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Abstract - Multi-tenant Retrieval-Augmented Generation 

(RAG) enables enterprise SaaS platforms to ground large 

language model outputs in customer-specific data while 

sharing infrastructure across tenants. This deployment 

model introduces a hard requirement for strict tenant 

isolation across storage, embedding generation, vector 

indexing, retrieval orchestration, and response construction, 

without unacceptable cost or performance variance under 

mixed workloads. This paper formalizes three isolation 

patterns for multi-tenant RAG systems, Silo, Pool, and 

Bridge, and introduces an isolation taxonomy across four 

planes: data plane, vector plane, orchestration plane, and 

LLM plane. A threat model specific to multi-tenant RAG is 

presented, covering cross-tenant embedding leakage through 

similarity search, membership inference risk, retrieval 

contamination from incorrect scoping or poisoned content, 

and metadata inference. A Kubernetes-native reference 

architecture is specified to implement tenant-aware controls 

and explicit policy enforcement points across ingestion and 

retrieval. The paper also defines an evaluation approach for 

comparing isolation patterns using leakage testing under 

adversarial retrieval scenarios, mixed-tenant latency 

measurements (P50 and P95) to quantify noisy-neighbor 

effects, cost-per-query decomposition, and operational 

overhead. 

 

Keywords - Retrieval-Augmented Generation, Multi-tenancy, 

Tenant isolation, Enterprise SaaS, Vector databases, 

Embeddings, Access control, Threat modeling, 

Microservices, Kubernetes, Noisy neighbor effects. 

 

1. Introduction 
Retrieval-Augmented Generation (RAG) [1] is widely 

adopted for grounding large language model outputs in 

enterprise knowledge sources such as product documentation, 

support content, contracts, and internal policies. In a typical 

RAG pipeline [1], user queries are transformed into retrieval 

requests, relevant content is fetched from a document store or 

vector index, and selected context is assembled into a prompt 

that constrains the model response. This design improves 

factuality and domain alignment relative to prompting alone 

[3], but it also expands the system boundary. Data flows 

through ingestion, embedding generation, indexing, retrieval, 

orchestration, and generation components, each of which can 

introduce security and performance failure modes. 

 

Most enterprise deployments of RAG are delivered as 

Software as a Service (SaaS). That delivery model typically 

requires multi-tenancy [9], where multiple customers share 

infrastructure to achieve acceptable unit economics, 

simplified operations, and faster onboarding. Introducing 

RAG can increase the complexity of multi-tenant isolation 

because retrieval and prompt assembly add additional 

enforcement points. The degree of difficulty depends on 

implementation choices, existing isolation infrastructure, and 

the capabilities of the selected vector database and serving 

stack. A correct multi-tenant RAG system must ensure that 

tenant identity and authorization constraints remain intact 

across every stage that can influence generated output. 

 

Tenant isolation in this paper is defined as three 

properties. First, retrieval isolation requires that queries from 

one tenant must not retrieve content owned by another tenant. 

Second, context assembly isolation requires that retrieved 

context included in the prompt must be scoped to the 

requesting tenant and principal permissions. Third, inference 

exposure resistance requires that the system reduce the risk of 

cross-tenant exposure through model outputs, logs, and 

observable side channels including retrieval behavior and 

response artifacts. 

 

1.1. Motivation 

Cloud and vector database vendors describe practical 

multi-tenant patterns for SaaS systems and provide 

prescriptive guidance for RAG components. AWS, Microsoft 

Azure, Milvus [25], and Pinecone [24] publish architecture 

documentation identifying Silo, Pool, and Bridge approaches. 

These materials are useful for implementation, but they stop 

at architectural recommendations and do not provide a 

repeatable methodology to compare isolation patterns under 

adversarial conditions, mixed-tenant load, and explicit cost-

per-query accounting. Multi-tenant RAG introduces failure 

modes less prominent in traditional SaaS designs, such as 

cross-tenant retrieval leakage from mis-scoped similarity 

search [10], [11], [12] or retrieval contamination when 

context assembly includes unauthorized chunks. 
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A second motivation concerns security modeling. 

Conventional multi-tenant security analysis focuses on 

storage isolation and request authorization. RAG requires 

extending the threat model to cover embeddings [15], vector 

indices, retrieval-time filtering, and the orchestration layer 

that constructs the model prompt. Without a threat model 

specific to these components [14], it is difficult to justify 

where enforcement must occur and how to validate that 

isolation holds under normal and adversarial workloads. 

 

Finally, there is an operational motivation. Architects 

must decide where to place boundaries, which services can be 

safely shared, which data stores must be partitioned, and what 

controls are mandatory for safe pooling. Those decisions 

directly affect tail latency under contention, noisy-neighbor 

behavior [18], cost drivers such as index footprint and token 

usage, and the operational overhead of onboarding and 

maintaining tenants. A structured comparison of Silo, Pool, 

and Bridge patterns makes those decisions explicit and 

testable. 

 

1.2. Research Questions 

This paper focuses on three questions that arise when 

building a RAG-powered SaaS product serving multiple 

tenants on shared infrastructure. The first question asks how 

Silo, Pool, and Bridge isolation patterns differ in isolation 

guarantees across storage, embedding generation, vector 

indexing, retrieval orchestration, and prompt construction. 

