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Abstract - Zero-shot policy transfer in multi-agent reinforce-
ment learning (MARL) aims to reuse learned behaviors
across new tasks, agent populations, or environments without
additional training. While promising for scalable autonomy,
real-world MARL deployments are typically siloed: data,
simulators, and operational telemetry are separated across
business units, regions, or vendors, and cannot be centrally
pooled. This creates a core tension: policy transfer benefits
from shared learning, yet safety, privacy, and organizational
boundaries demand decentralization. Further, transfer
decisions in high-stakes settings must be ex-plainable and
auditable, but adding explainability mechanisms can reduce
performance or increase operational cost. Finally, federated
settings are vulnerable to integrity failures (e.g., faulty or
malicious updates) that can degrade global transfer quality.
This paper proposes TFX-MARL (Trusted Federated Ex-
plainability for MARL), a governance-inspired framework for
zero-shot policy transfer across silos using trust metric-based
federated learning (FL) and explainability controls. TFX-
MARL contributes: (i) a trust metric that quantifies
participant integrity and accountability using provenance,
update consistency, local evaluation reliability, and safety-
compliance signals; (ii) a trust-aware federated aggregation
protocol that reduces poisoning risk and emphasizes high-
accountability participants; and (iii) a trade-off controller
that explicitly quantifies and optimizes the explainability—
performance balance using a simple, operationally
interpretable budgeting mechanism. We evaluate TFX-MARL
us-ing a controlled simulation of heterogeneous MARL
domains with non-1ID task distributions, partial
observability, and adversarial participants. Results show that
trust-aware FL improves robust zero-shot transfer compared
to standard FedAvg baselines, while explainability budgets
maintain stable, actionable explanations with limited
performance degradation. We conclude with engi-neering
guidance for deploying trusted federated policy transfer in
multi-agent systems requiring integrity, accountability, and
explainable decision justification.

Keywords - Multi-Agent Reinforcement Learning, Zero-Shot
Transfer, Federated Learning, Trust Metrics, Explainable Al,
In-Tegrity, Accountability, Policy Transfer.

1. Introduction

Multi-agent reinforcement learning (MARL) has
advanced rapidly due to value decomposition, centralized
training with decentralized execution, and scalable actor-critic
methods [2]-[5]. In enterprise and cyber-physical settings,
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MARL is at-tractive for coordination problems such as
resource allocation, traffic control, warehouse automation,
and fleet management. Yet, operational realities often
fragment learning into silos: simulators differ by site,
telemetry is restricted by privacy or contractual constraints,
and safety requirements prevent centralizing certain behavior
traces. As a result, organizations face a strategic question:
How can we transfer policies across heterogeneous multi-
agent domains without pooling raw data, while maintaining
integrity, accountability, and explainability?
1.1. Motivation: Zero-Shot Under
Constraints

Zero-shot policy transfer aims to reuse policies trained in
source domains in a new target domain without additional
training. In MARL, this is difficult because coordination
patterns can be sensitive to agent count, dynamics, partial ob-
servability, and reward shaping. Nonetheless, practical
deploy-ments often need fast adaptation: new sites come
online, agent teams change, and operating conditions shift.
Retraining from scratch per silo is slow and expensive;
sharing raw trajectories is often disallowed. Federated
learning offers a path to shared representation and policy
knowledge without centralizing data [7]-[9], but standard FL
lacks integrity guarantees and does not directly address
explainability requirements.

