Efficient Resource Management and Scheduling in Cloud Computing: A Survey of Methods and Emerging Challenges

Authors

  • Varun Bitkuri Stratford University, Software Engineer Author
  • Raghuvaran Kendyala University of Illinois at Springfield, Department of Computer Science. Author
  • Jagan Kurma Christian Brothers University, Computer Information Systems. Author
  • Jaya Vardhani Mamidala University of Central Missouri, Department of Computer Science. Author
  • Sunil Jacob Enokkaren ADP, Solution Architect. Author
  • Avinash Attipalli University of Bridgeport, Department of Computer Science. Author

DOI:

https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P112

Keywords:

Cloud Computing, Resource Management, scheduling algorithms, Energy Efficiency, Resource Allocation

Abstract

Cloud computing has changed the way modern IT infrastructure works by letting users access computer resources in a way that is scalable, flexible, and on-demand.  But making sure that these resources are managed and scheduled well is still important for performance, cost-effectiveness, and energy economy.  This essay covers all the different ways to handle resources and make schedules in cloud computing, including old-fashioned methods, smart algorithms, and environmentally friendly ways of doing things.  It talks about different ways to schedule and assign resources, such as heuristic, meta-heuristic, machine learning-based, and control-theory-driven models.  A lot of attention is paid to managing resources in data centers in a way that saves energy, managing workloads, and optimizing virtual machines in real time. Furthermore, the study identifies key challenges such as workload heterogeneity, elasticity, cost minimization, SLA compliance, and energy-efficient scheduling. The paper also explores architecture models, taxonomy of scheduling layers, and the implications of big data in cloud operations. By consolidating current research and highlighting emerging issues, this paper aims to serve as a valuable reference for researchers and practitioners working toward optimized and sustainable cloud resource management solutions. The insights presented are intended to support the development of scalable frameworks that ensure high availability, reduced latency, and enhanced quality of service in diverse cloud environments

Downloads

Download data is not yet available.

References

[1] M. Kaur and H. Singh, “A review of cloud computing security issues,” Int. J. Grid Distrib. Comput., vol. 8, no. 5, pp. 215–222, 2015, doi: 10.14257/ijgdc.2015.8.5.21.

[2] A. Agarwal and S. Jain, “Efficient Optimal Algorithm of Task Scheduling in Cloud Computing Environment,” Int. J. Comput. Trends Technol., vol. 9, no. 7, 2014, doi: 10.14445/22312803/ijctt-v9p163.

[3] B. Jennings and R. Stadler, “Resource Management in Clouds: Survey and Research Challenges,” J. Netw. Syst. Manag., vol. 23, no. 3, pp. 567–619, Jul. 2015, doi: 10.1007/s10922-014-9307-7.

[4] S. Garg, “Predictive Analytics and Auto Remediation using Artificial Intelligence and Machine learning in Cloud Computing Operations,” Int. J. Innov. Res. Eng. Multidiscip. Phys. Sci., vol. 7, no. 2, 2019.

[5] J. K. Konjaang, J. Y. Maipan-uku, and K. Kennedy, “An Efficient Max-Min Resource Allocator and Task Scheduling Algorithm in Cloud Computing Environment,” Int. J. Comput. Appl., vol. 142, no. 8, pp. 25–30, May 2016, doi: 10.5120/ijca2016909884.

[6] A. Kushwaha, P. Pathak, and S. Gupta, “Review of optimize load balancing algorithms in cloud,” Int. J. Distrib. Cloud Comput., vol. 4, no. 2, pp. 1–9, 2016.

[7] S. Mustafa, B. Nazir, A. Hayat, A. U. R. Khan, and S. A. Madani, “Resource management in cloud computing: Taxonomy, prospects, and challenges,” Comput. Electr. Eng., vol. 47, pp. 186–203, 2015, doi: 10.1016/j.compeleceng.2015.07.021.

[8] N. U. Saqib, M. Arora, and S. Chopra, “Cloud Computing Architecture Issues and Future Research Directions,” vol. 5, no. 11, pp. 532–537, 2018.

[9] I. Odun-Ayo, M. Ananya, F. Agono, and R. Goddy-Worlu, “Cloud Computing Architecture: A Critical Analysis,” in Proceedings of the 2018 18th International Conference on Computational Science and Its Applications, ICCSA 2018, 2018. doi: 10.1109/ICCSA.2018.8439638.

[10] S. V. Mohan and S. S. Sathyanathan, “Research in Cloud Computing-An Overview,” Int. J. Distrib. Cloud Comput., 2015, doi: 10.21863/ijdcc/2015.3.1.002.

