
International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V7I1P106

Eureka Vision Publication | Volume 7, Issue 1, 30-47, 2026

Original Article

Silo, Pool, and Bridge for Multi-Tenant RAG: Measuring

Isolation, Noisy-Neighbor Effects, and Cost in SaaS

Microservices

Ritesh Kumar

Independent Researcher, Pennsylvania, USA.

Received On: 26/11/2025 Revised On: 27/12/2025 Accepted On: 04/01/2026 Published On: 17/01/2026

Abstract - Multi-tenant Retrieval-Augmented Generation

(RAG) enables enterprise SaaS platforms to ground large

language model outputs in customer-specific data while

sharing infrastructure across tenants. This deployment

model introduces a hard requirement for strict tenant

isolation across storage, embedding generation, vector

indexing, retrieval orchestration, and response construction,

without unacceptable cost or performance variance under

mixed workloads. This paper formalizes three isolation

patterns for multi-tenant RAG systems, Silo, Pool, and

Bridge, and introduces an isolation taxonomy across four

planes: data plane, vector plane, orchestration plane, and

LLM plane. A threat model specific to multi-tenant RAG is

presented, covering cross-tenant embedding leakage through

similarity search, membership inference risk, retrieval

contamination from incorrect scoping or poisoned content,

and metadata inference. A Kubernetes-native reference

architecture is specified to implement tenant-aware controls

and explicit policy enforcement points across ingestion and

retrieval. The paper also defines an evaluation approach for

comparing isolation patterns using leakage testing under

adversarial retrieval scenarios, mixed-tenant latency

measurements (P50 and P95) to quantify noisy-neighbor

effects, cost-per-query decomposition, and operational

overhead.

Keywords - Retrieval-Augmented Generation, Multi-tenancy,

Tenant isolation, Enterprise SaaS, Vector databases,

Embeddings, Access control, Threat modeling,

Microservices, Kubernetes, Noisy neighbor effects.

1. Introduction
Retrieval-Augmented Generation (RAG) [1] is widely

adopted for grounding large language model outputs in

enterprise knowledge sources such as product documentation,

support content, contracts, and internal policies. In a typical

RAG pipeline [1], user queries are transformed into retrieval

requests, relevant content is fetched from a document store or

vector index, and selected context is assembled into a prompt

that constrains the model response. This design improves

factuality and domain alignment relative to prompting alone

[3], but it also expands the system boundary. Data flows

through ingestion, embedding generation, indexing, retrieval,

orchestration, and generation components, each of which can

introduce security and performance failure modes.

Most enterprise deployments of RAG are delivered as

Software as a Service (SaaS). That delivery model typically

requires multi-tenancy [9], where multiple customers share

infrastructure to achieve acceptable unit economics,

simplified operations, and faster onboarding. Introducing

RAG can increase the complexity of multi-tenant isolation

because retrieval and prompt assembly add additional

enforcement points. The degree of difficulty depends on

implementation choices, existing isolation infrastructure, and

the capabilities of the selected vector database and serving

stack. A correct multi-tenant RAG system must ensure that

tenant identity and authorization constraints remain intact

across every stage that can influence generated output.

Tenant isolation in this paper is defined as three

properties. First, retrieval isolation requires that queries from

one tenant must not retrieve content owned by another tenant.

Second, context assembly isolation requires that retrieved

context included in the prompt must be scoped to the

requesting tenant and principal permissions. Third, inference

exposure resistance requires that the system reduce the risk of

cross-tenant exposure through model outputs, logs, and

observable side channels including retrieval behavior and

response artifacts.

1.1. Motivation

Cloud and vector database vendors describe practical

multi-tenant patterns for SaaS systems and provide

prescriptive guidance for RAG components. AWS, Microsoft

Azure, Milvus [25], and Pinecone [24] publish architecture

documentation identifying Silo, Pool, and Bridge approaches.

These materials are useful for implementation, but they stop

at architectural recommendations and do not provide a

repeatable methodology to compare isolation patterns under

adversarial conditions, mixed-tenant load, and explicit cost-

per-query accounting. Multi-tenant RAG introduces failure

modes less prominent in traditional SaaS designs, such as

cross-tenant retrieval leakage from mis-scoped similarity

search [10], [11], [12] or retrieval contamination when

context assembly includes unauthorized chunks.

Ritesh Kumar / IJETCSIT, 7(1), 30-47, 2026

32

A second motivation concerns security modeling.

Conventional multi-tenant security analysis focuses on

storage isolation and request authorization. RAG requires

extending the threat model to cover embeddings [15], vector

indices, retrieval-time filtering, and the orchestration layer

that constructs the model prompt. Without a threat model

specific to these components [14], it is difficult to justify

where enforcement must occur and how to validate that

isolation holds under normal and adversarial workloads.

Finally, there is an operational motivation. Architects

must decide where to place boundaries, which services can be

safely shared, which data stores must be partitioned, and what

controls are mandatory for safe pooling. Those decisions

directly affect tail latency under contention, noisy-neighbor

behavior [18], cost drivers such as index footprint and token

usage, and the operational overhead of onboarding and

maintaining tenants. A structured comparison of Silo, Pool,

and Bridge patterns makes those decisions explicit and

testable.

1.2. Research Questions

This paper focuses on three questions that arise when

building a RAG-powered SaaS product serving multiple

tenants on shared infrastructure. The first question asks how

Silo, Pool, and Bridge isolation patterns differ in isolation

guarantees across storage, embedding generation, vector

indexing, retrieval orchestration, and prompt construction.

The second question asks what noisy-neighbor effects are

measurable under mixed-tenant workloads and which shared

components dominate tail latency behavior. The third

question asks what the cost-per-query profile of each pattern

is and which cost drivers dominate as tenant count, corpus

size, and query volume change. These questions are framed to

support engineering decisions, and each corresponds to

measurable properties that can be validated through leakage

testing, latency percentile analysis, and cost decomposition.

1.3. Contributions

This paper makes four contributions. First, it introduces

an isolation taxonomy for multi-tenant RAG across four

planes: data plane, vector plane, orchestration plane, and

LLM plane. The taxonomy provides a consistent vocabulary

for specifying what is isolated, where isolation is enforced,

and what failure modes remain. Second, it defines three

isolation patterns for multi-tenant RAG pipelines: Silo, Pool,

and Bridge. Each pattern is described in terms of shared

versus tenant-scoped components and the isolation invariants

that must hold.

Third, it provides a threat model tailored to multi-tenant

RAG. The threat model covers embedding-space and

retrieval-specific risks such as cross-tenant retrieval leakage

via similarity search, membership inference risk, vector index

poisoning, retrieval contamination through incorrect scoping,

and metadata inference through observable behavior. Fourth,

it specifies a Kubernetes-native reference architecture that

implements tenant-aware controls using explicit policy

enforcement points across ingestion and retrieval. The paper

also defines an evaluation methodology to compare patterns

using leakage rate under adversarial retrieval scenarios,

latency percentiles (p50 and p95) under mixed-tenant

workloads, cost-per-query decomposition, and operational

overhead indicators.

2. BACKGROUND AND RELATED WORK
2.1. RAG Pipeline Decomposition

A Retrieval-Augmented Generation (RAG) system [1]

transforms raw enterprise documents into grounded model

responses through a sequence of stages. The ingestion stage

accepts documents from upstream sources, segments them

into chunks, attaches metadata required for isolation and

governance, and generates embeddings that encode chunk

semantics. Chunking strategies include fixed token windows,

boundary-aware segmentation, semantic chunking based on

embedding similarity, recursive chunking, and parent-child

hierarchical approaches. This list is not exhaustive; chunking

affects retrieval granularity and index size but does not

change the isolation requirements defined in this paper.

The storage stage persists two distinct data types. A

document store retains raw text or chunk payloads and

associated metadata, commonly using object storage or a

document database. A vector store maintains embeddings and

identifiers that link vectors back to source chunks. Some

deployments co-locate payload and vector data in one system,

while others separate them to scale and secure each tier

independently. The indexing stage builds structures that

accelerate similarity search in high-dimensional embedding

spaces. Approximate nearest neighbor (ANN) methods are

common, including graph-based indexing such as

Hierarchical Navigable Small World (HNSW) [4] and

cluster-based inverted file methods such as Inverted File

Index (IVF). HNSW organizes vectors into a navigable graph

to improve query latency [4]. IVF partitions vectors into

coarse clusters and searches a subset of clusters per query to

reduce comparisons. Some systems also use hybrid retrieval

[2], where dense similarity search is combined with lexical

retrieval. This can improve robustness for certain query

classes but adds orchestration complexity and cost accounting

at query time.

The retrieval and orchestration stage processes incoming

queries, encodes them into the embedding space, executes

similarity search, optionally reranks results using cross-

encoder models that typically require access to chunk text

rather than embeddings alone, and assembles retrieved

chunks into a context window. This stage is a primary

isolation boundary because any cross-tenant retrieval error

can directly introduce unauthorized content into the prompt.

The generation stage constructs the final prompt by

combining system instructions, retrieved context, and the user

query, then invokes the LLM for inference and applies post-

processing such as output filtering, citations, and audit

logging. Canonical RAG formulations [1] explicitly treat

retrieval as a first-class component whose outputs condition

generation, which is why retrieval-time controls must be

treated as part of the security and isolation model.

For clarity, a document refers to the original ingested

content. A chunk is a segmented unit derived from a

Ritesh Kumar / IJETCSIT, 7(1), 30-47, 2026

33

document and used as the retrieval unit. A payload refers to

the text content of a chunk, distinct from its embedding and

metadata. Tenant scoping refers to enforcing that data access

and retrieval operations are constrained to a single tenant; the

terms tenant filter and tenant discriminator are used as

equivalent mechanisms for tenant scoping.

2.2. Multi-Tenant SaaS Model

Multi-tenancy in SaaS systems [9] is commonly

implemented using one of three isolation approaches:

database-per-tenant, schema-per-tenant, or shared database

with row-level separation. Stronger physical separation

generally improves isolation and reduces blast radius but

increases cost and operational overhead as tenant counts

grow. Shared storage with row-level separation improves

resource efficiency but shifts isolation responsibility into

application logic, query correctness, and enforcement depth.