Policy Transfer

1.2. Problem Statement
We define three coupled problems:

e P11 (Trusted Cross-Silo Transfer): Enable cross-silo
policy transfer without sharing raw trajectories,
while ensuring the global transfer mechanism is
robust to faulty or malicious contributors.

e P2 (Integrity and Accountability): Ensure that policy
transfer updates and decisions are attributable and
auditable, with evidence to support investigation and
compliance.

e P3 (Explainability—Performance Trade-off): Provide
ex-planations for transfer decisions and policy
behavior that are stable and actionable, with an
explicit mechanism to manage the trade-off against
performance.
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1.3. Contributions

This paper introduces TFX-MARL, a trusted federated ex-
plainability framework for zero-shot policy transfer, with
con-tributions:

e Trust Metric for Federated MARL: An evidence-
driven trust score that measures participant integrity
and accountability using (a) provenance signals, (b)
update consistency, (c) evaluation reliability, and (d)
safety-compliance indicators.

e  Trust-Aware Federated Aggregation for Transfer: A
robust aggregation protocol that uses trust weights
and outlier resistance to improve robustness against
poisoning and low-quality updates.

e Explainability Budgeting and Trade-off Controller:
A practical controller that quantifies and optimizes
explain-ability versus performance using
explanation budgets and stability checks, avoiding
complex formulas.

o Experimental Evaluation: A simulation evaluation
un-der non-11D task distributions, varying agent
populations, and adversarial participants, measuring
transfer perfor-mance, robustness, and explanation
quality.

1.4. Paper Organization

Section Il reviews related work. Section Il presents the
TFX-MARL framework and threat model. Section 1V details
the trust metric and federated protocol. Section V introduces
explainability budgeting and trade-off control. Sections VI-
VII present experiments and results. Section VIII discusses
limitations and deployment guidance. Section 1X concludes.

2. Related Work
2.1. Multi-Agent Reinforcement Learning

MARL research covers partially observable stochastic
games, centralized training with decentralized execution, and
coordination via value factorization and actor-critic
learning [2]-[5]. Many approaches assume shared training
infrastruc-ture and data access, which is inconsistent with
siloed deploy-ments.

2.2. Transfer and Generalization in RL and MARL

Transfer learning in RL includes learning representations
that generalize across tasks, reusing skills, and policy distil-
lation. While broad transfer methods exist, zero-shot transfer
remains challenging, particularly for multi-agent coordination
where emergent conventions can fail under domain shift [1],
[6]. Meta-learning and domain randomization provide partial
solutions but often require centralized data and training
loops.

2.3. Federated Learning and Robust Aggregation

Federated averaging (FedAvg) established a scalable ap-
proach to decentralized training [7]. Federated optimization
highlights challenges from non-1ID data and system hetero-
geneity [8]. Robust aggregation methods tolerate Byzantine
or adversarial updates by filtering or down-weighting outliers
[11], [12]. Secure aggregation addresses privacy of updates
but does not guarantee integrity [10]. TFX-MARL combines

robustness with explicit trust evidence and accountability
signals.

2.4. Explainable Al

Model-agnostic explanation methods such as LIME [13]
and SHAP [14], as well as deep attribution methods like Inte-
grated Gradients [15], provide explanation primitives. In
high-stakes contexts, interpretability concerns motivate
preference for inherently interpretable models or constrained
explanation processes [17]. For RL, explanation is difficult
because deci-sions are sequential and multi-agent;
nonetheless, local feature attributions and counterfactual
rationales can be adapted using these primitives.

2.5. Accountability and Auditable Logging

Auditable logs and permissioned blockchains support in-
tegrity and traceability of decisions and system events [18],
[19]. TFX-MARL adopts an “audit plane” concept: an
append-only record of model lineage, trust reports, and
transfer decisions, without requiring public ledgers.

3. TFX-Marl Framework Overview
3.1. System Model
We consider a set of silos (participants) S = {1, ..., N}. Each
silo runs a MARL system in its own environment
distribution. Each silo has local access to:

e  Environment simulators or real telemetry,

e Reward definitions and safety constraints,

e Agent policies and local evaluation procedures.

e SilOS cannot share raw trajectories but can share

model updates and aggregated summaries.

3.2. Zero-Shot Policy Transfer Objective

TFX-MARL aims to produce a transferable policy (or policy
representation) that can be deployed in a new target silo
without additional training. We focus on two practical forms
of transfer:

e Representation transfer: a shared policy encoder or
latent representation that can be used by local
policies.

e Policy initialization transfer: a global policy that can
run as-is in the target domain (zero-shot), potentially
with  environment-specific adapters pre-trained
locally.