[11] H. Mehta, V. K. Prasad, and M. Bhavsar, “Efficient Resource Scheduling in Cloud Computing,” Int. J. Adv. Res. Comput. Sci., vol. 8, no. 3, pp. 809–815, 2017, doi: 10.26483/ijarcs.v8i3.3104.

[12] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung, and Y. Li, “Cloud Computing Resource Scheduling and a Survey of Its Evolutionary Approaches,” ACM Comput. Surv., vol. 47, no. 4, Jul. 2015, doi: 10.1145/2788397.

[13] P. Pathak, A. Shrivastava, and S. Gupta, “A Survey on Various Security Issues in Delay Tolerant Networks,” J. Adv. Shell Program., vol. 2, no. 2, pp. 12–18, 2015.

[14] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: a survey,” J. Supercomput., vol. 71, no. 9, pp. 3373–3418, 2015, doi: 10.1007/s11227-015-1438-4.

[15] S. S. S. Neeli, “Serverless Databases: A Cost-Effective and Scalable Solution,” Int. J. Innov. Res. Eng. Multidiscip. Phys. Sci., vol. 7, no. 6, p. 7, 2019.

[16] W. Zhao, X. Wang, S. Jin, W. Yue, and Y. Takahashi, “An energy efficient task scheduling strategy in a cloud computing system and its performance evaluation using a two-dimensional continuous time markov chain model,” Electron., 2019, doi: 10.3390/electronics8070775.

[17] X. Jin, F. Zhang, A. V. Vasilakos, and Z. Liu, “Green Data Centers: A Survey, Perspectives, and Future Directions,” 2016.

[18] S. K. Moghaddam, R. Buyya, and K. Ramamohanarao, “Performance-aware management of cloud resources: A taxonomy and future directions,” ACM Comput. Surv., 2019, doi: 10.1145/3337956.

[19] A. J. Younge, G. von Laszewski, L. Wang, S. Lopez-Alarcon, and W. Carithers, “Efficient resource management for Cloud computing environments,” in International Conference on Green Computing, IEEE, Aug. 2010, pp. 357–364. doi: 10.1109/GREENCOMP.2010.5598294.

[20] M. T. Islam and R. Buyya, “Resource Management and Scheduling for Big Data Applications in Cloud Computing Environments,” 2019. doi: 10.4018/978-1-5225-8407-0.ch001.

[21] A. Khajeh-Hosseini, I. Sommerville, and I. Sriram, “Research Challenges for Enterprise Cloud Computing,” 2010.

[22] S. Di and C.-L. Wang, “Dynamic Optimization of Multiattribute Resource Allocation in Self-Organizing Clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 3, pp. 464–478, Mar. 2013, doi: 10.1109/TPDS.2012.144.

[23] A. M. H. Kuo, “Opportunities and challenges of cloud computing to improve health care services,” 2011. doi: 10.2196/jmir.1867.

[24] A. E. Evwiekpaefe and F. Ajakaiye, “The Trend and Challenges of Cloud Computing: A Literature Review,” Acad. J. Interdiscip. Stud., 2013, doi: 10.5901/ajis.2013.v2n10p9.

[25] C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-Pastor, and A. Monje, “On the optimal allocation of virtual resources in cloud computing networks,” IEEE Trans. Comput., vol. 62, no. 6, pp. 1060–1071, Jun. 2013, doi: 10.1109/TC.2013.31.

[26] A. R. Arunarani, D. Manjula, and V. Sugumaran, “Task scheduling techniques in cloud computing: A literature survey,” Futur. Gener. Comput. Syst., 2019, doi: 10.1016/j.future.2018.09.014.

[27] S. Afzal and G. Kavitha, “Load balancing in cloud computing – A hierarchical taxonomical classification,” J. Cloud Comput., vol. 8, no. 1, p. 22, Dec. 2019, doi: 10.1186/s13677-019-0146-7.

[28] W. Zhuang and L. Huang, “Overview of cloud computing resource allocation and management technology,” in 2019 6th International Conference on Systems and Informatics, ICSAI 2019, 2019. doi: 10.1109/ICSAI48974.2019.9010101.

[29] P. Lakkadwala and P. Kanungo, “Memory utilization techniques for cloud resource management in cloud computing environment: A survey,” in 2018 4th International Conference on Computing Communication and Automation, ICCCA 2018, 2018. doi: 10.1109/CCAA.2018.8777457.

[30] T. Mehmood, S. Latif, and S. Malik, “Prediction of Cloud Computing Resource Utilization,” in 2018 15th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT), IEEE, Oct. 2018, pp. 38–42. doi: 10.1109/HONET.2018.8551339.

[31] S. Li and J. Huang, “Energy efficient resource management and task scheduling for IoT services in edge computing paradigm,” in Proceedings - 15th IEEE International Symposium on Parallel and Distributed Processing with Applications and 16th IEEE International Conference on Ubiquitous Computing and Communications, ISPA/IUCC 2017, 2018. doi: 10.1109/ISPA/IUCC.2017.00129.