Tenant identity in enterprise SaaS is typically represented

by a tenant identifier for the customer organization plus

principal identifiers for users or service accounts, with roles

and scopes that constrain access. In distributed microservice

architectures, this identity must propagate across service

boundaries so downstream components can enforce

authorization consistently. RAG systems intensify this

requirement because multiple services participate in retrieval

and context assembly, and any stage that loses or misroutes

tenant context can create cross-tenant exposure.

A common architectural separation divides a shared

control plane from a tenant-scoped data plane. The control

plane manages onboarding, configuration, and platform

services. The data plane hosts customer workloads and data,

and is where retrieval and prompt assembly must enforce

tenant isolation. The boundary between these planes

determines which components can be pooled and which

require per-tenant deployment, and it strongly influences cost

allocation, observability, and incident response.

2.3. Vector Database Isolation Mechanisms

Vector databases provide multi-tenancy primitives that

parallel traditional isolation models, but operate over

embedding stores and similarity search paths. One approach

is namespace-style logical separation, where each tenant's

vectors are stored in a distinct namespace within shared

infrastructure. Pinecone documents namespace-based

multitenancy [24], where queries are scoped to a namespace

(within a single index) to prevent cross-namespace retrieval

by construction. Pinecone provides namespace-based

isolation within a single index, allowing logically separate

vector sets to share the underlying index infrastructure.

Another approach is partition-based separation within

collections. Milvus documents multi-tenancy strategies [25]

using partitions or partition keys to target queries to tenant-

specific partitions. Partition-based strategies must account for

platform limits; Milvus documentation notes that a collection

can hold up to 1,024 partitions per collection [25], which

constrains partition-per-tenant designs at high tenant counts

and can influence pattern selection. Collection-level

separation, where each tenant has a dedicated collection, can

provide clearer boundaries but can increase operational and

memory overhead as tenant count grows.

Metadata filtering [6], [7] is a widely used mechanism

across vector systems. In this model, all tenant vectors coexist

in shared indexes and each query includes a predicate such as

tenant_id equals X. This maximizes index sharing and can

reduce per-tenant overhead, but it raises the consequence of

filter omission or misapplication. It also increases the

importance of defense-in-depth validation, such as verifying

that returned results match the request tenant context before

context assembly.

Relational vector stores such as PostgreSQL with

pgvector [21] can use database-native access control.

PostgreSQL row-level security [20] allows policies that

restrict which rows can be returned based on roles or session

context. AWS explicitly describes using row-level security to

enforce tenant isolation in a pgvector-based multi-tenant

design. These mechanisms can provide strong enforcement at

the data access layer, but they still require correct tenant

context propagation and auditing in the orchestration layer.

2.4. Related Work and Gap Analysis

Prior research addresses important aspects of multi-

tenant behavior in systems adjacent to the end-to-end

architecture question. For multi-tenant RAG efficiency,

recent work [18] analyzes caching and fairness in multi-

tenant RAG deployments and quantifies efficiency and

tenant-level fairness trade-offs under shared workloads. This

motivates treating performance isolation and tail latency as

first-class evaluation dimensions, not secondary concerns.

For multi-tenant vector indexing, Curator [8] examines

the trade-off between per-tenant indices and shared indices

with filtering, proposing indexing techniques intended to

reduce overhead while preserving tenant-level performance

characteristics. This is directly relevant to the Pool versus Silo

decision at the vector plane and provides a basis for analyzing

index footprint and query-time behavior under multi-tenant

load.

For RAG security, membership inference attacks against

retrieval corpora and RAG systems are studied in the

literature [10], [11], [12], including settings where attackers

attempt to infer whether specific documents are present in the

retrieval database by probing the system and observing

outputs. Additional work proposes membership inference

frameworks for RAG-based systems under black-box and

grey-box assumptions. These results support treating retrieval

behavior and response artifacts as part of the attack surface,

alongside conventional access control.

The gap addressed in this paper is the lack of an integrated,

end-to-end treatment that aligns three elements in a single

engineering framework:

1) A plane-based isolation taxonomy covering data,

vector, orchestration, and LLM concerns.

Ritesh Kumar / IJETCSIT, 7(1), 30-47, 2026

34

2) A threat model mapped to concrete enforcement

points in a microservice RAG architecture.

3) A repeatable evaluation methodology for comparing

Silo, Pool, and Bridge patterns across leakage

testing, noisy-neighbor effects, cost-per-query

decomposition, and operational overhead.

3. Isolation Taxonomy across Four Planes
Multi-tenant RAG isolation is an end-to-end property. It

must hold across every component that can influence retrieval

results, prompt construction, and generated output. Treating

isolation as a single database setting or a single gateway

check is insufficient because RAG systems [1] introduce

additional state and decision points, including embeddings,

vector indices, reranking, and context assembly. To make

requirements explicit and testable, this section defines a four-

plane isolation taxonomy. Each plane represents a category of

resources and operations where tenant separation must be

maintained, and where specific failure modes tend to appear

in production SaaS deployments.

3.1. Isolation Planes Definition

3.1.1. Data Plane

The data plane covers persistence and access of tenant

documents, derived chunks, and authoritative metadata,

including access control attributes and lineage. Isolation at

this plane determines whether tenant data is separated through

dedicated storage boundaries or through logical scoping in

shared stores. In a store-per-tenant model, each tenant is

assigned a dedicated database, bucket, container, or

equivalent boundary. This reduces blast radius and simplifies

some audits, but it increases operational overhead and can

duplicate baseline capacity. In a shared-store model [9],

multiple tenants share the same storage system and isolation

relies on a tenant discriminator plus authorization policies that

are applied on every access path.

Chunking introduces a practical requirement that is easy

to miss. Retrieved units are typically chunks, not whole

documents, so chunks must carry tenant identity and

authorization-relevant metadata end-to-end. If chunk

payloads and chunk metadata are stored in different systems,

the architecture must define which system is the source of

truth for enforcement, and how consistency is maintained

under updates and deletions.

Authorization patterns at this plane are commonly row-

level for relational stores [20] and object-level for document

and object stores. Row-level approaches can bind access to

session context or database roles, while object-level checks

often execute in a storage adapter or policy service.

Encryption boundaries also belong in the data plane. Per-

tenant keys reduce the impact of key compromise for certain

threat scenarios. Shared keys with per-tenant derivation can

reduce key management overhead, but increase reliance on

correct derivation, rotation, and correct use across all

services.

 Common data plane failure modes are operational and

consistency-related. Examples include missing tenant scoping

predicates, stale ACL state after permission changes, and

inconsistent metadata between the document store and the

retrieval metadata store. These failures are high impact in

RAG because they can directly affect which chunks become

eligible for retrieval and prompt inclusion.

3.1.2. Vector Plane

The vector plane covers embeddings, vector persistence,

index organization, and similarity search behavior under

tenant scoping. Isolation choices at this plane have strong cost

and performance implications because vector indices are

often memory intensive and retrieval latency sensitive. The

primary architectural decision is between per-tenant indices

and shared indices with tenant-aware filtering [8]. Per-tenant

indices reduce reliance on query-time filtering for isolation

and can simplify correctness validation, but they increase

index duplication and operational work as tenant counts grow.

Shared indices improve resource sharing and can reduce

baseline memory footprint, but place strict requirements on

filter correctness, filter placement in the query path, and

validation of results before context assembly.

Indexing mechanisms influence performance under

scoping. For example, graph-based [4] and cluster-based

ANN approaches reduce search cost by pruning the candidate

set. Tenant scoping can be implemented by selecting the

correct tenant-specific index or partition, or by filtering

within a shared index [6], [7]. From an isolation perspective,

the retrieval path must not return cross-tenant candidates to

orchestration. From a performance perspective, tenant

scoping must not destabilize tail latency. This risk is highest

when large and small tenants share the same retrieval

infrastructure and compete for the same index and compute

resources.

Partitioning strategies include namespace separation [24],

collection separation [25], shard-level separation, and key-

based segmentation. Each strategy shifts the default isolation

properties and changes operational scaling behavior. The

embedding pipeline also introduces isolation considerations

because embedding generation is often centralized for

efficiency. If embedding computation and caching are shared,

boundaries must prevent incorrect reuse across tenants and

must ensure that tenant context is not lost during

asynchronous ingestion.

A recurring vector plane failure mode is late or

inconsistent filtering. When tenant filters are applied only

after a broad candidate set is generated, cross-tenant vectors

may be processed before being discarded, which increases

side-channel exposure risk. Post-filtering can also increase

latency substantially when a tenant's vectors are a small

fraction of a shared index because the system may scan many

irrelevant candidates before collecting enough tenant-scoped

results [7]. This complicates correctness validation and

increases the importance of defense-in-depth checks in

orchestration before any retrieved content can influence

prompt construction.

Ritesh Kumar / IJETCSIT, 7(1), 30-47, 2026

35

3.1.3. Orchestration Plane

The orchestration plane spans the services that coordinate

ingestion workflows, query processing, retrieval, reranking,

and context assembly. Isolation at this plane depends on

tenant identity being a first-class control signal. Tenant

identity is established at the authentication boundary,

typically at an API gateway, and must propagate through

every downstream service call, message, and asynchronous

job that can influence retrieval or prompt assembly.

Policy enforcement point placement must be explicit.

Enforcement often occurs at the gateway for authentication

and coarse authorization, at the retrieval service for query

scoping and validation, at the vector query layer for tenant-

aware search constraints, and at storage adapters for payload

fetch authorization. Defense in depth is essential because a

single missed check in a pooled system can lead to cross-

tenant retrieval or context mixing.

Query routing and scoping are core orchestration

responsibilities. In per-tenant index designs, routing must

select the correct tenant index or partition deterministically.

In shared-index designs, routing must attach the correct tenant

filter and ensure that the filter is applied on all query variants,

including hybrid retrieval and reranking paths. Context

assembly is the highest sensitivity step because it determines

what enters the model prompt. Context assembly rules must

require provenance validation, must reject any chunk that

fails tenant or principal authorization checks, and must ensure

that only authorized chunks can be included in the final

context window.