The second question asks what noisy-neighbor effects are 

measurable under mixed-tenant workloads and which shared 

components dominate tail latency behavior. The third 

question asks what the cost-per-query profile of each pattern 

is and which cost drivers dominate as tenant count, corpus 

size, and query volume change. These questions are framed to 

support engineering decisions, and each corresponds to 

measurable properties that can be validated through leakage 

testing, latency percentile analysis, and cost decomposition. 

 

1.3. Contributions 

This paper makes four contributions. First, it introduces 

an isolation taxonomy for multi-tenant RAG across four 

planes: data plane, vector plane, orchestration plane, and 

LLM plane. The taxonomy provides a consistent vocabulary 

for specifying what is isolated, where isolation is enforced, 

and what failure modes remain. Second, it defines three 

isolation patterns for multi-tenant RAG pipelines: Silo, Pool, 

and Bridge. Each pattern is described in terms of shared 

versus tenant-scoped components and the isolation invariants 

that must hold. 

 

Third, it provides a threat model tailored to multi-tenant 

RAG. The threat model covers embedding-space and 

retrieval-specific risks such as cross-tenant retrieval leakage 

via similarity search, membership inference risk, vector index 

poisoning, retrieval contamination through incorrect scoping, 

and metadata inference through observable behavior. Fourth, 

it specifies a Kubernetes-native reference architecture that 

implements tenant-aware controls using explicit policy 

enforcement points across ingestion and retrieval. The paper 

also defines an evaluation methodology to compare patterns 

using leakage rate under adversarial retrieval scenarios, 

latency percentiles (p50 and p95) under mixed-tenant 

workloads, cost-per-query decomposition, and operational 

overhead indicators. 

 

2. BACKGROUND AND RELATED WORK 
2.1. RAG Pipeline Decomposition 

A Retrieval-Augmented Generation (RAG) system [1] 

transforms raw enterprise documents into grounded model 

responses through a sequence of stages. The ingestion stage 

accepts documents from upstream sources, segments them 

into chunks, attaches metadata required for isolation and 

governance, and generates embeddings that encode chunk 

semantics. Chunking strategies include fixed token windows, 

boundary-aware segmentation, semantic chunking based on 

embedding similarity, recursive chunking, and parent-child 

hierarchical approaches. This list is not exhaustive; chunking 

affects retrieval granularity and index size but does not 

change the isolation requirements defined in this paper. 

 

The storage stage persists two distinct data types. A 

document store retains raw text or chunk payloads and 

associated metadata, commonly using object storage or a 

document database. A vector store maintains embeddings and 

identifiers that link vectors back to source chunks. Some 

deployments co-locate payload and vector data in one system, 

while others separate them to scale and secure each tier 

independently. The indexing stage builds structures that 

accelerate similarity search in high-dimensional embedding 

spaces. Approximate nearest neighbor (ANN) methods are 

common, including graph-based indexing such as 

Hierarchical Navigable Small World (HNSW) [4] and 

cluster-based inverted file methods such as Inverted File 

Index (IVF). HNSW organizes vectors into a navigable graph 

to improve query latency [4]. IVF partitions vectors into 

coarse clusters and searches a subset of clusters per query to 

reduce comparisons. Some systems also use hybrid retrieval 

[2], where dense similarity search is combined with lexical 

retrieval. This can improve robustness for certain query 

classes but adds orchestration complexity and cost accounting 

at query time. 

The retrieval and orchestration stage processes incoming 

queries, encodes them into the embedding space, executes 

similarity search, optionally reranks results using cross-

encoder models that typically require access to chunk text 

rather than embeddings alone, and assembles retrieved 

chunks into a context window. This stage is a primary 

isolation boundary because any cross-tenant retrieval error 

can directly introduce unauthorized content into the prompt. 

The generation stage constructs the final prompt by 

combining system instructions, retrieved context, and the user 

query, then invokes the LLM for inference and applies post-

processing such as output filtering, citations, and audit 

logging. Canonical RAG formulations [1] explicitly treat 

retrieval as a first-class component whose outputs condition 

generation, which is why retrieval-time controls must be 

treated as part of the security and isolation model. 

 

For clarity, a document refers to the original ingested 

content. A chunk is a segmented unit derived from a 
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document and used as the retrieval unit. A payload refers to 

the text content of a chunk, distinct from its embedding and 

metadata. Tenant scoping refers to enforcing that data access 

and retrieval operations are constrained to a single tenant; the 

terms tenant filter and tenant discriminator are used as 

equivalent mechanisms for tenant scoping. 

 

2.2. Multi-Tenant SaaS Model 

Multi-tenancy in SaaS systems [9] is commonly 

implemented using one of three isolation approaches: 

database-per-tenant, schema-per-tenant, or shared database 

with row-level separation. Stronger physical separation 

generally improves isolation and reduces blast radius but 

increases cost and operational overhead as tenant counts 

grow. Shared storage with row-level separation improves 

resource efficiency but shifts isolation responsibility into 

application logic, query correctness, and enforcement depth. 

 

Tenant identity in enterprise SaaS is typically represented 

by a tenant identifier for the customer organization plus 

principal identifiers for users or service accounts, with roles 

and scopes that constrain access. In distributed microservice 

architectures, this identity must propagate across service 

boundaries so downstream components can enforce 

authorization consistently. RAG systems intensify this 

requirement because multiple services participate in retrieval 

and context assembly, and any stage that loses or misroutes 

tenant context can create cross-tenant exposure. 