[32] A. B. M. B. Alam, M. Zulkernine, and A. Haque, “A Reliability-Based Resource Allocation Approach for Cloud Computing,” in 2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2), 2017, pp. 249–252. doi: 10.1109/SC2.2017.46.

[33] Rajiv, C., Mukund Sai, V. T., Venkataswamy Naidu, G., Sriram, P., & Mitra, P. (2022). Leveraging Big Datasets for Machine Learning-Based Anomaly Detection in Cybersecurity Network Traffic. J Contemp Edu Theo Artific Intel: JCETAI/102.

[34] [34]Sandeep Kumar, C., Srikanth Reddy, V., Ram Mohan, P., Bhavana, K., & Ajay Babu, K. (2022). Efficient Machine Learning Approaches for Intrusion Identification of DDoS Attacks in Cloud Networks. J Contemp Edu Theo Artific Intel: JCETAI/101.

[35] Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Penmetsa, M. (2020). Big Data-Driven Time Series Forecasting for Financial Market Prediction: Deep Learning Models. Journal of Artificial Intelligence and Big Data, 2(1), 153–164.DOI: 10.31586/jaibd.2022.1341

[36] Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2022). Advance of AI-Based Predictive Models for Diagnosis of Alzheimer’s Disease (AD) in Healthcare. Journal of Artificial Intelligence and Big Data, 2(1), 141–152.DOI: 10.31586/jaibd.2022.1340

[37] Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2022). Designing an Intelligent Cybersecurity Intrusion Identify Framework Using Advanced Machine Learning Models in Cloud Computing. Universal Library of Engineering Technology, (Issue).

[38] Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2022). Leveraging Artificial Intelligence Algorithms for Risk Prediction in Life Insurance Service Industry. Available at SSRN 5459694.

[39] Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Data Security in Cloud Computing: Encryption, Zero Trust, and Homomorphic Encryption. International Journal of Emerging Trends in Computer Science and Information Technology, 2(3), 70-80.

[40] Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., & Tyagadurgam, M. S. V. Efficient Framework for Forecasting Auto Insurance Claims Utilizing Machine Learning Based Data-Driven Methodologies. International Research Journal of Economics and Management Studies IRJEMS, 1(2).

[41] Vattikonda, N., Gupta, A. K., Polu, A. R., Narra, B., Buddula, D. V. K. R., & Patchipulusu, H. H. S. (2022). Blockchain Technology in Supply Chain and Logistics: A Comprehensive Review of Applications, Challenges, and Innovations. International Journal of Emerging Research in Engineering and Technology, 3(3), 99-107.

[42] Narra, B., Vattikonda, N., Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., & Polu, A. R. (2022). Revolutionizing Marketing Analytics: A Data-Driven Machine Learning Framework for Churn Prediction. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(2), 112-121.

[43] Polu, A. R., Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., & Gupta, A. K. BLOCKCHAIN TECHNOLOGY AS A TOOL FOR CYBERSECURITY: STRENGTHS, WEAKNESSES, AND POTENTIAL APPLICATIONS.

[44] Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Penmetsa, M. (2022). Big Data-Driven Time Series Forecasting for Financial Market Prediction: Deep Learning Models. Journal of Artificial Intelligence and Big Data, 2(1), 153–164.DOI: 10.31586/jaibd.2022.1341

[45] Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2022). Advance of AI-Based Predictive Models for Diagnosis of Alzheimer’s Disease (AD) in Healthcare. Journal of Artificial Intelligence and Big Data, 2(1), 141–152.DOI: 10.31586/jaibd.2022.1340

[46] HK, K. (2020). Design of Efficient FSM Based 3D Network on Chip Architecture. INTERNATIONAL JOURNAL OF ENGINEERING, 68(10), 67-73.

[47] Krutthika, H. K. (2019, October). Modeling of Data Delivery Modes of Next Generation SOC-NOC Router. In 2019 Global Conference for Advancement in Technology (GCAT) (pp. 1-6). IEEE.

[48] Ajay, S., Satya Sai Krishna Mohan G, Rao, S. S., Shaunak, S. B., Krutthika, H. K., Ananda, Y. R., & Jose, J. (2018). Source Hotspot Management in a Mesh Network on Chip. In VDAT (pp. 619-630).

[49] Nair, T. R., & Krutthika, H. K. (2010). An Architectural Approach for Decoding and Distributing Functions in FPUs in a Functional Processor System. arXiv preprint arXiv:1001.3781.

[50] Gopalakrishnan Nair, T. R., & Krutthika, H. K. (2010). An Architectural Approach for Decoding and Distributing Functions in FPUs in a Functional Processor System. arXiv e-prints, arXiv-1001.