A deterministic audit record is required for validation and

incident response. At minimum, it should capture tenant

identity, authorization context, filters applied, retrieved item

identifiers, and which items were included in the final

prompt.

3.1.4. LLM Plane

The LLM plane covers prompt construction, inference

execution, response filtering, and telemetry. Multi-tenancy at

this plane is typically implemented through policy scoping

rather than physical separation, although tenant-dedicated

endpoints are possible in high-isolation deployments. Shared

model endpoints can be cost efficient, but require strict

controls on tenant-specific prompt templates, tool access,

quota enforcement, and logging practices. Tenant-dedicated

endpoints reduce shared resource contention, but increase

operational overhead and can complicate model lifecycle

management across a broad tenant population.

Prompt construction isolation requires that system

prompts, tool configurations, and retrieved context are scoped

to the tenant and the requesting principal's permissions. Rate

limiting, quotas, and fair scheduling [18] belong in this plane

because inference capacity is often a dominant contributor to

tail latency and cost-per-query. Response filtering and tenant-

scoped output validation are required to reduce the risk of

unintended disclosure through generated output artifacts.

Logging and redaction requirements must be explicit because

prompts and retrieved context can contain sensitive tenant

data, and shared operational tooling can become an indirect

exposure path if logs are not properly scoped and protected.

Inference-time isolation extends beyond prompt content

to execution state. In shared serving deployments, key-value

(KV) cache optimizations [17] such as prefix sharing and

cache reuse can introduce side channels [16]. If cache entries

are not tenant-partitioned, one tenant may infer information

about another tenant's prompt through cache timing or hit-rate

behavior [16]. This risk is most relevant when multiple

tenants share the same model serving stack.

3.2. Pattern Definitions

3.2.1. Silo Pattern

The silo pattern dedicates resources per tenant across all

four planes for components that process tenant content. A

shared control plane that handles tenant onboarding,

configuration distribution, and operational tooling, but never

processes tenant documents or tenant queries, may still be

used to reduce operational overhead. Document and metadata

storage are tenant-scoped. Embedding indices and vector

storage are tenant-scoped. Orchestration is either tenant-

dedicated or implemented with strict tenant-specific routing

and state boundaries. Model inference can be tenant-

dedicated or strongly partitioned through policy and resource

controls. The main advantage is reduced blast radius and

reduced dependence on correct runtime filtering for isolation.

The main trade-offs are higher baseline cost due to duplicated

infrastructure and higher operational overhead due to per-

tenant lifecycle management, scaling, and configuration.

3.2.2. III.B.2. Pool Pattern

The Pool pattern shares infrastructure across tenants and

enforces isolation through tenant discriminators, authorization

checks, and runtime filtering. The document store, vector

index, orchestration services, and model endpoints may all be

shared. Isolation is therefore primarily logical and depends on

the correctness of identity propagation and enforcement at

multiple checkpoints. Pool can offer strong efficiency and

simplified infrastructure, but it increases the consequences of

misconfiguration and tends to expose tenants to higher noisy-

neighbor risk [18] because retrieval and inference resources

are contended. In Pool deployments, defense-in-depth

validation, provenance-based context assembly, and auditable

enforcement are mandatory controls, not optional

enhancements.

3.2.3. Bridge Pattern

The Bridge pattern is a hybrid that combines pooled

services with selected tenant-scoped components. Typical

variants include shared orchestration with tenant-scoped

vector indices, or shared retrieval services with tenant-scoped

document stores. Bridge is used when Pool is too risky for

some tenants or workloads and Silo is too costly for the full

tenant population. Tiering criteria often include regulatory

requirements, data sensitivity, workload predictability, and

performance SLO strictness. Because Bridge spans both

pooled and tenant-scoped boundaries, routing, policy

enforcement, and auditability must remain consistent across

tiers. Migration paths must be designed explicitly because

Ritesh Kumar / IJETCSIT, 7(1), 30-47, 2026

36

moving tenants between tiers can require index rebuilds, key

management changes, and configuration updates across

services.

3.3. Pattern Comparison Matrix

Table I summarizes the three patterns across the four

planes and key operational dimensions. The matrix is

intended as a decision aid and as a checklist for evaluation.

Isolation properties should be treated as expected

characteristics that still require validation, especially in Pool

and Bridge configurations where enforcement depends on

correct propagation and policy placement.

Table 1:Isolation Models in Multi-Tenant AI Architectures: Comparative Analysis of Silo, Pool, and Bridge

Approaches

4. Threat Model for Multi-Tenant Rag
This section defines a threat model for multi-tenant RAG

systems with an emphasis on where isolation breaks in

practice and how those failures propagate into prompts and

generated outputs. The intent is not to exhaustively enumerate

every security issue in distributed systems, but to focus on

threats that are either unique to RAG [14] or amplified by

retrieval, embeddings, and context assembly.

4.1. Threat Model Scope and Assumptions

The protected assets in scope include tenant documents,

derived chunks, chunk metadata, embeddings, vector indexes,

prompts, model outputs, logs and traces, and encryption keys.

Loss of confidentiality is the primary concern because cross-

tenant exposure is the critical failure mode in multi-tenant

SaaS. Integrity is also in scope because poisoned or

manipulated content [13] can alter retrieval results and lead to

incorrect or unsafe responses.

The threat actors considered are a malicious tenant acting

through legitimate APIs, an external attacker who has

obtained tenant credentials or can exploit exposed interfaces,

and an insider with elevated operational access. Adversary

capabilities range from repeated probing of the retrieval and

generation interfaces, to content injection via the ingestion

pipeline, to attempts to exploit misconfigurations in identity

propagation, routing, filtering, or logging. The model treats

the adversary as capable of generating large numbers of

requests and observing system behavior, including response

content, latency, and error messages, within the limits of SaaS

rate controls.

Trust boundaries are defined at the API boundary where

authentication and tenant context are established, at service-

to-service boundaries inside the microservice mesh, at the

data plane boundary for document and metadata access, at the

vector database boundary for similarity search, and at the

LLM endpoint boundary where prompts are submitted and

outputs are returned. Logging and telemetry pipelines are

treated as an additional operational boundary because they

can contain sensitive prompts and retrieved context.

The baseline assumption is that transport is encrypted in

transit using Transport Layer Security (TLS) and that

standard cryptographic primitives are not broken. The model

does not assume perfect correctness in policy configuration or

perfect correctness in distributed propagation of tenant

context. Misconfiguration and partial failure are treated as

realistic, because they are common root causes of multi-

tenant incidents.

Dimension Silo Pool Bridge

Data plane

isolation
Tenant-scoped stores Shared store with tenant scoping Tier-dependent

Vector plane

isolation
Tenant-scoped indices Shared index with filtering

Often tenant-scoped for high-

isolation tiers

Orchestration plane

isolation

Tenant-dedicated or strongly

partitioned routing

Shared services with strict

identity propagation and

validation

Shared services with tier-aware

routing and controls

LLM plane

isolation

Tenant-dedicated or strongly

partitioned policies

Shared endpoint with tenant-

scoped policies
Tier-dependent

Primary failure

mode

Provisioning and routing errors

within a tenant boundary

Filter omission, context mis-

scoping, identity propagation

defects

Tier boundary errors and

inconsistent enforcement across

tiers

Blast radius Primarily per tenant Potentially multi-tenant
Typically bounded to a tier

population

Cost drivers
Infrastructure duplication, per-

tenant index footprint

Shared index and shared

inference capacity

Mixed duplication and shared

contention

Operational

overhead

High per-tenant lifecycle

management

Lower shared operations, higher

validation burden
Moderate, plus tier management

Compliance fit Strongest by default
Requires strong controls and

evidence
Tier-dependent

TABLE 1. PATTERN COMPARISON MATRIX

Ritesh Kumar / IJETCSIT, 7(1), 30-47, 2026

37

4.2. Embedding-Space Vulnerabilities

Embedding-space vulnerabilities arise because retrieval

depends on similarity search over shared or partially shared

vector structures. This creates failure modes where the system

can expose cross-tenant content directly through retrieved

chunks, or indirectly through observable retrieval behavior

and output artifacts. OWASP's guidance on generative AI

security [19] explicitly calls out weaknesses associated with

vectors and embeddings, which aligns with treating the vector

plane as part of the attack surface rather than a neutral storage

layer.

4.2.1. Cross-Tenant Embedding Leakage

Cross-tenant embedding leakage occurs when similarity

search returns vectors or chunk identifiers that belong to a

different tenant than the requester. In pooled deployments, the

dominant attack vector is a missing, malformed, or bypassed

tenant filter, or a misrouted tenant identifier that causes a

query to execute against the wrong namespace, partition, or

index. A second class of failures appears when filtering is

applied inconsistently across retrieval variants, such as hybrid

retrieval, reranking, or fallback paths.

The impact ranges from direct disclosure of content, if

payload fetch is performed without an additional tenant

check, to indirect disclosure of document identifiers, titles, or

metadata if those fields are returned in retrieval results or

logs. The most useful detection signal is retrieval provenance

that includes tenant identity and retrieved item identifiers. If a

retrieval log or trace shows chunk identifiers mapped to a

different tenant than the request tenant, the system has a

measurable isolation violation. This is why deterministic

audit records are treated as part of the isolation model, not a

monitoring convenience. Additionally, embedding inversion

attacks [15] show that embeddings can leak substantially

more than similarity metadata. Under some conditions,

reconstructed text can be recovered from embeddings with

meaningful fidelity [15], so embeddings should be treated as

sensitive tenant data rather than benign derived features.

4.2.2. Membership Inference

Membership inference in RAG refers to attempts to infer

whether a target document, or a semantically related

document, exists in another tenant's retrieval corpus by

probing the system and observing outputs or retrieval

behavior. Prior work [10], [11], [12] studies membership

inference against RAG systems, including black-box and

grey-box settings, and demonstrates that retrieval behavior

and downstream outputs can leak information about the

presence of documents in the underlying corpus. In a multi-

tenant context, this becomes a cross-tenant concern when an

attacker can influence or observe retrieval outcomes beyond

its own tenant boundary, or when system-level telemetry and

error behavior reveal corpus characteristics.