The paper emphasizes the federated and governance
aspects rather than proposing a new MARL algorithm; TFX-
MARL is a framework that can wrap existing MARL
learners.

3.3. Threat Model
Participants may be:
e Honest (provide correct updates and evaluations),
e Faulty (noisy telemetry, unstable training,
misconfigured evaluation),
e Malicious (poison updates to harm transfer or create
blind spots).
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Additionally, participants may attempt accountability
eva-sion: forging provenance, withholding evaluation results,
or manipulating safety signals.

3.4. Design Goals
TFX-MARL is built around:

e Gl Robust Transfer: preserve zero-shot transfer
perfor-mance under heterogeneity.

e G2 Integrity: reduce influence of faulty/malicious
up-dates.

e G3 Accountability: record evidence for audit and
blame assignment.

e G4 Explainability: provide stable and actionable
expla-nations for transfer decisions and policy
actions.

e G5 Practicality: avoid complex formulas; no
diagrams; minimal assumptions.

4. Trusted Federated Learning for Policy

Transfer
This section describes the trust metric and trust-aware
federated protocol.

4.1. Federated Training/Transfer Loop
Each communication round proceeds:

1) Global publish: Aggregator publishes current global
representation/policy  version and  evaluation
protocol.

2) Local update: Each silo performs local MARL train-
ing (or representation refinement) and outputs a
model update plus local evaluation summary.

3) Trust report: Each silo computes a trust report
(signed or committed hash) including trust
components and key evidence summaries.

4) Trust-aware aggregation: Aggregator computes trust
weights, gates low-trust participants, applies robust
ag-gregation, and publishes a new global model.

5) Transfer decision log: When a zero-shot deployment
is recommended, the decision, trust context, and
explana-tion artifact hash are recorded in an append-
only audit log.

Secure aggregation can be applied to hide individual
updates when needed [10], while audit commitments support
account-ability.

4.2. Trust Metric Definition (Operational Form)
Each silo i is assigned a trust score T; €0, 1]. T; is computed

as an interpretable weighted combination of four
components, each normalized to [0,1]:
e Provenance and reproducibility (P;): build or

training attestation completeness, deterministic
configuration, and signing status.

e Update consistency (U;): anomaly checks on update
magnitude and direction relative to historical rounds
and trusted cohorts.

e Evaluation reliability (E;): stability of local

evaluation metrics across reruns and sensitivity

checks; detection of inflated reporting.

o  Safety-compliance behavior (S;): frequency and
sever-ity of safety constraint violations, plus
timeliness of remediation.

Trust is computed as:

Trust is a weighted sum of P;, U;, E;, S; with guardrail
penalties that sharply reduce trust for severe integrity or
accountability failures.

Guardrail penalties. Examples include:
e Missing provenance attestations for multiple rounds,
e Repeated safety violation patterns without
remediation,
e Detected evaluation inconsistencies,
e Update anomalies consistent with poisoning.

These penalties make trust interpretable and aligned with
governance: integrity and accountability are prerequisites for
influence.

4.3. Trust-Aware Aggregation
Standard FedAvg weights updates by local sample volume
[7]. In TEX-MARL, each silo’s influence is:

Aggregation weight = data/experience weight x trust
weight.

After trust gating, TFX-MARL applies robust aggregation to
tolerate remaining anomalies. Two practical options drawn
from prior robustness work are:
e Trimmed aggregation: drop extreme coordinate
values before averaging [12].
e Selection-based aggregation: select the most
consistent updates based on distance measures
(Krum-like) and average them [11].

4.4. Accountability across Silos: Audit Plane
TFX-MARL records the following to an append-only audit
plane:
e  Global model version and lineage,
e Per-round trust score commitments and rationale
sum-maries,
e Aggregation metadata (e.g.,
participants),
e Transfer recommendation events and explanation
artifact hashes.

number of gated

Permissioned blockchain designs support secure,
auditable records in enterprise deployments [18], [19]. TFX-
MARL does not require a public blockchain; a replicated
append-only log with integrity checks is sufficient.