 

A common architectural separation divides a shared 

control plane from a tenant-scoped data plane. The control 

plane manages onboarding, configuration, and platform 

services. The data plane hosts customer workloads and data, 

and is where retrieval and prompt assembly must enforce 

tenant isolation. The boundary between these planes 

determines which components can be pooled and which 

require per-tenant deployment, and it strongly influences cost 

allocation, observability, and incident response. 

 

2.3. Vector Database Isolation Mechanisms 

Vector databases provide multi-tenancy primitives that 

parallel traditional isolation models, but operate over 

embedding stores and similarity search paths. One approach 

is namespace-style logical separation, where each tenant's 

vectors are stored in a distinct namespace within shared 

infrastructure. Pinecone documents namespace-based 

multitenancy [24], where queries are scoped to a namespace 

(within a single index) to prevent cross-namespace retrieval 

by construction. Pinecone provides namespace-based 

isolation within a single index, allowing logically separate 

vector sets to share the underlying index infrastructure. 

 

Another approach is partition-based separation within 

collections. Milvus documents multi-tenancy strategies [25] 

using partitions or partition keys to target queries to tenant-

specific partitions. Partition-based strategies must account for 

platform limits; Milvus documentation notes that a collection 

can hold up to 1,024 partitions per collection [25], which 

constrains partition-per-tenant designs at high tenant counts 

and can influence pattern selection. Collection-level 

separation, where each tenant has a dedicated collection, can 

provide clearer boundaries but can increase operational and 

memory overhead as tenant count grows. 

 

Metadata filtering [6], [7] is a widely used mechanism 

across vector systems. In this model, all tenant vectors coexist 

in shared indexes and each query includes a predicate such as 

tenant_id equals X. This maximizes index sharing and can 

reduce per-tenant overhead, but it raises the consequence of 

filter omission or misapplication. It also increases the 

importance of defense-in-depth validation, such as verifying 

that returned results match the request tenant context before 

context assembly. 

 

Relational vector stores such as PostgreSQL with 

pgvector [21] can use database-native access control. 

PostgreSQL row-level security [20] allows policies that 

restrict which rows can be returned based on roles or session 

context. AWS explicitly describes using row-level security to 

enforce tenant isolation in a pgvector-based multi-tenant 

design. These mechanisms can provide strong enforcement at 

the data access layer, but they still require correct tenant 

context propagation and auditing in the orchestration layer. 

 

2.4. Related Work and Gap Analysis 

Prior research addresses important aspects of multi-

tenant behavior in systems adjacent to the end-to-end 

architecture question. For multi-tenant RAG efficiency, 

recent work [18] analyzes caching and fairness in multi-

tenant RAG deployments and quantifies efficiency and 

tenant-level fairness trade-offs under shared workloads. This 

motivates treating performance isolation and tail latency as 

first-class evaluation dimensions, not secondary concerns. 

 

For multi-tenant vector indexing, Curator [8] examines 

the trade-off between per-tenant indices and shared indices 

with filtering, proposing indexing techniques intended to 

reduce overhead while preserving tenant-level performance 

characteristics. This is directly relevant to the Pool versus Silo 

decision at the vector plane and provides a basis for analyzing 

index footprint and query-time behavior under multi-tenant 

load. 

 

For RAG security, membership inference attacks against 

retrieval corpora and RAG systems are studied in the 

literature [10], [11], [12], including settings where attackers 

attempt to infer whether specific documents are present in the 

retrieval database by probing the system and observing 

outputs. Additional work proposes membership inference 

frameworks for RAG-based systems under black-box and 

grey-box assumptions. These results support treating retrieval 

behavior and response artifacts as part of the attack surface, 

alongside conventional access control. 

 

The gap addressed in this paper is the lack of an integrated, 

end-to-end treatment that aligns three elements in a single 

engineering framework:  

1) A plane-based isolation taxonomy covering data, 

vector, orchestration, and LLM concerns.  
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2) A threat model mapped to concrete enforcement 

points in a microservice RAG architecture.  

3) A repeatable evaluation methodology for comparing 

Silo, Pool, and Bridge patterns across leakage 

testing, noisy-neighbor effects, cost-per-query 

decomposition, and operational overhead. 

 

3. Isolation Taxonomy across Four Planes 
Multi-tenant RAG isolation is an end-to-end property. It 

must hold across every component that can influence retrieval 

results, prompt construction, and generated output. Treating 

isolation as a single database setting or a single gateway 

check is insufficient because RAG systems [1] introduce 

additional state and decision points, including embeddings, 

vector indices, reranking, and context assembly. To make 

requirements explicit and testable, this section defines a four-

plane isolation taxonomy. Each plane represents a category of 

resources and operations where tenant separation must be 

maintained, and where specific failure modes tend to appear 

in production SaaS deployments. 