The primary attack vectors include repeated probing with

semantically targeted queries, observing response differences

that correlate with retrieval hits, and exploiting confidence

signals or debugging fields if the system exposes them. Even

when content is not directly disclosed, corpus membership

can leak competitive information, such as whether a tenant

has documents related to a product line, acquisition, or

incident.

Detection signals include anomalous query patterns,

repeated near-duplicate queries, and probing workloads that

sweep a semantic neighborhood. Mitigation is primarily

architectural and operational. It requires strict tenant scoping,

strict suppression of cross-tenant retrieval artifacts, careful

control of debug outputs, rate limits tuned for probing

resistance, and audit trails sufficient to identify probing

behavior.

4.2.3. Vector Index Poisoning

Vector index poisoning [13] occurs when an attacker

injects crafted content through the ingestion pipeline to

influence retrieval results, degrade retrieval quality, or cause

systematic misdirection of responses. In pooled indexes,

poisoning can also become a cross-tenant integrity issue if

shared retrieval infrastructure allows poisoned vectors to

appear in the candidate set for other tenants due to filtering

errors or shared reranking paths. The direct impact can

include degraded relevance, denial of service through index

bloat or retrieval hotspots, and response manipulation if

poisoned chunks are repeatedly selected into prompts.

This threat is best addressed with layered controls.

Ingestion must enforce tenant-scoped authorization, content

validation, and rate controls. Indexing must ensure that tenant

scoping is correct and that updates are auditable. Retrieval

must validate provenance and enforce deny-by-default

behavior when scope is ambiguous. Operationally, the system

should support rollbacks or quarantine of recently ingested

content for a tenant when abnormal retrieval patterns are

detected.

This subsection focuses on integrity and isolation risks.

A related availability risk is computational denial of service,

where adversarial embeddings or documents are crafted to

increase retrieval cost, expand candidate sets, or degrade

index performance. These attacks impact tail latency and

shared resource stability and should be evaluated as part of

capacity protection and abuse controls.

4.2.4. LLM Serving Side Channels

In shared inference deployments, optimization

techniques for KV-cache management [17] can create cross-

tenant leakage paths [16]. Prefix sharing and cache reuse

improve throughput by avoiding redundant computation for

common prompt prefixes, but they may allow one tenant to

infer portions of another tenant's prompt through cache timing

or hit-rate observation [16]. Mitigations include tenant-

isolated inference sessions, strict cache partitioning, or

disabling cross-tenant cache reuse. Dedicated model

endpoints eliminate this vector by construction.

4.3. Data-Plane Vulnerabilities

Data-plane vulnerabilities often appear as traditional

authorization failures, but their consequence in RAG is

amplified because they can propagate into prompts and

Ritesh Kumar / IJETCSIT, 7(1), 30-47, 2026

38

outputs. Two classes are particularly relevant to multi-tenant

RAG: retrieval contamination and metadata inference.

4.3.1. Retrieval Contamination

Retrieval contamination occurs when chunks from the

wrong tenant, or chunks that the requesting principal is not

authorized to access, enter the context window used for

generation. This can happen even if vector retrieval returns

correct candidates, for example if payload fetch uses a

different authorization path, if ACL evaluation is inconsistent

across services, or if asynchronous pipelines produce stale

permission state. Orchestration bugs, such as race conditions

around ACL updates or incorrect cache scoping, can also

cause contamination.

The impact is direct data leakage in generated responses

and potential regulatory non-compliance, since the prompt

includes unauthorized content. The most effective defense is

to treat context assembly as a policy-enforced operation.

Before any chunk is included in the prompt, the system

should validate tenant ownership and principal authorization

using an authoritative policy decision path, and record the

provenance decision in an audit log.

4.3.2. Metadata Inference

Metadata inference refers to learning sensitive

information about another tenant without directly accessing

its content. Examples include inferring tenant activity levels,

document counts, update frequency, or query volume. Attack

vectors include timing analysis, observing resource

consumption patterns, and exploiting error message

differences. In multi-tenant systems, metadata leakage can

occur through shared rate limit behavior, shared queue

latency, shared index maintenance events, or unscoped

operational metrics.

The impact is competitive intelligence and usage

profiling. Mitigation includes scoping operational metrics by

tenant and access role, reducing high-cardinality exposure in

shared dashboards, standardizing error responses, and using

quotas and scheduling policies that reduce observable

coupling between tenants.

4.3.3. Controls Mapped to Enforcement Points

Controls are most effective when mapped to explicit

enforcement points and treated as invariants. Tenant identity

should be established once at the authentication boundary and

propagated as immutable request context through service-to-

service calls. In practice, this commonly uses signed tokens or

signed headers with strict validation at each hop. Identity

propagation must also cover asynchronous ingestion paths,

including job queues and batch processors, because ingestion

is a write path into the retrieval corpus.

Authorization checks should execute at multiple layers

[9]. The API gateway should enforce authentication and

coarse access controls. The retrieval service should enforce

tenant-scoped query construction and validate the scope of

results. Storage adapters should enforce tenant and principal

authorization on payload fetch, even if vector retrieval

already applied filters. Where supported, database-level

policies such as row-level security [20] can provide an

additional layer of enforcement, but they should be treated as

defense-in-depth rather than the only control. Defense-in-

depth is widely recommended [9], [14] because single

enforcement points are vulnerable to misconfiguration, and

redundant checks reduce the likelihood that one defect results

in cross-tenant exposure.

Vector filtering must be designed so that tenant scope is

not optional. When possible, filters should constrain

candidate generation [6], [7], not only filter after scoring.

When filters cannot be applied early due to datastore

limitations, post-filter validation must be strict and must fail

closed. Fail-closed behavior prioritizes isolation over

availability. Operators should monitor rejection rates,

configure alerting thresholds, and define fallback policies or

graceful degradation paths for transient identity propagation

failures. Any retrieved item that does not match tenant scope

should be rejected before context assembly, and the event

should be logged as a policy violation signal. Output controls

reduce exposure through generated text and telemetry. These

include redaction policies, citation and provenance

constraints, and response policy checks aligned to tenant

configuration. Logs and traces must be scoped, access-

controlled, and redacted to prevent operational exposure of

prompts and retrieved context. Audit logging should capture

retrieval provenance, policy decisions, and trace identifiers so

that violations can be detected and reconstructed.

4.4. Pattern Resilience Analysis

Resilience differs across Silo, Pool, and Bridge patterns

primarily through blast radius and dependence on correct

runtime filtering. Silo reduces cross-tenant exposure risk by

limiting shared data and shared indexes, but it still requires

correct identity and authorization within each tenant

boundary. Pool has the highest dependence on correct tenant

context propagation, correct filtering, and strict context

assembly validation. Bridge inherits both modes. It can

reduce blast radius for tenants placed in higher isolation tiers,

but it introduces tier boundary risks where routing,

enforcement, and auditability must remain consistent across

pooled and tenant-scoped components.

Table II summarizes expected resilience properties. The

entries are expressed as expected characteristics that still

require validation and continuous testing.

Ritesh Kumar / IJETCSIT, 7(1), 30-47, 2026

39

Table 2: Threat Resilience by Isolation Pattern

5. Kubernetes-Native Reference Architecture
This section specifies a Kubernetes-native reference

architecture for multi-tenant RAG that supports Silo, Pool,

and Bridge isolation patterns. The design goal is to make

tenant isolation enforceable and auditable by placing policy

checks at multiple points in both ingestion and retrieval paths,

and by treating tenant identity as immutable request context

rather than an optional application field.

5.1. Architecture Overview

The architecture decomposes the system into a small set

of microservices with explicit responsibilities. The ingestion

service accepts documents and produces chunk payloads plus

metadata. The embedding service computes embeddings for

chunks and writes vectors with tenant-scoped metadata. The

indexer manages vector index updates and compaction. The

retrieval service executes tenant-scoped similarity search and

optional reranking, and returns provenance-tagged candidates.

The prompt builder performs context assembly and constructs

the final prompt based on tenant policy. The LLM gateway

invokes the model endpoint and applies output controls,

including redaction and audit logging. A policy service

provides authorization decisions and policy configuration,

while a tenant registry resolves tenant tier, routing targets,

and keying material references.

Data is persisted in three logical stores. The document

store retains raw documents and chunk payloads. The

metadata store retains authoritative chunk metadata, including

tenant ownership, ACL attributes, lineage, and timestamps.

The vector database stores embeddings and supports

similarity search with tenant scoping. These stores can be

deployed as tenant-dedicated or shared depending on the

isolation pattern. A shared control plane supports tenant

lifecycle operations through a tenant registry, configuration

service, and secrets management system.

Tenant identity is a first-class control signal. It is

established at the authentication boundary and propagated

end-to-end as immutable context [9]. Services do not accept

tenant identity from untrusted request fields. They accept only

a validated tenant context derived from authenticated

credentials, then enforce scoping at every data access and

retrieval action. This design aligns with the threat model [14]

by reducing filter omission risk, limiting blast radius, and

enabling deterministic auditing.

A practical way to keep the design verifiable is to define

explicit enforcement points and require fail-closed behavior.

If tenant context is missing, inconsistent, or unverifiable, the

request is rejected before any retrieval or payload fetch

occurs. Fail-closed behavior prioritizes isolation over

availability. Operators should monitor rejection rates,

configure alerting thresholds, and define fallback policies or

graceful degradation paths for transient identity propagation

failures. If retrieved candidates fail provenance validation,

they are rejected and the event is recorded as a policy

violation signal.

5.2. Ingestion Path

The ingestion path is a write path into the retrieval corpus

and must enforce tenant ownership, access control metadata

integrity, and auditability. In multi-tenant deployments [9],

ingestion is also a common source of cross-tenant

contamination because content is transformed into chunks and

then indexed for later retrieval.

5.2.1. Document Intake Service

The document intake service is the entry point for tenant

content. It authenticates the caller, resolves tenant identity,

and validates that the caller is authorized to ingest content for

that tenant. It then performs document normalization and

chunking, and attaches required metadata to each chunk. The

minimum metadata set includes tenant ID, document ID,

chunk ID, ACL attributes, lineage identifiers, and timestamps

for creation and update. The service routes payloads and

metadata to the correct storage boundary based on the tenant's

isolation tier. In Silo, routing targets tenant-dedicated stores.

