Challenges Facing Java-Based Big Data Frameworks in Distributed Environments

Authors

  • Yusuf Adebayo Ladoke Akintola University of Technology. Author

DOI:

https://doi.org/10.63282/3050-9246.IJETCSIT-V5I2P115

Keywords:

Java-Based Big Data Frameworks, Distributed Computing Challenges, JVM Performance Overhead, Garbage Collection Latency, Memory Management In Distributed Systems, Apache Hadoop, Apache Spark, Apache Flink, Scalability Issues, Fault Tolerance In Big Data, Distributed System Performance, Cloud-Native Big Data Architectures

Abstract

Java-based big data frameworks such as Apache Hadoop, Spark, and Flink play a critical role in large-scale data processing within distributed environments. Despite their widespread adoption, these frameworks encounter several technical and operational challenges that can affect performance, scalability, and reliability. The purpose of this study is to examine the key challenges faced by Java-based big data frameworks when deployed in distributed systems. The research adopts a qualitative methodology based on an extensive review of existing literature, technical documentation, and case studies related to distributed computing and big data processing. The findings reveal that major challenges include JVM overhead, garbage collection latency, memory management complexities, network and I/O bottlenecks, fault tolerance overhead, and difficulties in deployment, configuration, and security management. These issues can lead to reduced efficiency and increased operational costs in large-scale environments. The study concludes that while Java-based big data frameworks remain robust and versatile, addressing these challenges through optimized memory handling, improved resource management, and cloud-native architectural enhancements is essential for achieving better performance and reliability in distributed environments.

Downloads

Download data is not yet available.

References

[1] Apache Software Foundation. (2023). Apache Flink: Stateful computations over data streams.

[2] Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113.

[3] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., … Stoica, I. (2012). Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. Proceedings of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI), 15–28.

[4] Zaharia, M., Das, T., Li, H., Shenker, S., & Stoica, I. (2013). Discretized streams: Fault-tolerant streaming computation at scale. Proceedings of the 24th ACM Symposium on Operating Systems Principles, 423–438.

[5] Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., … Zaharia, M. (2015). Spark SQL: Relational data processing in Spark. Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, 1383–1394.

[6] Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., … Zaharia, M. (2015). Spark SQL: Relational data processing in Spark. Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, 1383–1394.

[7] Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113.

[8] Kreps, J., Narkhede, N., & Rao, J. (2011). Kafka: A distributed messaging system for log processing. Proceedings of the NetDB Workshop, 1–7.

[9] Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The Hadoop Distributed File System. Proceedings of the IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), 1–10.

[10] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., … Stoica, I. (2012). Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.

[11] Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.

[12] Singh, A. A. S., Tamilmani, V., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2021). Predictive Modeling for Classification of SMS Spam Using NLP and ML Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 60-69.

[13] Maniar, V., Tamilmani, V., Kothamaram, R. R., Rajendran, D., Namburi, V. D., & Singh, A. A. S. (2021). Review of Streaming ETL Pipelines for Data Warehousing: Tools, Techniques, and Best Practices. International Journal of AI, BigData, Computational and Management Studies, 2(3), 74-81.

[14] Rajendran, D., Namburi, V. D., Singh, A. A. S., Tamilmani, V., Maniar, V., & Kothamaram, R. R. (2021). Anomaly Identification in IoT-Networks Using Artificial Intelligence-Based Data-Driven Techniques in Cloud Environmen. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 83-91.

[15] Kothamaram, R. R., Rajendran, D., Namburi, V. D., Singh, A. A. S., Tamilmani, V., & Maniar, V. (2021). A Survey of Adoption Challenges and Barriers in Implementing Digital Payroll Management Systems in Across Organizations. International Journal of Emerging Research in Engineering and Technology, 2(2), 64-72.

[16] Singh, A. A., Tamilmani, V., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2021). Hybrid AI Models Combining Machine-Deep Learning for Botnet Identification. International Journal of Humanities and Information Technology, (Special 1), 30-45.

[17] Attipalli, A., Enokkaren, S. J., Bitkuri, V., Kendyala, R., Kurma, J., & Mamidala, J. V. (2021). A Review of AI and Machine Learning Solutions for Fault Detection and Self-Healing in Cloud Services. International Journal of AI, BigData, Computational and Management Studies, 2(3), 53-63.