5. Federated Explainability and Trade-off
Optimization
5.1. Why Explainability is Hard in MARL Transfer
Explanations must address:

e Sequential decisions (why action now?),
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e Multi-agent coupling (why this action given
others?),

e Domain shift (why will policy transfer safely?),

e  Federation constraints (no raw trajectory sharing).

TFX-MARL focuses on transfer explainability:
explaining the confidence and rationale for deploying a
policy zero-shot in a target domain, plus explaining key
behavioral triggers.

5.2. Explanation Artifacts
TFX-MARL produces explanations at two levels:
(L1) Transfer decision explanation: A compact rationale for
recommending a policy for zero-shot deployment, includ-ing
top contributing factors such as:
e Similarity of target summary features to training
cohorts,
o  Safety compliance scores and risk indicators,
e Trust context of contributing silos (e.g., high
provenance).

(L2) Behavioral explanation: For selected high-impact
episodes, provide a local explanation for actions using:
e Feature attribution (SHAP/LIME-style on policy
inputs) [13], [14],
e Saliency-style attribution for
(Integrated Gradients) [15],
o Rule-like anchors for discrete state abstractions
[16].

neural policies

To preserve cross-silo privacy, silos compute behavioral
explanations locally and share only:
Explanation summaries (top-k features,
rules),
e  Stability scores,
e Hashed commitments stored in audit plane.

anchor

5.3. Explainability Quality Measures (Operational)
TFX-MARL measures explanation quality via simple, non-
formula-heavy criteria:

e Fidelity (local): whether explanation predicts the
policy’s action changes under small perturbations.

e  Stability: whether top-k features (or rules) remain
con-sistent across minor noise.

e Actionability: whether the explanation maps to inter-
pretable domain signals (e.g., safety constraint
boundary, congestion indicator, resource saturation).

e Compactness: whether explanations can be
expressed in a short list or short rule.

5.4. Trade-off Controller via Explanation Budgets
TFX-MARL treats explainability as a budgeted resource.
Each round (or deployment decision) has an explanation
budget determining:

e Which events receive explanations,

e Which explanation method is used (low-cost vs high-

cost),
o Whether stability checks are enforced.

The controller selects a configuration that maximizes a
simple utility notion:

Utility improves with transfer performance and ex-planation
quality, and decreases with explanation cost.

This allows organizations to explicitly choose: “Spend
ex-planation budget on high-risk deployments and safety-
critical anomalies, while using cheaper summaries for routine
events.”

5.5. Interpretable-First and Hybrid Modes
Following interpretability arguments [17], TFX-MARL sup-
ports:

e Interpretable-first: Use simpler global models for
transfer confidence scoring (e.g., linear or shallow
tree surrogate) and provide direct rationales.

e Hybrid: Use stronger transfer scoring models but
enforce explanation budgets and stability thresholds,
and restrict ex-planations to auditable summaries.

6. Methodology

6.1. What TEX-MARL Learns

TFX-MARL can be implemented in two complementary
ways:

e M1 (Federated representation learning): Learn a
shared encoder that maps local observations to a
latent space used by each silo’s MARL learner. The
encoder is trained federatedly; local policies remain
silo-specific.

e M2 (Federated policy transfer model): Learn a
global policy or policy prior that can be deployed
zero-shot in target silos. Local adapters may be pre-
trained per silo but no new training is performed at
transfer time.

Our experiments implement M1 because it naturally sup-
ports silo autonomy while enabling transfer through shared
representation.

6.2. Local Training
Each silo runs a standard MARL algorithm appropriate for its
environment (e.g., actor-critic or value factorization). Local
training produces:

e Encoder update,

e Local evaluation

scenarios,
e  Safety compliance statistics.

summary across held-out

The local evaluation summary includes mean reward,
con-straint violation rates, and variance across seeds to
support evaluation reliability scoring.