In Pool, routing targets shared stores with tenant

discriminators. In Bridge, routing targets are tier-specific and

must be derived from the tenant registry rather than

configuration embedded in the client.

Threat Silo Pool Bridge

Cross-tenant

embedding leakage

Lower likelihood due to

tenant-scoped indices and

stores

Higher likelihood if filters or

routing fail

Tier-dependent, reduced for

tenant-scoped vector tiers

Membership

inference risk

Reduced cross-tenant

exposure paths, still requires

output and telemetry controls

Higher risk if retrieval artifacts or

behavior leak across tenants

Tier-dependent, shared

inference and telemetry can

dominate

Vector index

poisoning

Contained to a tenant

boundary when ingestion and

indexing are tenant-scoped

Can affect shared infrastructure and

shared quality signals, cross-tenant

impact if scoping fails

Typically contained within tier,

but shared services can

propagate effects

Retrieval

contamination

Primarily within-tenant if

boundaries are correct

Cross-tenant impact possible if

orchestration validation is weak

Tier-dependent, boundary and

routing correctness is critical

Metadata inference
Reduced coupling between

tenants

More coupling through shared

resources unless mitigated

Reduced for isolated tiers,

shared components still leak

metadata without controls

Ritesh Kumar / IJETCSIT, 7(1), 30-47, 2026

40

5.2.2. Embedding Generation Service

The embedding service accepts tenant-scoped chunk

references and computes embeddings. It must treat tenant

context as mandatory input and must not generate or cache

embeddings in a way that allows cross-tenant reuse. If

batching is used for efficiency, batching must not merge

tenant contexts in a way that weakens auditability or causes

ambiguous attribution. Each embedding write must include

tenant ID and chunk identifiers that allow downstream

provenance checks to validate ownership. The embedding

service should write embeddings to the vector DB and write

embedding metadata to the metadata store, enabling later

verification that a retrieved vector corresponds to an

authorized chunk.

5.2.3. Vector Indexing Service

The indexing service manages index updates,

compaction, and any background maintenance that affects

retrieval behavior. It selects the correct index boundary based

on the isolation pattern. In Silo, each tenant has a dedicated

index boundary. In Pool, tenants share index infrastructure

and rely on filtering and validation. In Bridge, index

boundaries are tier-specific, and the indexer must enforce that

vectors are written only into the tenant's permitted tier. Index

update operations must be auditable and reversible in the

operational sense. At minimum, indexer actions should be

traced with tenant context, index identifiers, and the source

batch lineage so that poison or contamination events [13] can

be investigated and scoped.

5.3. Retrieval Path

 The retrieval path is the highest sensitivity path because

it selects content that will be inserted into the prompt.

Isolation failures at this stage can lead to cross-tenant

retrieval leakage and retrieval contamination [14].

5.3.1. Query Gateway

The query gateway authenticates the request and

constructs an immutable tenant context from validated

credentials, such as JSON Web Token (JWT) claims or API

key mappings. It applies per-tenant rate limits and quotas to

reduce noisy-neighbor effects [18] and probing risk [10],

[11], [12], and it normalizes request inputs to reduce injection

and parsing ambiguity. The gateway also enforces coarse

authorization, such as whether the principal can invoke

retrieval for a given tenant and which collections or

knowledge sources are in scope. The gateway emits a trace

identifier that is propagated through the full request path to

support deterministic auditing.

5.3.2. Retriever Service

The retriever service performs tenant-scoped search

against the vector database and any optional sparse index.

Tenant scoping is applied before similarity search when the

datastore query model supports it [6], [7]. If pre-filtering is

not available, the service performs post-filter validation and

rejects any cross-tenant candidates. Results are forwarded to

context assembly only after tenant ownership and

authorization constraints are satisfied. The retriever should

return candidates together with provenance fields required for

downstream validation, including chunk ID, document ID,

tenant ID, and the filter predicate applied. A defense-in-depth

measure [9], [14] is to perform cross-tenant result detection as

a separate validation step, where the retriever explicitly

checks that the returned candidate set matches tenant

ownership and logs any mismatch as a policy violation signal.

If reranking is used, reranking must not weaken scoping

guarantees. The reranker should operate only on tenant-

validated candidates and should not introduce additional

retrieval calls that bypass the tenant filter path. If the reranker

relies on external models, the request payloads must be

treated as sensitive and must follow the LLM plane logging

and redaction constraints.

5.3.3. Context Assembly

Context assembly is responsible for constructing the

context window that will condition generation. It is the final

gate before the model sees any retrieved content, so it must

enforce tenant and principal authorization deterministically.

Context assembly should verify chunk provenance against the

metadata store [20], reject any chunk that fails tenant

ownership or ACL checks, and record the provenance

decision trace. Context size management should be tier-

aware. Bridge deployments often allocate larger context

windows or higher retrieval depth to certain tiers, but this

must be driven by tenant policy rather than request-controlled

parameters.

5.3.4. LLM Gateway

The LLM gateway constructs the final prompt using

tenant-scoped system prompts, tenant-specific tool

configuration, and the validated context window. It enforces

per-tenant quotas for inference and token usage [18], and

applies response post-processing such as redaction, policy

checks, and citation formatting when enabled. It must

produce audit logs that associate the response with the tenant

context, the provenance identifiers of included chunks, and

the policy checks applied. Logging must be configured to

avoid storing raw prompts or retrieved context unless

required for debugging under tightly controlled access paths.

5.4. Kubernetes Implementation Patterns

The architecture maps directly onto Kubernetes

primitives [22] so that isolation and governance can be

enforced at the platform layer in addition to application logic.

The goal is not to claim Kubernetes alone provides tenant

isolation, but to use it to reduce blast radius, constrain

communication paths, and make misconfiguration harder.

5.4.1. Namespace Strategy

In Silo, namespace-per-tenant is used to separate

workloads, secrets, service accounts, and network policy

scopes. In Pool, a shared namespace is used for shared

services, and tenant isolation is enforced primarily through

request context and data-plane controls, with Kubernetes

labels used for operational grouping rather than as the

primary security boundary. In Bridge, namespaces are

organized by tier, with tenant-scoped resources placed in

Ritesh Kumar / IJETCSIT, 7(1), 30-47, 2026

41

tenant namespaces or tier-specific namespaces, while pooled

services remain shared.

5.4.2. Resource Controls

Resource controls are required to manage noisy-neighbor

effects [18] and prevent a single tenant from exhausting

shared compute. ResourceQuota and LimitRange define per-

namespace limits for CPU, memory, and object counts.

PriorityClass can ensure retrieval pods are scheduled

preferentially and are less likely to be preempted during

resource contention, though it influences scheduling and

preemption rather than runtime resource allocation. These

controls should be tier-aware in Bridge patterns and should be

aligned with the evaluation methodology for tail latency and

fairness.

5.4.3. Network Policies

NetworkPolicy rules [22] constrain east-west traffic and

reduce cross-namespace communication by default. In Silo

and Bridge, policies should restrict traffic so tenant

namespaces can communicate only with shared platform

services that are explicitly required. Where a service mesh is

used, mutual TLS and identity-based routing can strengthen

service-to-service authentication and improve observability,

but it must be configured to preserve tenant context

propagation and to avoid leaking sensitive headers into logs

or traces. NetworkPolicy enforces isolation at layers 3 and 4.

It does not validate application-layer tenant context, so tenant

scoping and authorization enforcement remain required in the

services and data access layers.

5.4.4. Policy Enforcement

Admission control policies can prevent unsafe

configurations from entering the cluster. Open Policy Agent

(OPA) Gatekeeper [23] can enforce that workloads include

required labels, that privileged pods are disallowed, and that

only approved network policy patterns are used. For multi-

tenant RAG, a practical admission policy is to enforce the

presence and correctness of tenant and tier labels on tenant-

scoped resources, and to ensure that secrets and service

accounts are not shared across tenant namespaces in Silo

configurations. Audit logging should capture admission

decisions so platform-level violations can be correlated with

application-level audit trails.

Table 3: Enforcement Point Checklist

5.5. Observability and Auditability

Observability is part of the isolation story because it

enables detection and proof of enforcement. Distributed

tracing should provide an end-to-end trace from the API

gateway through retrieval and context assembly to the LLM

gateway, with tenant identity represented as controlled

metadata that is not exposed to unprivileged operators.

Metrics should be emitted per tenant and per tier for latency

percentiles, error rates, filter rejection rates, and queueing

delays. Retrieval recall proxies, such as hit rates at top-k after

filtering and reranking acceptance rates, are useful for

performance diagnosis but must be scoped and access-

controlled to avoid metadata inference [14]. Logs must be

designed for least exposure. The system should log retrieval

provenance identifiers and policy decisions rather than raw

chunk text. Where prompt logging is necessary for

debugging, logs should be redacted and protected with strict

operational access controls. Audit logs should capture the

minimal set needed to reconstruct the decision path for a

request, including tenant context, policy decision identifiers,

retrieved chunk identifiers, and trace IDs.

6. Evaluation Methodology
This section defines a repeatable evaluation methodology

for comparing Silo, Pool, and Bridge patterns across isolation

strength, performance under contention, cost-per-query, and

operational overhead. The goal is to measure properties that

matter to SaaS architects and that map directly to the

enforcement points and failure modes defined in Sections III

to V. The methodology is designed to be implementable in a

Kubernetes testbed with deterministic datasets and controlled

workloads so that results can be reproduced and compared

across pattern variants.

6.1. Metrics Definition

Metrics are defined so they can be computed from

recorded traces and logs without relying on subjective

judgment. Each metric is measured for both retrieval-only and

end-to-end request paths, because noisy-neighbor behavior

[18] often appears in the slowest shared component, which

may differ across patterns.

6.1.1. Leakage Rate (Isolation Strength)

Leakage is measured using two metrics that separate

retrieval-path violations from end-to-end isolation failures.

The cross-tenant candidate-return rate is the fraction of

adversarial retrieval attempts where the vector search returns

at least one cross-tenant candidate prior to any downstream

filtering. The prompt contamination rate is the fraction of

adversarial attempts where a cross-tenant chunk appears in

the final context assembled for the model. The candidate-

return rate captures retrieval-path violations and side-channel

exposure risk, while the prompt contamination rate captures

the most severe end-to-end failure. Both metrics should target

zero.