[18] Enokkaren, S. J., Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., & Attipalli, A. (2021). Enhancing Cloud Infrastructure Security Through AI-Powered Big Data Anomaly Detection. International Journal of Emerging Research in Engineering and Technology, 2(2), 43-54.

[19] Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., Enokkaren, S. J., & Bitkuri, V. (2021). A Survey of Artificial Intelligence Methods in Liquidity Risk Management: Challenges and Future Directions. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 35-42.

[20] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., & Enokkaren, S. J. (2021). A Survey on Hybrid and Multi-Cloud Environments: Integration Strategies, Challenges, and Future Directions. International Journal of Computer Technology and Electronics Communication, 4(1), 3219-3229.

[21] Polu, A. R., Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., & Gupta, A. K. (2022). Blockchain Technology as a Tool for Cybersecurity: Strengths, Weaknesses, and Potential Applications. Unpublished manuscript.

[22] Rajendran, D., Singh, A. A. S., Maniar, V., Tamilmani, V., Kothamaram, R. R., & Namburi, V. D. (2022). Data-Driven Machine Learning-Based Prediction and Performance Analysis of Software Defects for Quality Assurance. Universal Library of Engineering Technology, (Issue).

[23] Namburi, V. D., Rajendran, D., Singh, A. A., Maniar, V., Tamilmani, V., & Kothamaram, R. R. (2022). Machine Learning Algorithms for Enhancing Predictive Analytics in ERP-Enabled Online Retail Platform. International Journal of Advance Industrial Engineering, 10(04), 65-73.

[24] Namburi, V. D., Tamilmani, V., Singh, A. A. S., Maniar, V., Kothamaram, R. R., & Rajendran, D. (2022). Review of Machine Learning Models for Healthcare Business Intelligence and Decision Support. International Journal of AI, BigData, Computational and Management Studies, 3(3), 82-90.

[25] Tamilmani, V., Singh Singh, A. A., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2022). Forecasting Financial Trends Using Time Series Based ML-DL Models for Enhanced Business Analytics. Available at SSRN 5837143.

[26] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Enokkaren, S. J., & Attipalli, A. (2022). Empowering Cloud Security with Artificial Intelligence: Detecting Threats Using Advanced Machine learning Technologies. International Journal of AI, BigData, Computational and Management Studies, 3(4), 49-59.

[27] Attipalli, A., Mamidala, J. V., KURMA, J., Bitkuri, V., Kendyala, R., & Enokkaren, S. (2022). Towards the Efficient Management of Cloud Resource Allocation: A Framework Based on Machine Learning. Available at SSRN 5741265.

[28] Enokkaren, S. J., Attipalli, A., Bitkuri, V., Kendyala, R., Kurma, J., & Mamidala, J. V. (2022). A Deep-Review based on Predictive Machine Learning Models in Cloud Frameworks for the Performance Management. Universal Library of Engineering Technology, (Issue).

[29] Kurma, J., Mamidala, J. V., Attipalli, A., Enokkaren, S. J., Bitkuri, V., & Kendyala, R. (2022). A Review of Security, Compliance, and Governance Challenges in Cloud-Native Middleware and Enterprise Systems. International Journal of Research and Applied Innovations, 5(1), 6434-6443.

[30] Attipalli, A., Enokkaren, S., KURMA, J., Mamidala, J. V., Kendyala, R., & BITKURI, V. (2022). A Deep-Review based on Predictive Machine Learning Models in Cloud Frameworks for the Performance Management. Available at SSRN 5741282.

[31] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Enokkaren, S. J., & Attipalli, A. (2022). Empowering Cloud Security with Artificial Intelligence: Detecting Threats Using Advanced Machine learning Technologies. International Journal of AI, BigData, Computational and Management Studies, 3(4), 49-59.

[32] Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., & Bhumireddy, J. R. (2022). Leveraging big datasets for machine learning-based anomaly detection in cybersecurity network traffic. Available at SSRN 5538121.

[33] Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., & Nandiraju, S. K. K. (2022). Efficient machine learning approaches for intrusion identification of DDoS attacks in cloud networks. Available at SSRN 5515262.