 

3.1. Isolation Planes Definition 

3.1.1. Data Plane 

The data plane covers persistence and access of tenant 

documents, derived chunks, and authoritative metadata, 

including access control attributes and lineage. Isolation at 

this plane determines whether tenant data is separated through 

dedicated storage boundaries or through logical scoping in 

shared stores. In a store-per-tenant model, each tenant is 

assigned a dedicated database, bucket, container, or 

equivalent boundary. This reduces blast radius and simplifies 

some audits, but it increases operational overhead and can 

duplicate baseline capacity. In a shared-store model [9], 

multiple tenants share the same storage system and isolation 

relies on a tenant discriminator plus authorization policies that 

are applied on every access path. 

 

Chunking introduces a practical requirement that is easy 

to miss. Retrieved units are typically chunks, not whole 

documents, so chunks must carry tenant identity and 

authorization-relevant metadata end-to-end. If chunk 

payloads and chunk metadata are stored in different systems, 

the architecture must define which system is the source of 

truth for enforcement, and how consistency is maintained 

under updates and deletions. 

 

Authorization patterns at this plane are commonly row-

level for relational stores [20] and object-level for document 

and object stores. Row-level approaches can bind access to 

session context or database roles, while object-level checks 

often execute in a storage adapter or policy service. 

Encryption boundaries also belong in the data plane. Per-

tenant keys reduce the impact of key compromise for certain 

threat scenarios. Shared keys with per-tenant derivation can 

reduce key management overhead, but increase reliance on 

correct derivation, rotation, and correct use across all 

services. 

 

 Common data plane failure modes are operational and 

consistency-related. Examples include missing tenant scoping 

predicates, stale ACL state after permission changes, and 

inconsistent metadata between the document store and the 

retrieval metadata store. These failures are high impact in 

RAG because they can directly affect which chunks become 

eligible for retrieval and prompt inclusion. 

 

3.1.2. Vector Plane 

The vector plane covers embeddings, vector persistence, 

index organization, and similarity search behavior under 

tenant scoping. Isolation choices at this plane have strong cost 

and performance implications because vector indices are 

often memory intensive and retrieval latency sensitive. The 

primary architectural decision is between per-tenant indices 

and shared indices with tenant-aware filtering [8]. Per-tenant 

indices reduce reliance on query-time filtering for isolation 

and can simplify correctness validation, but they increase 

index duplication and operational work as tenant counts grow. 

Shared indices improve resource sharing and can reduce 

baseline memory footprint, but place strict requirements on 

filter correctness, filter placement in the query path, and 

validation of results before context assembly. 

 

Indexing mechanisms influence performance under 

scoping. For example, graph-based [4] and cluster-based 

ANN approaches reduce search cost by pruning the candidate 

set. Tenant scoping can be implemented by selecting the 

correct tenant-specific index or partition, or by filtering 

within a shared index [6], [7]. From an isolation perspective, 

the retrieval path must not return cross-tenant candidates to 

orchestration. From a performance perspective, tenant 

scoping must not destabilize tail latency. This risk is highest 

when large and small tenants share the same retrieval 

infrastructure and compete for the same index and compute 

resources. 

 

Partitioning strategies include namespace separation [24], 

collection separation [25], shard-level separation, and key-

based segmentation. Each strategy shifts the default isolation 

properties and changes operational scaling behavior. The 

embedding pipeline also introduces isolation considerations 

because embedding generation is often centralized for 

efficiency. If embedding computation and caching are shared, 

boundaries must prevent incorrect reuse across tenants and 

must ensure that tenant context is not lost during 

asynchronous ingestion. 

 

A recurring vector plane failure mode is late or 

inconsistent filtering. When tenant filters are applied only 

after a broad candidate set is generated, cross-tenant vectors 

may be processed before being discarded, which increases 

side-channel exposure risk. Post-filtering can also increase 

latency substantially when a tenant's vectors are a small 

fraction of a shared index because the system may scan many 

irrelevant candidates before collecting enough tenant-scoped 

results [7]. This complicates correctness validation and 

increases the importance of defense-in-depth checks in 

orchestration before any retrieved content can influence 

prompt construction. 
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3.1.3. Orchestration Plane 

The orchestration plane spans the services that coordinate 

ingestion workflows, query processing, retrieval, reranking, 

and context assembly. Isolation at this plane depends on 

tenant identity being a first-class control signal. Tenant 

identity is established at the authentication boundary, 

typically at an API gateway, and must propagate through 

every downstream service call, message, and asynchronous 

job that can influence retrieval or prompt assembly. 

 

Policy enforcement point placement must be explicit. 

Enforcement often occurs at the gateway for authentication 

and coarse authorization, at the retrieval service for query 

scoping and validation, at the vector query layer for tenant-

aware search constraints, and at storage adapters for payload 

fetch authorization. Defense in depth is essential because a 

single missed check in a pooled system can lead to cross-

tenant retrieval or context mixing. 

 

Query routing and scoping are core orchestration 

responsibilities. In per-tenant index designs, routing must 

select the correct tenant index or partition deterministically. 

In shared-index designs, routing must attach the correct tenant 

filter and ensure that the filter is applied on all query variants, 

including hybrid retrieval and reranking paths. Context 

assembly is the highest sensitivity step because it determines 

what enters the model prompt. Context assembly rules must 

require provenance validation, must reject any chunk that 

fails tenant or principal authorization checks, and must ensure 

that only authorized chunks can be included in the final 

context window. 

 

A deterministic audit record is required for validation and 

incident response. At minimum, it should capture tenant 

identity, authorization context, filters applied, retrieved item 

identifiers, and which items were included in the final 

prompt. 

