Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., & Tyagadurgam, M. S. V. Efficient Framework for Forecasting Auto Insurance Claims Utilizing Machine Learning Based Data-Driven Methodologies. International Research Journal of Economics and Management Studies IRJEMS, 1(2).

[45] Vattikonda, N., Gupta, A. K., Polu, A. R., Narra, B., Buddula, D. V. K. R., & Patchipulusu, H. H. S. (2022). Blockchain Technology in Supply Chain and Logistics: A Comprehensive Review of Applications, Challenges, and Innovations. International Journal of Emerging Research in Engineering and Technology, 3(3), 99-107.

Narra, B., Vattikonda, N., Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., & Polu, A. R. (2022). Revolutionizing Marketing Analytics: A Data-Driven Machine Learning Framework for Churn Prediction. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(2), 112-121.

[46] Polu, A. R., Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., & Gupta, A. K. BLOCKCHAIN TECHNOLOGY AS A TOOL FOR CYBERSECURITY: STRENGTHS, WEAKNESSES, AND POTENTIAL APPLICATIONS.

[47] Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Penmetsa, M. (2022). Big Data-Driven Time Series Forecasting for Financial Market Prediction: Deep Learning Models. Journal of Artificial Intelligence and Big Data, 2(1), 153–164.DOI: 10.31586/jaibd.2022.1341

[48] Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2022). Advance of AI-Based Predictive Models for Diagnosis of Alzheimer’s Disease (AD) in Healthcare. Journal of Artificial Intelligence and Big Data, 2(1), 141–152.DOI: 10.31586/jaibd.2022.1340

Published

2023-12-30

Issue

Section

Articles

How to Cite

1.
Namburi VD, Arjun Singh Singh A, Maniar V, Tamilmani V, Kothamaram RR, Rajendran D. Intelligent Network Traffic Identification Based on Advanced Machine Learning Approaches. IJETCSIT [Internet]. 2023 Dec. 30 [cited 2025 Oct. 30];4(4):37-43. Available from: https://ijetcsit.org/index.php/ijetcsit/article/view/438

Similar Articles

11-20 of 218

You may also start an advanced similarity search for this article.