[51] Krutthika H. K. & A.R. Aswatha. (2021). Implementation and analysis of congestion prevention and fault tolerance in network on chip. Journal of Tianjin University Science and Technology, 54(11), 213–231. https://doi.org/10.5281/zenodo.5746712

[52] Krutthika H. K. & A.R. Aswatha. (2020). FPGA-based design and architecture of network-on-chip router for efficient data propagation. IIOAB Journal, 11(S2), 7–25.

[53] Krutthika H. K. & A.R. Aswatha (2020). Design of efficient FSM-based 3D network-on-chip architecture. International Journal of Engineering Trends and Technology, 68(10), 67–73. https://doi.org/10.14445/22315381/IJETT-V68I10P212

[54] Krutthika H. K. & Rajashekhara R. (2019). Network-on-chip: A survey on router design and algorithms. International Journal of Recent Technology and Engineering, 7(6), 1687–1691. https://doi.org/10.35940/ijrte.F2131.037619

[55] Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Big Text Data Analysis for Sentiment Classification in Product Reviews Using Advanced Large Language Models. International Journal of AI, BigData, Computational and Management Studies, 2(2), 55-65.

[56] Gangineni, V. N., Tyagadurgam, M. S. V., Chalasani, R., Bhumireddy, J. R., & Penmetsa, M. (2021). Strengthening Cybersecurity Governance: The Impact of Firewalls on Risk Management. International Journal of AI, BigData, Computational and Management Studies, 2, 10-63282.

[57] Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., & Gangineni, V. N. (2021). An Advanced Machine Learning Models Design for Fraud Identification in Healthcare Insurance. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 26-34.

[58] Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., & Polam, R. M. (2021). Advanced Machine Learning Models for Detecting and Classifying Financial Fraud in Big Data-Driven. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 39-46.

[59] Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2021). Enhancing IoT (Internet of Things) Security through Intelligent Intrusion Detection Using ML Models. International Journal of Emerging Research in Engineering and Technology, 2(1), 27-36.

[60] Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2021). Smart Healthcare: Machine Learning-Based Classification of Epileptic Seizure Disease Using EEG Signal Analysis. International Journal of Emerging Research in Engineering and Technology, 2(3), 61-70.

[61] Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., & Kamarthapu, B. (2021). Big Data and Predictive Analytics for Customer Retention: Exploring the Role of Machine Learning in E-Commerce. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 26-34.

[62] Penmetsa, M., Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., & Pabbineedi, S. (2021). Next-Generation Cybersecurity: The Role of AI and Quantum Computing in Threat Detection. International Journal of Emerging Trends in Computer Science and Information Technology, 2(4), 54-61.

[63] Polu, A. R., Vattikonda, N., Gupta, A., Patchipulusu, H., Buddula, D. V. K. R., & Narra, B. (2021). Enhancing Marketing Analytics in Online Retailing through Machine Learning Classification Techniques. Available at SSRN 5297803.

[64] Kalla, D. (2022). AI-Powered Driver Behavior Analysis and Accident Prevention Systems for Advanced Driver Assistance. International Journal of Scientific Research and Modern Technology (IJSRMT) Volume, 1.

[65] Dinesh, K. (2022). Navigating the link between internet user attitudes and cybersecurity awareness in the era of phishing challenges. International Advanced Research Journal in Science, Engineering and Technology.

[66] Kalla, D., Kuraku, D. S., & Samaah, F. (2021). Enhancing cyber security by predicting malwares using supervised machine learning models. International Journal of Computing and Artificial Intelligence, 2(2), 55-62.

[67] Katari, A., & Kalla, D. (2021). Cost Optimization in Cloud-Based Financial Data Lakes: Techniques and Case Studies. ESP Journal of Engineering & Technology Advancements (ESP-JETA), 1(1), 150-157.

[68] Kalla, D., Smith, N., Samaah, F., & Polimetla, K. (2021). Facial Emotion and Sentiment Detection Using Convolutional Neural Network. Indian Journal of Artificial Intelligence Research (INDJAIR), 1(1), 1-13.

[69] Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.

Published

2023-10-30

Issue

Section

Articles

How to Cite

1.
Bitkuri V, Kendyala R, Kurma J, Mamidala JV, Enokkaren SJ, Attipalli A. Efficient Resource Management and Scheduling in Cloud Computing: A Survey of Methods and Emerging Challenges. IJETCSIT [Internet]. 2023 Oct. 30 [cited 2025 Oct. 16];4(3):112-23. Available from: https://ijetcsit.org/index.php/ijetcsit/article/view/400

Similar Articles

41-50 of 264

You may also start an advanced similarity search for this article.