 

3.1.4. LLM Plane 

The LLM plane covers prompt construction, inference 

execution, response filtering, and telemetry. Multi-tenancy at 

this plane is typically implemented through policy scoping 

rather than physical separation, although tenant-dedicated 

endpoints are possible in high-isolation deployments. Shared 

model endpoints can be cost efficient, but require strict 

controls on tenant-specific prompt templates, tool access, 

quota enforcement, and logging practices. Tenant-dedicated 

endpoints reduce shared resource contention, but increase 

operational overhead and can complicate model lifecycle 

management across a broad tenant population. 

 

Prompt construction isolation requires that system 

prompts, tool configurations, and retrieved context are scoped 

to the tenant and the requesting principal's permissions. Rate 

limiting, quotas, and fair scheduling [18] belong in this plane 

because inference capacity is often a dominant contributor to 

tail latency and cost-per-query. Response filtering and tenant-

scoped output validation are required to reduce the risk of 

unintended disclosure through generated output artifacts. 

Logging and redaction requirements must be explicit because 

prompts and retrieved context can contain sensitive tenant 

data, and shared operational tooling can become an indirect 

exposure path if logs are not properly scoped and protected. 

Inference-time isolation extends beyond prompt content 

to execution state. In shared serving deployments, key-value 

(KV) cache optimizations [17] such as prefix sharing and 

cache reuse can introduce side channels [16]. If cache entries 

are not tenant-partitioned, one tenant may infer information 

about another tenant's prompt through cache timing or hit-rate 

behavior [16]. This risk is most relevant when multiple 

tenants share the same model serving stack. 

 

3.2. Pattern Definitions 

3.2.1. Silo Pattern 

The silo pattern dedicates resources per tenant across all 

four planes for components that process tenant content. A 

shared control plane that handles tenant onboarding, 

configuration distribution, and operational tooling, but never 

processes tenant documents or tenant queries, may still be 

used to reduce operational overhead. Document and metadata 

storage are tenant-scoped. Embedding indices and vector 

storage are tenant-scoped. Orchestration is either tenant-

dedicated or implemented with strict tenant-specific routing 

and state boundaries. Model inference can be tenant-

dedicated or strongly partitioned through policy and resource 

controls. The main advantage is reduced blast radius and 

reduced dependence on correct runtime filtering for isolation. 

The main trade-offs are higher baseline cost due to duplicated 

infrastructure and higher operational overhead due to per-

tenant lifecycle management, scaling, and configuration. 

 

3.2.2. III.B.2. Pool Pattern 

The Pool pattern shares infrastructure across tenants and 

enforces isolation through tenant discriminators, authorization 

checks, and runtime filtering. The document store, vector 

index, orchestration services, and model endpoints may all be 

shared. Isolation is therefore primarily logical and depends on 

the correctness of identity propagation and enforcement at 

multiple checkpoints. Pool can offer strong efficiency and 

simplified infrastructure, but it increases the consequences of 

misconfiguration and tends to expose tenants to higher noisy-

neighbor risk [18] because retrieval and inference resources 

are contended. In Pool deployments, defense-in-depth 

validation, provenance-based context assembly, and auditable 

enforcement are mandatory controls, not optional 

enhancements. 

 

3.2.3. Bridge Pattern 

The Bridge pattern is a hybrid that combines pooled 

services with selected tenant-scoped components. Typical 

variants include shared orchestration with tenant-scoped 

vector indices, or shared retrieval services with tenant-scoped 

document stores. Bridge is used when Pool is too risky for 

some tenants or workloads and Silo is too costly for the full 

tenant population. Tiering criteria often include regulatory 

requirements, data sensitivity, workload predictability, and 

performance SLO strictness. Because Bridge spans both 

pooled and tenant-scoped boundaries, routing, policy 

enforcement, and auditability must remain consistent across 

tiers. Migration paths must be designed explicitly because 
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moving tenants between tiers can require index rebuilds, key 

management changes, and configuration updates across 

services. 

 

3.3. Pattern Comparison Matrix 

Table I summarizes the three patterns across the four 

planes and key operational dimensions. The matrix is 

intended as a decision aid and as a checklist for evaluation. 

Isolation properties should be treated as expected 

characteristics that still require validation, especially in Pool 

and Bridge configurations where enforcement depends on 

correct propagation and policy placement. 

 

 

 

Table 1:Isolation Models in Multi-Tenant AI Architectures: Comparative Analysis of Silo, Pool, and Bridge 

Approaches

 

4. Threat Model for Multi-Tenant Rag 
This section defines a threat model for multi-tenant RAG 

systems with an emphasis on where isolation breaks in 

practice and how those failures propagate into prompts and 

generated outputs. The intent is not to exhaustively enumerate 

every security issue in distributed systems, but to focus on 

threats that are either unique to RAG [14] or amplified by 

retrieval, embeddings, and context assembly. 

 

4.1. Threat Model Scope and Assumptions 

The protected assets in scope include tenant documents, 

derived chunks, chunk metadata, embeddings, vector indexes, 

prompts, model outputs, logs and traces, and encryption keys. 

Loss of confidentiality is the primary concern because cross-

tenant exposure is the critical failure mode in multi-tenant 

SaaS. Integrity is also in scope because poisoned or 

manipulated content [13] can alter retrieval results and lead to 

incorrect or unsafe responses. 