Enforcement Point Identity Validation Tenant Scoping ACL Check Provenance Validation Logging Required

Query Gateway Required Required Coarse N/A Trace ID emission

Retriever Service Verify context Filter injection N/A Candidate validation Filter decisions

Storage Adapter Verify context Required Required N/A Access decisions

Context Assembly Verify context Required Required Required Inclusion decisions

LLM Gateway Verify context Required Policy check Chunk provenance Full audit trail

Ritesh Kumar / IJETCSIT, 7(1), 30-47, 2026

42

Leakage is detected by validating retrieved candidate

identifiers against an authoritative mapping in the metadata

store. The check is performed before context assembly, and

again after payload fetch, to distinguish vector-layer leakage

from payload-layer authorization failures. A request is

counted as leaked if any returned candidate violates tenant

ownership, even if the candidate is later filtered out, because

the event indicates an isolation failure in the retrieval path.

Assertions should verify that required scoping constraints

were applied at each enforcement point [14], for example that

tenant filters were present in vector queries and that storage

fetches executed with tenant-scoped authorization context.

6.1.2. Latency Under Mixed Workloads (Noisy-Neighbor

Effects)

Noisy-neighbor effects [18] are measured using latency

percentiles under controlled mixed-tenant load. The primary

metrics are p50 and p95 latency for retrieval and for end-to-

end response. Latency should be decomposed into gateway

processing, vector search, reranking if enabled, context

assembly, and model inference to identify which component

dominates tail behavior. The workload includes multiple

tenants with different load profiles to simulate contention. A

high-load tenant is driven to a sustained target throughput

while one or more co-tenants operate at low and moderate

throughput. Workload profiles include uniform load, bursty

load with short spikes, and skewed distributions where one

tenant contributes the majority of requests. A noisy-neighbor

index can be defined as the relative degradation of a low-load

tenant's p95 latency when the high-load tenant is active,

compared to the low-load tenant's p95 latency in isolation

under the same request rate. This metric is computed per

pattern and per tier in Bridge configurations to quantify

isolation effectiveness for performance, not only for security.

6.1.3. Cost-Per-Query Decomposition

Cost-per-query is decomposed so architects can attribute

cost to specific pipeline stages. The cost model includes

compute cost for embedding generation on ingestion, vector

search and orchestration on retrieval, and LLM inference on

response generation. Storage cost includes document storage,

metadata storage, and vector index footprint. The index

footprint component should explicitly account for memory-

resident structures when applicable [4], [5], [8], because that

is often a dominant cost driver for high-performance

Approximate Nearest Neighbor (ANN) indexes.

A practical cost-per-query estimate is computed as

monthly infrastructure cost divided by monthly query

volume, with ingestion cost either amortized by ingestion

volume or reported separately. The model should include

pattern-specific overhead such as duplicated control plane

components in Silo, shared networking and observability

overhead in Pool, and tier management overhead in Bridge.

The objective is not to produce a universal cloud bill, but to

produce a comparable cost decomposition across patterns

under the same workload and capacity targets.

For planning purposes, end-to-end cost per query can

vary by orders of magnitude, often ranging from roughly

$0.01 to $1.00 depending on model selection, context

window size, retrieval depth, and workload shape. In many

deployments, LLM inference dominates variable cost, while

vector index footprint drives fixed monthly cost. For

example, storing a single 768-dimensional float32 embedding

requires about 3 KB, so a 10 million-vector corpus implies on

the order of tens of gigabytes before accounting for

approximate nearest neighbor index overhead [4], [5],

replication, and metadata.

Absolute cost magnitudes are deployment-specific and

should be measured using the cost model and workload

defined in this section. In many deployments, model

inference dominates variable cost, while vector index

footprint and memory provisioning dominate fixed cost, but

the balance depends on corpus size, retrieval configuration,

and token budgets.

6.1.4. Operational Overhead

Operational overhead is measured as the effort and time

required to onboard and operate tenants under each pattern.

Tenant onboarding time is defined as provisioning latency

from an onboarding request to a tenant being able to ingest

documents and serve queries with policy enforcement active.

Deployment complexity can be measured by counting distinct

deployments, configuration objects, and secret objects

required per tenant or per tier, and by identifying which

objects must be customized per tenant. Maintenance burden

includes routine upgrades, scaling actions, key rotation, index

rebuilds, and policy changes such as ACL updates.

Automation potential is measured as the proportion of these

actions that can be executed through deterministic automation

without manual steps. This metric is particularly relevant for

Silo and Bridge patterns where lifecycle operations scale with

tenant count.

Table 2: Metric Definitions & Computation Sources

Metric Definition Data Source Ground Truth Required

Leakage Rate
Fraction of adversarial queries returning

cross-tenant candidates

Retrieval logs,

provenance traces

Chunk-to-tenant ownership

mapping

p50/p95 Latency
Latency percentiles for retrieval and end-to-

end response
Distributed traces N/A

Noisy-Neighbor

Index

Relative p95 degradation under co-tenant

load vs isolation

Traces with tenant

attribution
Baseline measurements

Cost-Per-Query
Monthly infrastructure cost / monthly query

volume

Resource metrics, billing

data
Capacity targets

Ritesh Kumar / IJETCSIT, 7(1), 30-47, 2026

43

6.2. Test Environment Specification

The test environment is specified so measurements are

comparable across patterns. The system runs on a Kubernetes

cluster [22] with fixed node allocation and fixed resource

limits per service, unless the scenario explicitly tests

autoscaling behavior. Node types, CPU and memory

allocations, and storage classes should be held constant across

patterns. Each pattern variant should be deployed using the

same service implementations and configuration structure,

differing only in isolation configuration such as namespace

strategy, index boundaries, and policy placement.

The evaluation should use a reproducible vector database

deployment, and the methodology should support alternative

backends such as a relational vector store [21] or a dedicated

vector database [24], [25]. Embedding model selection should

favor open-source models to support deterministic

benchmarking. LLM serving should be configured locally

when possible to reduce variability from external API rate

limits and service changes. Tenant simulation parameters

include number of tenants, corpus size per tenant, chunk size

distribution, and ACL complexity. These parameters must be

recorded as part of the benchmark artifacts.

6.3. Workload Design

The workload dataset is constructed to control tenant

separation while allowing realistic retrieval behavior. Tenant

corpora should be primarily disjoint, with optional controlled

overlap scenarios where similar topics appear across tenants

without sharing identical documents. This allows testing

whether semantic similarity can expose cross-tenant leakage

when scoping is incorrect. ACL variations should be included

so that authorization is not equivalent to tenant ownership.

For example, within a tenant, some documents can be

restricted to specific roles to validate principal-scoped

enforcement during context assembly.

The query mix should include baseline queries intended

to retrieve relevant chunks, burst patterns that stress queues

and shared caches, and heavy-versus-small tenant mixes that

expose contention. Adversarial queries [10], [11], [12] are

included specifically for leakage testing and should be tagged

so they can be analyzed separately from baseline traffic. All

queries and expected ownership assertions should be

generated deterministically from the dataset so that leakage

checks are repeatable.

6.4. Evaluation Scenarios

Isolation validation scenarios execute adversarial

retrieval tests for each pattern, including explicit filter bypass

attempts, boundary-condition queries that target scoping

weaknesses, and misrouting tests that validate fail-closed

behavior when tenant context is inconsistent [14]. Expected

outcomes should be stated as assertions rather than numeric

results, for example that no cross-tenant candidate identifiers

are returned, and that any violation triggers a policy event and

request rejection.

Performance characterization scenarios measure baseline

latency for each pattern under single-tenant load and then

measure mixed-tenant degradation under controlled

contention [18]. The methodology should include runs with

and without background ingestion and indexing activity,

because indexing can materially affect tail latency in pooled

architectures [8]. Scalability scenarios increase tenant count

and corpus size while holding per-tenant request rate constant

to observe whether shared components exhibit superlinear

degradation.

Cost analysis scenarios compute cost-per-query

decomposition using measured resource consumption and

recorded index footprint. A break-even analysis framework

compares patterns as tenant count and utilization change.

Sensitivity analysis varies tenant count, corpus size, query

rate, and context window size, because these parameters shift

which pipeline stage dominates cost and which isolation

boundary becomes a bottleneck.

Table 3: Evaluation Scenario Matrix

6.5. Benchmark Harness and Repeatability

The benchmark harness consists of a traffic generator

that can emulate multiple tenants, a tenant identity injection

mechanism that produces authenticated requests for each

tenant and principal role, and an instrumentation layer that

collects traces, logs, and metrics. The harness should record

the exact deployment configuration, including Kubernetes

manifests, policy definitions, and datastore configuration, as

versioned artifacts. Datasets should be deterministic, and

evaluation prompts should be fixed so that changes in results

are attributable to architecture changes rather than prompt

drift.

Validation checks should run as part of every benchmark

execution. These include assertions that tenant filters are

present in vector queries, that storage fetches are tenant-

Onboarding Time Provisioning latency to operational readiness
Automation logs,

timestamps
N/A

Scenario Workload Profile Patterns Compared Metrics Collected

Isolation Validation Adversarial queries Silo, Pool, Bridge Leakage rate, policy violations

Baseline Performance Single tenant, steady state Silo, Pool, Bridge p50/p95 latency

Noisy-Neighbor Mixed load, high-load tenant Pool, Bridge Noisy-neighbor index

Scalability Increasing tenant count Silo, Pool, Bridge Latency, throughput

Cost Analysis Fixed workload, varying scale Silo, Pool, Bridge Cost-per-query decomposition

Break-Even Varying tenant count Silo vs Pool Cost crossover point

Ritesh Kumar / IJETCSIT, 7(1), 30-47, 2026

44

scoped, that context assembly performs provenance

validation, and that audit logs contain required identifiers and

policy decision traces. These checks ensure that a benchmark

run cannot silently pass with missing enforcement [14], which

is widely recommended when comparing isolation patterns

where correctness depends on configuration.