6.3. Trust Computation Procedure
Each silo computes:
e provenance score from attestation completeness and
con-figuration reproducibility,
e update consistency score from anomaly checks
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relative to previous rounds,

e evaluation reliability from
stability,

o safety-compliance  from
frequency and severity.

repeated evaluation

constraint  violation

A compact “trust rationale” is generated (e.g.,
“evaluation variance high” or “missing attestation”).

6.4. Federated Aggregation Procedure
Aggregator:
e Validates trust report signatures or commitments,
e Gates silos below a trust threshold,
o Applies trust-aware  weighting and
aggregation to encoder updates,
e  Publishes new global encoder.

robust

6.5. Zero-Shot Transfer Procedure
When a new target silo requests zero-shot transfer, it re-
ceives:
e Current global
initialization,
e Transfer decision explanation summary,
e Trust context summary (e.g., contributor trust
distribu-tion).

encoder and recommended

The target silo runs the policy without additional training,
using the encoder directly.

7. Experiments

Because real federated MARL traces are typically
unavail-able publicly, we evaluate in a controlled simulation
designed to reflect key realities: non-1ID domains, variable
agent counts, partial observability, and integrity failures.

7.1. Experimental Setup
Participants. N = 24 silos. Each silo trains on a distinct
environment distribution.
Domains. We simulate three domain families:
e Coordination-heavy: success depends on implicit
con-ventions (high transfer difficulty).

e Resource allocation: rewards reflect shared
constraints and throughput.
e Adversarial disturbance: occasional stochastic

disrup-tions requiring robust policies.

Non-IID conditions. Reward scales and observation
noise differ across silos. Agent counts vary from 3 to 8,
forcing policies to generalize.

Adversaries. We inject:
o 2 malicious silos performing update poisoning,
e 4 faulty silos with unstable evaluations and noisy
teleme-try.

Baselines:
e Bl FedAvg [7]
e B2 Robust-only (trimmed aggregation) [12]

e B3 Trust-only (trust-weighted FedAvg without
robust filtering)

e TFX-MARL (trust gating + robust aggregation +
explain-ability controller)

7.2. Zero-Shot Evaluation Protocol
We evaluate on held-out target silos not used in that round’s
contribution set. The global encoder is deployed without
further training, and we measure:

e  Average episode return (normalized),

e  Constraint violation rate,

e Success rate on coordination tasks,

e Degradation under adversarial participants.

7.3. Explainability Budget Regimes
We test three budgets:
e EI1 Low: explain only top 5%
transfers; cheap explanation method.
e E2 Medium: explain top 20%; include stability
check.
e E3 High: explain all transfers; strongest stability
checks.

highest-risk

7.4. Explainability Evaluation
We score:
e  Stability (top-k agreement under perturbations),
e Actionability (fraction mapping to known domain
signals),
e Cost units (relative compute proxy).
Table 1: Zero-Shot Transfer Performance Under
Integrity Failures

Method Return | Success Viol. Robust

Rate Drop

B1 FedAvg 0.71 0.63 0.18 0.16

B2 Robust- 0.76 0.67 0.14 0.10

only

B3 Trust-only | 0.78 0.69 0.13 0.08

TFX-MARL 0.83 0.74 0.09 0.04
8. Results

8.1. Zero-Shot Transfer Robustness

Table | summarizes robust zero-shot transfer outcomes
under adversarial and faulty silos.

TFX-MARL achieves the highest normalized return and
success rate while reducing constraint violation rate. The
robustness drop shows that trust gating plus robust
aggregation provides strong resilience to poisoned or faulty
updates.