 

The threat actors considered are a malicious tenant acting 

through legitimate APIs, an external attacker who has 

obtained tenant credentials or can exploit exposed interfaces, 

and an insider with elevated operational access. Adversary 

capabilities range from repeated probing of the retrieval and 

generation interfaces, to content injection via the ingestion 

pipeline, to attempts to exploit misconfigurations in identity 

propagation, routing, filtering, or logging. The model treats 

the adversary as capable of generating large numbers of 

requests and observing system behavior, including response 

content, latency, and error messages, within the limits of SaaS 

rate controls. 

 

Trust boundaries are defined at the API boundary where 

authentication and tenant context are established, at service-

to-service boundaries inside the microservice mesh, at the 

data plane boundary for document and metadata access, at the 

vector database boundary for similarity search, and at the 

LLM endpoint boundary where prompts are submitted and 

outputs are returned. Logging and telemetry pipelines are 

treated as an additional operational boundary because they 

can contain sensitive prompts and retrieved context. 

 

The baseline assumption is that transport is encrypted in 

transit using Transport Layer Security (TLS) and that 

standard cryptographic primitives are not broken. The model 

does not assume perfect correctness in policy configuration or 

perfect correctness in distributed propagation of tenant 

context. Misconfiguration and partial failure are treated as 

realistic, because they are common root causes of multi-

tenant incidents. 

 

Dimension Silo Pool Bridge 

Data plane 

isolation 
Tenant-scoped stores Shared store with tenant scoping Tier-dependent 

Vector plane 

isolation 
Tenant-scoped indices Shared index with filtering 

Often tenant-scoped for high-

isolation tiers 

Orchestration plane 

isolation 

Tenant-dedicated or strongly 

partitioned routing 

Shared services with strict 

identity propagation and 

validation 

Shared services with tier-aware 

routing and controls 

LLM plane 

isolation 

Tenant-dedicated or strongly 

partitioned policies 

Shared endpoint with tenant-

scoped policies 
Tier-dependent 

Primary failure 

mode 

Provisioning and routing errors 

within a tenant boundary 

Filter omission, context mis-

scoping, identity propagation 

defects 

Tier boundary errors and 

inconsistent enforcement across 

tiers 

Blast radius Primarily per tenant Potentially multi-tenant 
Typically bounded to a tier 

population 

Cost drivers 
Infrastructure duplication, per-

tenant index footprint 

Shared index and shared 

inference capacity 

Mixed duplication and shared 

contention 

Operational 

overhead 

High per-tenant lifecycle 

management 

Lower shared operations, higher 

validation burden 
Moderate, plus tier management 

Compliance fit Strongest by default 
Requires strong controls and 

evidence 
Tier-dependent 

TABLE 1. PATTERN COMPARISON MATRIX 
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4.2. Embedding-Space Vulnerabilities 

Embedding-space vulnerabilities arise because retrieval 

depends on similarity search over shared or partially shared 

vector structures. This creates failure modes where the system 

can expose cross-tenant content directly through retrieved 

chunks, or indirectly through observable retrieval behavior 

and output artifacts. OWASP's guidance on generative AI 

security [19] explicitly calls out weaknesses associated with 

vectors and embeddings, which aligns with treating the vector 

plane as part of the attack surface rather than a neutral storage 

layer. 

 

4.2.1. Cross-Tenant Embedding Leakage 

Cross-tenant embedding leakage occurs when similarity 

search returns vectors or chunk identifiers that belong to a 

different tenant than the requester. In pooled deployments, the 

dominant attack vector is a missing, malformed, or bypassed 

tenant filter, or a misrouted tenant identifier that causes a 

query to execute against the wrong namespace, partition, or 

index. A second class of failures appears when filtering is 

applied inconsistently across retrieval variants, such as hybrid 

retrieval, reranking, or fallback paths. 

 

The impact ranges from direct disclosure of content, if 

payload fetch is performed without an additional tenant 

check, to indirect disclosure of document identifiers, titles, or 

metadata if those fields are returned in retrieval results or 

logs. The most useful detection signal is retrieval provenance 

that includes tenant identity and retrieved item identifiers. If a 

retrieval log or trace shows chunk identifiers mapped to a 

different tenant than the request tenant, the system has a 

measurable isolation violation. This is why deterministic 

audit records are treated as part of the isolation model, not a 

monitoring convenience. Additionally, embedding inversion 

attacks [15] show that embeddings can leak substantially 

more than similarity metadata. Under some conditions, 

reconstructed text can be recovered from embeddings with 

meaningful fidelity [15], so embeddings should be treated as 

sensitive tenant data rather than benign derived features. 

 

4.2.2. Membership Inference 

Membership inference in RAG refers to attempts to infer 

whether a target document, or a semantically related 

document, exists in another tenant's retrieval corpus by 

probing the system and observing outputs or retrieval 

behavior. Prior work [10], [11], [12] studies membership 

inference against RAG systems, including black-box and 

grey-box settings, and demonstrates that retrieval behavior 

and downstream outputs can leak information about the 

presence of documents in the underlying corpus. In a multi-

tenant context, this becomes a cross-tenant concern when an 

attacker can influence or observe retrieval outcomes beyond 

its own tenant boundary, or when system-level telemetry and 

error behavior reveal corpus characteristics. 