This paper specifies an evaluation methodology rather

than reporting empirical benchmark results. The metrics,

scenarios, and benchmark harness are defined to enable

reproducible comparison of isolation patterns, but execution

and measurement on representative deployments remains

future work. Any discussion of tradeoffs in later sections is

derived from architectural analysis and documented platform

behavior rather than measured performance data. Independent

empirical validation using the methodology defined in this

section is encouraged.

7. Discussion
This section interprets the implications of the isolation

taxonomy, threat model, and reference architecture for real

SaaS deployments. The intent is to translate the analysis into

actionable selection guidance, highlight minimum controls

required for safe pooling, and clarify where conclusions

depend on assumptions or environment-specific constraints.

7.1. Pattern Selection Decision Framework

Pattern selection should be driven by explicit

requirements rather than defaulting to whichever architecture

is easiest to deploy. The primary criteria are regulatory

requirements, tenant trust level, workload variability, cost

constraints, and service-level objectives for latency and

availability. Regulatory constraints typically set the minimum

acceptable isolation boundary for the data plane and, in some

cases, constrain where inference and telemetry can be

processed. Tenant trust level matters when tenants can

actively probe the system [10], [11], [12] or upload untrusted

content [13], which increases the likelihood of adversarial

behavior against retrieval and context assembly. Workload

variability and burstiness determine whether shared

infrastructure can meet tail latency targets [18] without

expensive overprovisioning. Cost constraints are best

evaluated using cost-per-query decomposition because the

dominant driver may differ across deployments, for example

index footprint versus inference cost. SLA targets, especially

p95 latency and availability, determine how much

performance isolation is required in practice.

A practical decision tree begins with the strictest

requirement. If regulatory or contractual constraints require

tenant-dedicated storage boundaries and auditable separation

for retrieval artifacts, then a Silo configuration for the data

plane and vector plane is typically the default, with shared

control plane services allowed only if they do not access

tenant content. If regulatory constraints allow shared storage

with strong access control [20], then the next decision point is

whether pooled retrieval can be made defensible with

defense-in-depth enforcement [9], [14] and continuous

validation. If the organization can operationalize strict policy

enforcement, provenance validation, and automated leakage

testing, then Pool can be viable for lower-risk tiers, provided

performance isolation is managed through quotas and

capacity controls. If the deployment requires mixed

guarantees, such as a subset of tenants needing strict isolation

while the majority are cost sensitive, Bridge becomes the

default because it allows tiered placement without forcing one

pattern for the entire tenant population.

Migration paths matter because tenant requirements

change. Pool-to-Bridge migration is often driven by

increasing regulatory demands or by tenants whose workloads

cause sustained contention. Bridge-to-Silo migration is

typically triggered by the need to reduce blast radius further

or to guarantee performance isolation for a small set of high-

value tenants. These migrations should be treated as first-

class design requirements. The architecture should support

moving a tenant between tiers with deterministic routing,

explicit index rebuild procedures, and auditable verification

that data-plane and vector-plane boundaries were updated

correctly.

7.2. Implementation Guidance

Implementation guidance focuses on the practical

controls required to make the patterns safe and operable. The

emphasis is on preventing silent isolation failures and on

minimizing the number of paths through the system that can

bypass tenant scoping.

7.2.1. Minimum Viable Controls for Pool

Pool has the strongest dependence on correctness of

identity propagation and enforcement placement [9]. The

minimum viable control set should be defined as mandatory

invariants. Tenant identity must be established at

authentication and propagated as immutable request context.

Every retrieval request must include tenant scoping

constraints, and those constraints must be validated at the

retriever and again during context assembly using provenance

checks. Payload fetch must enforce tenant and principal

authorization even if vector search was scoped, because

retrieval contamination can occur when authorization logic

differs between vector and payload paths. The system should

fail closed [14] when tenant context is missing, inconsistent,

or unverifiable.

Filter enforcement requires both prevention and

detection. Prevention includes enforcing that all retrieval code

paths apply scoping, including hybrid retrieval, reranking,

and fallback flows. Detection includes logging and metrics

that record the applied scoping predicate, returned candidate

ownership, and rejection counts. Audit logging must capture

enough information to prove that the system applied scoping

consistently and to support investigation if a suspected

leakage occurs. Configuration validation should include

automated tests that intentionally attempt bypass scenarios

and assert that no cross-tenant candidates can reach context

assembly. These tests should run continuously in staging and

as part of deployment pipelines so that drift in configuration

or code does not silently weaken isolation.

Ritesh Kumar / IJETCSIT, 7(1), 30-47, 2026

45

7.2.2. When Bridge is the Pragmatic Choice

Bridge is typically the pragmatic choice when Pool is too

risky for a subset of tenants and Silo is too expensive or too

operationally heavy for the full population. In practice,

Bridge often isolates the components with the highest

confidentiality and blast radius risk, while pooling

components where sharing is less risky and where strong

enforcement is easier. A common approach is to silo the data

plane and, for higher-risk tiers, silo the vector plane by using

tenant-scoped indices, while keeping orchestration services

and the LLM gateway shared but strictly tenant-aware.

Another approach is to keep shared storage [20] but silo

vector indices for tenants that require stronger retrieval

isolation or more predictable performance.

Choosing what to silo versus pool should be based on the

threat model [14] and the cost decomposition. If cross-tenant

retrieval leakage is the dominant risk, tenant-scoped vector

boundaries are often the first escalation step. If metadata

inference [14] through shared observability is a primary

concern, then tier-specific telemetry isolation and operational

access controls may be required even if compute remains

pooled. Migration strategies should prioritize reversibility and

auditability. A tenant's tier change should produce an

auditable sequence of actions that includes data movement or

index rebuilds if required, routing updates, key and secret

updates, and a post-migration validation run that executes

leakage tests and baseline latency checks.

7.2.3. Operational Considerations

Operational workflows influence isolation outcomes

because most real failures are triggered by misconfiguration,

drift, or incomplete lifecycle procedures [9]. Tenant

onboarding workflows should be deterministic and automated

where possible. Onboarding should include creation of tenant

registry entries, provisioning of any tenant-scoped stores or

indices, application of policies and network rules [22], [23],

and a validation step that confirms scoping enforcement and

audit logging are active. Incident response for suspected

leakage should be planned explicitly. The system should

support rapid containment actions, such as temporarily

disabling retrieval for a tenant, restricting pooled services to

known-safe tiers, or isolating a suspect ingestion batch [13].

Audit trails must support reconstructing which chunks entered

prompts for specific requests, which is widely recommended

[19] for scoping the impact of a suspected event.

Key rotation, index rebuilds, and ACL updates are

recurring operations that can break isolation if not designed

carefully. Key rotation must be coordinated with storage

access and ingestion pipelines so that encryption boundaries

remain consistent. Index rebuild procedures must preserve

tenant scoping and must avoid accidental mixing during

backfills. ACL updates must propagate deterministically to

both metadata enforcement and retrieval-time filters, and

caching layers must respect the new authorization state to

avoid stale access decisions.

7.3. Limitations

Several limitations bound the generality of the results.

Implementations and performance characteristics vary across

LLM serving stacks [17] and across vector databases [21],

[24], [25], which can change the magnitude and location of

noisy-neighbor effects. The evaluation workload is focused

on document-based RAG [1] and may not represent other

retrieval modalities such as code, images, or structured

knowledge graphs. The threat model [14] is formalized

around the most relevant multi-tenant RAG threats, but not

every attack class is empirically validated in the evaluation

methodology, and some threats are treated through

architecture and controls rather than through demonstrated

exploitability. Finally, deployment environments differ in

network topology, observability tooling, and operational

access models, which can influence metadata inference risk

and the practicality of certain controls.

7.4. Future Directions

Future work can strengthen isolation and reduce

operational risk in several ways. Confidential computing can

provide stronger guarantees for certain processing steps by

reducing exposure of plaintext data in memory under specific

adversary models, though its applicability depends on

deployment constraints and performance impact. Federated

RAG approaches could enable selective cross-tenant

knowledge sharing under explicit privacy constraints, but

require rigorous policy models and robust auditing.

Automated tenant placement and dynamic pattern selection

are promising for Bridge deployments, where the system

could assign tenants to tiers based on measured workload

behavior and risk classification, then migrate tenants safely as

conditions change.

Standardization is also a practical direction, particularly

for defining evaluation interfaces and minimum conformance

requirements for tenant isolation in RAG pipelines. A

conformance testing suite that exercises leakage probes,

scoping assertions, and auditability checks would reduce

reliance on ad hoc validation and would make comparisons

across implementations more meaningful.

8. Conclusion
Multi-tenant RAG enables enterprise SaaS platforms to

ground model outputs in tenant-specific knowledge while

operating on shared infrastructure. This deployment model

introduces a strict requirement for tenant isolation that spans

storage, embeddings, retrieval, orchestration, and inference,

and it creates failure modes that are not addressed by

traditional multi-tenant patterns alone. The core result of this

work is a structured way to reason about isolation in RAG

systems, implement it in a cloud-native stack, and evaluate

tradeoffs across security, performance, cost, and operational

overhead.

8.1. Summary of Contributions

This paper introduced a formal taxonomy for multi-

tenant RAG isolation across four planes: data, vector,

orchestration, and LLM. The taxonomy makes isolation

requirements explicit, identifies where enforcement must

Ritesh Kumar / IJETCSIT, 7(1), 30-47, 2026

46

occur, and provides a consistent vocabulary for comparing

architectural choices. A threat model tailored to multi-tenant

RAG was defined, covering embedding-space vulnerabilities

and data-plane risks, and grounding the discussion in concrete

trust boundaries and enforcement points. A Kubernetes-native

reference architecture was specified to implement tenant-

aware controls through explicit policy enforcement points

across ingestion and retrieval paths, with auditability treated

as a first-class requirement. Finally, the paper defined an

evaluation methodology that measures isolation strength

through leakage testing, quantifies noisy-neighbor effects

using latency percentiles under mixed-tenant load,

decomposes cost-per-query into attributable components, and

characterizes operational overhead through measurable

lifecycle metrics.

8.2. Key Takeaways

No single isolation pattern dominates across all

dimensions. Silo, Pool, and Bridge represent fundamentally

different tradeoffs between blast radius, performance

isolation, cost efficiency, and operational complexity.