8.2. Ablation: Trust gating vs Robust Filtering

Trust-only improves over FedAvg by reducing
influence of low-accountability participants, but robust-only
also helps by filtering outliers. The combined approach
achieves the best outcome because it uses evidence-based
trust to gate problematic silos, then applies robust statistics to
mitigate residual anomalies.
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8.3. Explainability—Performance Trade-off
Table Il reports performance and explanation quality under

TFX-MARL for different budgets.
Table 2: Explainability Budget Trade-off (TFX-MARL)

Budget Return | Expl. Stability | Cost Units
El Low 0.84 0.60 1.0

E2 Medium | 0.83 0.77 2.2
E3 High 0.82 0.79 4.6

The medium budget (E2) yields a strong balance: expla-
nation stability improves substantially with minimal loss in
return. High budgets marginally improve stability while in-
creasing cost and slightly reducing performance due to
stricter stability filtering and operational overhead. In
practice, E2 aligns with governance needs: explain critical
transfers and anomalies, not everything.

8.4. Explainability Actionability
Under E2, a majority of transfer explanations mapped to a
small set of actionable factors:
e  Safety constraint proximity (why transfer is risky),
e Observation noise regime mismatch (why
coordination may degrade),
e Agent count shift sensitivity (why conventions may
fail),
e Contributor trust dispersion (why global model
reliability is reduced).

This supports operator decision-making: whether to
proceed with zero-shot deployment, add safeguards, or
request addi-tional verification.

8.5. Accountability Outcomes
The audit plane enabled post-hoc reconstruction of:
e Which silos contributed most (trust-weighted
influence),
e Which silos were gated and why,
e Which transfer decisions were made and their
explanation hashes.

This supports investigative workflows and compliance
require-ments without exposing raw trajectories.

9. Discussion
9.1. When Zero-Shot Transfer is Viable
Zero-shot transfer is most viable when:
e Observation and reward semantics share a stable
core across silos,
e Safety constraints are aligned and measurable,
o Representation learning captures transferable factors.

In coordination-heavy tasks, emergent conventions can
be brittle under domain shift; TFX-MARL mitigates this by
recommending transfer with explicit risk explanations and by
incorporating safety-compliance signals into trust

9.2. Integrity vs Privacy: Role of Secure Aggregation
Secure aggregation protects update privacy [10] but can hide

malicious TFX-MARL
separating:

(i) Privacy of raw updates (secure aggregation), from (ii)
accountability of trust evidence (audit commitments). Partici-
pants can keep detailed evidence local while publishing

signed summaries that are auditable.

updates. addresses  this by

9.3. Trust Metric Gaming and Incentives
Trust scores can be gamed if participants optimize metrics
rather than outcomes. Guardrails and independent provenance
validation reduce this risk, but organizations should:
e Periodically audit trust rationale evidence,
e Rotate evaluation protocols to discourage overfitting,
e Include human governance review for high-impact
trans-fers.

9.4. Interpretable-First vs Hybrid Explainability

In high-stakes deployment, interpretable-first modes may
be preferred [17]. However, complex domain shifts may
require higher-capacity transfer scoring. TFX-MARL’s
budgeting and stability checks provide a practical
compromise: use stronger models but constrain explanation
to auditable, stable sum-maries for critical events..

9.5. Limitations

Simulation-based evaluation. Our experiments use con-
trolled simulation; real-world MARL telemetry can be more
complex. Standardization overhead. Cross-silo deployment
requires shared schemas for evaluation summaries and safety
signals. Partial observability and hidden confounders.
Expla-nations may be incomplete when critical latent
factors are unobserved.

10. Conclusion

This paper presented TFX-MARL, a trusted federated
ex-plainability framework for zero-shot policy transfer in
multi-agent reinforcement learning. TFX-MARL addresses
cross-silo constraints by combining trust metric-based
federated aggregation with robust filtering to ensure integrity
and ac-countability. It further introduces an explicit
explainability—performance trade-off controller based on
explanation budgets and stability checks, producing
actionable and auditable ratio-nales for transfer decisions and
policy behavior. Experimental results in a heterogeneous
simulation indicate improved ro-bustness and safer transfer
outcomes compared to standard federated baselines, with
stable explanations achievable under moderate budget
settings. Future work includes deployment studies on real
multi-agent domains, richer accountability se-mantics, and
privacy-preserving explanation sharing protocols for safety-
critical applications.
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