 

The primary attack vectors include repeated probing with 

semantically targeted queries, observing response differences 

that correlate with retrieval hits, and exploiting confidence 

signals or debugging fields if the system exposes them. Even 

when content is not directly disclosed, corpus membership 

can leak competitive information, such as whether a tenant 

has documents related to a product line, acquisition, or 

incident. 

 

Detection signals include anomalous query patterns, 

repeated near-duplicate queries, and probing workloads that 

sweep a semantic neighborhood. Mitigation is primarily 

architectural and operational. It requires strict tenant scoping, 

strict suppression of cross-tenant retrieval artifacts, careful 

control of debug outputs, rate limits tuned for probing 

resistance, and audit trails sufficient to identify probing 

behavior. 

 

4.2.3. Vector Index Poisoning 

Vector index poisoning [13] occurs when an attacker 

injects crafted content through the ingestion pipeline to 

influence retrieval results, degrade retrieval quality, or cause 

systematic misdirection of responses. In pooled indexes, 

poisoning can also become a cross-tenant integrity issue if 

shared retrieval infrastructure allows poisoned vectors to 

appear in the candidate set for other tenants due to filtering 

errors or shared reranking paths. The direct impact can 

include degraded relevance, denial of service through index 

bloat or retrieval hotspots, and response manipulation if 

poisoned chunks are repeatedly selected into prompts. 

This threat is best addressed with layered controls. 

Ingestion must enforce tenant-scoped authorization, content 

validation, and rate controls. Indexing must ensure that tenant 

scoping is correct and that updates are auditable. Retrieval 

must validate provenance and enforce deny-by-default 

behavior when scope is ambiguous. Operationally, the system 

should support rollbacks or quarantine of recently ingested 

content for a tenant when abnormal retrieval patterns are 

detected. 

 

This subsection focuses on integrity and isolation risks. 

A related availability risk is computational denial of service, 

where adversarial embeddings or documents are crafted to 

increase retrieval cost, expand candidate sets, or degrade 

index performance. These attacks impact tail latency and 

shared resource stability and should be evaluated as part of 

capacity protection and abuse controls. 

 

4.2.4. LLM Serving Side Channels 

In shared inference deployments, optimization 

techniques for KV-cache management [17] can create cross-

tenant leakage paths [16]. Prefix sharing and cache reuse 

improve throughput by avoiding redundant computation for 

common prompt prefixes, but they may allow one tenant to 

infer portions of another tenant's prompt through cache timing 

or hit-rate observation [16]. Mitigations include tenant-

isolated inference sessions, strict cache partitioning, or 

disabling cross-tenant cache reuse. Dedicated model 

endpoints eliminate this vector by construction. 

 

4.3. Data-Plane Vulnerabilities 

Data-plane vulnerabilities often appear as traditional 

authorization failures, but their consequence in RAG is 

amplified because they can propagate into prompts and 
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outputs. Two classes are particularly relevant to multi-tenant 

RAG: retrieval contamination and metadata inference. 

 

4.3.1. Retrieval Contamination 

Retrieval contamination occurs when chunks from the 

wrong tenant, or chunks that the requesting principal is not 

authorized to access, enter the context window used for 

generation. This can happen even if vector retrieval returns 

correct candidates, for example if payload fetch uses a 

different authorization path, if ACL evaluation is inconsistent 

across services, or if asynchronous pipelines produce stale 

permission state. Orchestration bugs, such as race conditions 

around ACL updates or incorrect cache scoping, can also 

cause contamination. 

 

The impact is direct data leakage in generated responses 

and potential regulatory non-compliance, since the prompt 

includes unauthorized content. The most effective defense is 

to treat context assembly as a policy-enforced operation. 

Before any chunk is included in the prompt, the system 

should validate tenant ownership and principal authorization 

using an authoritative policy decision path, and record the 

provenance decision in an audit log. 

 

4.3.2. Metadata Inference 

Metadata inference refers to learning sensitive 

information about another tenant without directly accessing 

its content. Examples include inferring tenant activity levels, 

document counts, update frequency, or query volume. Attack 

vectors include timing analysis, observing resource 

consumption patterns, and exploiting error message 

differences. In multi-tenant systems, metadata leakage can 

occur through shared rate limit behavior, shared queue 

latency, shared index maintenance events, or unscoped 

operational metrics. 

 

The impact is competitive intelligence and usage 

profiling. Mitigation includes scoping operational metrics by 

tenant and access role, reducing high-cardinality exposure in 

shared dashboards, standardizing error responses, and using 

quotas and scheduling policies that reduce observable 

coupling between tenants. 

 

4.3.3. Controls Mapped to Enforcement Points 

Controls are most effective when mapped to explicit 

enforcement points and treated as invariants. Tenant identity 

should be established once at the authentication boundary and 

propagated as immutable request context through service-to-

service calls. In practice, this commonly uses signed tokens or 

signed headers with strict validation at each hop. Identity 

propagation must also cover asynchronous ingestion paths, 

including job queues and batch processors, because ingestion 

is a write path into the retrieval corpus. 