[34] Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., & Bhumireddy, J. R. (2022). Leveraging big datasets for machine learning-based anomaly detection in cybersecurity network traffic. Available at SSRN 5538121.

[35] Sandeep Kumar, C., Srikanth Reddy, V., Ram Mohan, P., Bhavana, K., & Ajay Babu, K. (2022). Efficient Machine Learning Approaches for Intrusion Identification of DDoS Attacks in Cloud Networks. J Contemp Edu Theo Artific Intel: JCETAI/101.

[36] Namburi, V. D., Singh, A. A. S., Maniar, V., Tamilmani, V., Kothamaram, R. R., & Rajendran, D. (2023). Intelligent Network Traffic Identification Based on Advanced Machine Learning Approaches. International Journal of Emerging Trends in Computer Science and Information Technology, 4(4), 118-128.

[37] Rajendran, D., Maniar, V., Tamilmani, V., Namburi, V. D., Singh, A. A. S., & Kothamaram, R. R. (2023). CNN-LSTM Hybrid Architecture for Accurate Network Intrusion Detection for Cybersecurity. Journal Of Engineering And Computer Sciences, 2(11), 1-13.

[38] Kothamaram, R. R., Rajendran, D., Namburi, V. D., Tamilmani, V., Singh, A. A., & Maniar, V. (2023). Exploring the Influence of ERP-Supported Business Intelligence on Customer Relationship Management Strategies. International Journal of Technology, Management and Humanities, 9(04), 179-191.

[39] Singh, A. A. S. S., Mania, V., Kothamaram, R. R., Rajendran, D., Namburi, V. D. N., & Tamilmani, V. (2023). Exploration of Java-Based Big Data Frameworks: Architecture, Challenges, and Opportunities.Journal of Artificial Intelligence & Cloud Computing,2(4), 1-8.

[40] Tamilmani, V., Namburi, V. D., Singh Singh, A. A., Maniar, V., Kothamaram, R. R., & Rajendran, D. (2023). Real-Time Identification of Phishing Websites Using Advanced Machine Learning Methods. Available at SSRN 5837142.

[41] Mamidala, J. V., Attipalli, A., Enokkaren, S. J., Bitkuri, V., Kendyala, R., & Kurma, J. (2023). A Survey of Blockchain-Enabled Supply Chain Processes in Small and Medium Enterprises for Transparency and Efficiency. International Journal of Humanities and Information Technology, 5(04), 84-95.

[42] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Enokkaren, S. J., & Attipalli, A. (2023). Efficient Resource Management and Scheduling in Cloud Computing: A Survey of Methods and Emerging Challenges. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 112-123.

[43] Mamidala, J. V., Attipalli, A., Enokkaren, S. J., Bitkuri, V., Kendyala, R., & Kurma, J. (2023). A Survey on Hybrid and Multi-Cloud Environments: Integration Strategies, Challenges, and Future Directions. International Journal of Humanities and Information Technology, 5(02), 53-65.

[44] Mamidala, J. V., Enokkaren, S. J., Attipalli, A., Bitkuri, V., Kendyala, R., & Kurma, J. Machine Learning Models Powered by Big Data for Health Insurance Expense Forecasting. International Research Journal of Economics and Management Studies IRJEMS, 2(1).

[45] Bhumireddy, J. R. (2023). A Hybrid Approach for Melanoma Classification using Ensemble Machine Learning Techniques with Deep Transfer Learning Article in Computer Methods and Programs in Biomedicine Update. Available at SSRN 5667650.

[46] From Fragmentation to Focus: The Benefits of Centralizing Procurement. (2023). International Journal of Research and Applied Innovations, 6(6), 9820-9833. https://doi.org/10.15662/IJRAI.2023.0606006

Published

2024-06-30

Issue

Section

Articles

How to Cite

1.
Adebayo Y. Challenges Facing Java-Based Big Data Frameworks in Distributed Environments. IJETCSIT [Internet]. 2024 Jun. 30 [cited 2026 Feb. 9];5(2):143-8. Available from: https://ijetcsit.org/index.php/ijetcsit/article/view/556

Similar Articles

111-120 of 447

You may also start an advanced similarity search for this article.