Isolation in multi-tenant RAG is an end-to-end property. It

cannot be achieved by a single datastore setting or a single

gateway control because retrieval and context assembly can

introduce cross-tenant exposure even when storage

boundaries appear correct. In pooled architectures, leakage

risk is driven primarily by configuration and enforcement

correctness, including identity propagation, scoping

consistency across retrieval variants, provenance validation,

and auditability. Pattern selection therefore requires explicit

tradeoff analysis across isolation strength, latency targets,

cost drivers such as index footprint and inference

consumption, and the operational maturity required to run

continuous validation.

8.3. Closing Statement

Multi-tenant RAG is a practical foundation for enterprise

AI adoption because it aligns grounding with SaaS delivery

economics, but it demands rigor in how isolation is defined,

enforced, and verified. The taxonomy, threat model, reference

architecture, and evaluation methodology presented here

provide a defensible basis for selecting and operating Silo,

Pool, and Bridge patterns in production SaaS environments.

A clear next step is broader independent benchmarking and

standardization of isolation and evaluation interfaces so that

multi-tenant RAG systems can be compared consistently and

validated continuously as platforms evolve.

References
[1] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin,

N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T.

Rocktäschel, S. Riedel, and D. Kiela, "Retrieval-

Augmented Generation for Knowledge-Intensive NLP

Tasks," in Advances in Neural Information Processing

Systems (NeurIPS), vol. 33, 2020, pp. 9459–9474.

[Online]. Available: https://arxiv.org/abs/2005.11401

[2] V. Karpukhin, B. Oğuz, S. Min, P. Lewis, L. Wu, S.

Edunov, D. Chen, and W.-t. Yih, "Dense Passage

Retrieval for Open-Domain Question Answering," in

Proc. 2020 Conf. Empirical Methods in Natural

Language Processing (EMNLP), 2020, pp. 6769–6781.

doi: 10.18653/v1/2020.emnlp-main.550.

[3] K. Shuster, S. Poff, M. Chen, D. Kiela, and J. Weston,

"Retrieval Augmentation Reduces Hallucination in

Conversation," in Findings of the Association for

Computational Linguistics: EMNLP 2021, 2021, pp.

3784–3803. doi: 10.18653/v1/2021.findings-emnlp.320.

[4] Y. A. Malkov and D. A. Yashunin, "Efficient and

Robust Approximate Nearest Neighbor Search Using

Hierarchical Navigable Small World Graphs," IEEE

Trans. Pattern Anal. Mach. Intell., vol. 42, no. 4, pp.

824–836, Apr. 2020. doi:

10.1109/TPAMI.2018.2889473.

[5] S. J. Subramanya, F. Devvrit, H. V. Simhadri, R.

Krishnawamy, and R. Kadekodi, "DiskANN: Fast

Accurate Billion-point Nearest Neighbor Search on a

Single Node," in Advances in Neural Information

Processing Systems (NeurIPS), vol. 32, 2019. [Online].

Available:

https://proceedings.neurips.cc/paper/2019/hash/09853c7

fb1d3f8ee67a61b6bf4a7f8e6-Abstract.html

[6] S. Gollapudi, N. Karia, V. Sivashankar, R.

Krishnaswamy, N. Begwani, S. Raz, Y. Lin, Y. Zhang,

N. Mahapatro, P. Srinivasan, A. Singh, and H. Simhadri,

"Filtered-DiskANN: Graph Algorithms for Approximate

Nearest Neighbor Search with Filters," in Proc. ACM

Web Conference (WWW), 2023, pp. 3406–3416. doi:

10.1145/3543507.3583552.

[7] L. Patel, P. Kraft, C. Guestrin, and M. Zaharia,

"ACORN: Performant and Predicate-Agnostic Search

Over Vector Embeddings and Structured Data," Proc.

ACM Manag. Data, vol. 2, no. 3, art. 120, pp. 1–27,

2024. doi: 10.1145/3654923.

[8] Y. Jin, Y. Wu, W. Hu, B. M. Maggs, X. Zhang, and D.

Zhuo, "Curator: Efficient Indexing for Multi-Tenant

Vector Databases," arXiv preprint, 2024. doi:

10.48550/arXiv.2401.07119.

[9] C. D. Weissman and S. Bobrowski, "The Design of the

Force.com Multitenant Internet Application

Development Platform," in Proc. ACM SIGMOD Int.

Conf. Management of Data, 2009, pp. 889–896. doi:

10.1145/1559845.1559942.

[10] M. Anderson, G. Amit, and A. Goldsteen, "Is My Data

in Your Retrieval Database? Membership Inference

Attacks Against Retrieval Augmented Generation," in

Proc. 11th Int. Conf. Information Systems Security and

Privacy (ICISSP), 2025, pp. 474–485. doi:

10.5220/0013108300003899.

[11] G. Wang, J. He, H. Li, M. Zhang, and D. Feng, "RAG-

leaks: Difficulty-calibrated membership inference

attacks on retrieval-augmented generation," Sci. China

Inf. Sci., vol. 68, art. no. 160102, 2025. doi:

10.1007/s11432-024-4441-4.

[12] S. Zeng, J. Zhang, P. He, Y. Xing, Y. Su, T. Zhao, and

W. Lu, "The Good and The Bad: Exploring Privacy

Issues in Retrieval-Augmented Generation (RAG)," in

Findings of the Association for Computational

Linguistics: ACL 2024, 2024, pp. 4505–4524. doi:

10.18653/v1/2024.findings-acl.267.

https://arxiv.org/abs/2005.11401
https://proceedings.neurips.cc/paper/2019/hash/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Abstract.html

Ritesh Kumar / IJETCSIT, 7(1), 30-47, 2026

47

[13] W. Zou, R. Geng, B. Wang, and J. Jia, "PoisonedRAG:

Knowledge Corruption Attacks to Retrieval-Augmented

Generation of Large Language Models," in Proc. 34th

USENIX Security Symposium, 2025, pp. 3827–3844.

[Online]. Available: https://arxiv.org/abs/2402.07867

[14] A. Arzanipour, R. Behnia, R. Ebrahimi, and K. Dutta,

"RAG Security and Privacy: Formalizing the Threat

Model and Attack Surface," arXiv preprint, 2025. doi:

10.48550/arXiv.2509.20324.

[15] J. X. Morris, V. Kuleshov, V. Shmatikov, and A. M.

Rush, "Text Embeddings Reveal (Almost) As Much As

Text," in Proc. 2023 Conf. Empirical Methods in

Natural Language Processing (EMNLP), 2023, pp.

12448–12460. doi: 10.18653/v1/2023.emnlp-main.765.

[16] G. Wu, Z. Zhang, W. Wang, Y. Zhang, G. Chen, and M.

Yang, "I Know What You Asked: Prompt Leakage via

KV-Cache Sharing in Multi-Tenant LLM Serving," in

Proc. Network and Distributed System Security

Symposium (NDSS), 2025. [Online]. Available:

https://www.ndss-symposium.org/ndss-paper/i-know-

what-you-asked-prompt-leakage-via-kv-cache-sharing-

in-multi-tenant-llm-serving/

[17] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H.

Yu, J. Gonzalez, H. Zhang, and I. Stoica, "Efficient

Memory Management for Large Language Model

Serving with PagedAttention," in Proc. 29th ACM

Symposium on Operating Systems Principles (SOSP),

2023, pp. 611–626. doi: 10.1145/3600006.3613165.

[18] B. Iftekhar, V. Viswanath, S. Guo, Z. Li, S. Agarwal,

and A. Akella, "Ensuring Fair LLM Serving Amid

Diverse Applications," arXiv preprint, 2024. doi:

10.48550/arXiv.2411.15997.

[19] OWASP Foundation, "OWASP Top 10 for Large

Language Model Applications, Version 2025," 2025.

[Online]. Available: https://genai.owasp.org/llm-top-10/

[20] PostgreSQL Global Development Group, "CREATE

POLICY: Define a New Row-Level Security Policy for

a Table," PostgreSQL Documentation. [Online].

Available: https://www.postgresql.org/docs/current/sql-

createpolicy.html

[21] pgvector Contributors, "pgvector: Open-source Vector

Similarity Search for Postgres," GitHub repository.

[Online]. Available:

https://github.com/pgvector/pgvector

[22] Kubernetes, "Declare Network Policy," Kubernetes

Documentation. [Online]. Available:

https://kubernetes.io/docs/tasks/administer-

cluster/declare-network-policy/

[23] Open Policy Agent, "OPA Gatekeeper: Policy

Controller for Kubernetes," Open Policy Agent

Documentation. [Online]. Available:

https://www.openpolicyagent.org/docs/latest/

[24] Pinecone, "Implement Multitenancy," Pinecone

Documentation. [Online]. Available:

https://docs.pinecone.io/guides/index-data/implement-

multitenancy

[25] Milvus, "Implement Multi-tenancy," Milvus

Documentation. [Online]. Available:

https://milvus.io/docs/multi_tenancy.md

https://arxiv.org/abs/2402.07867
https://www.ndss-symposium.org/ndss-paper/i-know-what-you-asked-prompt-leakage-via-kv-cache-sharing-in-multi-tenant-llm-serving/
https://www.ndss-symposium.org/ndss-paper/i-know-what-you-asked-prompt-leakage-via-kv-cache-sharing-in-multi-tenant-llm-serving/
https://www.ndss-symposium.org/ndss-paper/i-know-what-you-asked-prompt-leakage-via-kv-cache-sharing-in-multi-tenant-llm-serving/
https://genai.owasp.org/llm-top-10/
https://www.postgresql.org/docs/current/sql-createpolicy.html
https://www.postgresql.org/docs/current/sql-createpolicy.html
https://github.com/pgvector/pgvector
https://kubernetes.io/docs/tasks/administer-cluster/declare-network-policy/
https://kubernetes.io/docs/tasks/administer-cluster/declare-network-policy/
https://www.openpolicyagent.org/docs/latest/
https://docs.pinecone.io/guides/index-data/implement-multitenancy
https://docs.pinecone.io/guides/index-data/implement-multitenancy
https://milvus.io/docs/multi_tenancy.md