 

Authorization checks should execute at multiple layers 

[9]. The API gateway should enforce authentication and 

coarse access controls. The retrieval service should enforce 

tenant-scoped query construction and validate the scope of 

results. Storage adapters should enforce tenant and principal 

authorization on payload fetch, even if vector retrieval 

already applied filters. Where supported, database-level 

policies such as row-level security [20] can provide an 

additional layer of enforcement, but they should be treated as 

defense-in-depth rather than the only control. Defense-in-

depth is widely recommended [9], [14] because single 

enforcement points are vulnerable to misconfiguration, and 

redundant checks reduce the likelihood that one defect results 

in cross-tenant exposure. 

 

Vector filtering must be designed so that tenant scope is 

not optional. When possible, filters should constrain 

candidate generation [6], [7], not only filter after scoring. 

When filters cannot be applied early due to datastore 

limitations, post-filter validation must be strict and must fail 

closed. Fail-closed behavior prioritizes isolation over 

availability. Operators should monitor rejection rates, 

configure alerting thresholds, and define fallback policies or 

graceful degradation paths for transient identity propagation 

failures. Any retrieved item that does not match tenant scope 

should be rejected before context assembly, and the event 

should be logged as a policy violation signal. Output controls 

reduce exposure through generated text and telemetry. These 

include redaction policies, citation and provenance 

constraints, and response policy checks aligned to tenant 

configuration. Logs and traces must be scoped, access-

controlled, and redacted to prevent operational exposure of 

prompts and retrieved context. Audit logging should capture 

retrieval provenance, policy decisions, and trace identifiers so 

that violations can be detected and reconstructed. 

 

4.4. Pattern Resilience Analysis 

Resilience differs across Silo, Pool, and Bridge patterns 

primarily through blast radius and dependence on correct 

runtime filtering. Silo reduces cross-tenant exposure risk by 

limiting shared data and shared indexes, but it still requires 

correct identity and authorization within each tenant 

boundary. Pool has the highest dependence on correct tenant 

context propagation, correct filtering, and strict context 

assembly validation. Bridge inherits both modes. It can 

reduce blast radius for tenants placed in higher isolation tiers, 

but it introduces tier boundary risks where routing, 

enforcement, and auditability must remain consistent across 

pooled and tenant-scoped components. 

 

Table II summarizes expected resilience properties. The 

entries are expressed as expected characteristics that still 

require validation and continuous testing.  
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Table 2: Threat Resilience by Isolation Pattern 

 

5. Kubernetes-Native Reference Architecture 
This section specifies a Kubernetes-native reference 

architecture for multi-tenant RAG that supports Silo, Pool, 

and Bridge isolation patterns. The design goal is to make 

tenant isolation enforceable and auditable by placing policy 

checks at multiple points in both ingestion and retrieval paths, 

and by treating tenant identity as immutable request context 

rather than an optional application field. 

 

5.1. Architecture Overview 

The architecture decomposes the system into a small set 

of microservices with explicit responsibilities. The ingestion 

service accepts documents and produces chunk payloads plus 

metadata. The embedding service computes embeddings for 

chunks and writes vectors with tenant-scoped metadata. The 

indexer manages vector index updates and compaction. The 

retrieval service executes tenant-scoped similarity search and 

optional reranking, and returns provenance-tagged candidates. 

The prompt builder performs context assembly and constructs 

the final prompt based on tenant policy. The LLM gateway 

invokes the model endpoint and applies output controls, 

including redaction and audit logging. A policy service 

provides authorization decisions and policy configuration, 

while a tenant registry resolves tenant tier, routing targets, 

and keying material references. 

 

Data is persisted in three logical stores. The document 

store retains raw documents and chunk payloads. The 

metadata store retains authoritative chunk metadata, including 

tenant ownership, ACL attributes, lineage, and timestamps. 

The vector database stores embeddings and supports 

similarity search with tenant scoping. These stores can be 

deployed as tenant-dedicated or shared depending on the 

isolation pattern. A shared control plane supports tenant 

lifecycle operations through a tenant registry, configuration 

service, and secrets management system. 

 

Tenant identity is a first-class control signal. It is 

established at the authentication boundary and propagated 

end-to-end as immutable context [9]. Services do not accept 

tenant identity from untrusted request fields. They accept only 

a validated tenant context derived from authenticated 

credentials, then enforce scoping at every data access and 

retrieval action. This design aligns with the threat model [14] 

by reducing filter omission risk, limiting blast radius, and 

enabling deterministic auditing. 

 

A practical way to keep the design verifiable is to define 

explicit enforcement points and require fail-closed behavior. 

If tenant context is missing, inconsistent, or unverifiable, the 

request is rejected before any retrieval or payload fetch 

occurs. Fail-closed behavior prioritizes isolation over 

availability. Operators should monitor rejection rates, 

configure alerting thresholds, and define fallback policies or 

graceful degradation paths for transient identity propagation 

failures. If retrieved candidates fail provenance validation, 

they are rejected and the event is recorded as a policy 

violation signal. 

 

5.2. Ingestion Path 

The ingestion path is a write path into the retrieval corpus 

and must enforce tenant ownership, access control metadata 

integrity, and auditability. In multi-tenant deployments [9], 

ingestion is also a common source of cross-tenant 

contamination because content is transformed into chunks and 

then indexed for later retrieval. 

 

5.2.1. Document Intake Service 

The document intake service is the entry point for tenant 

content. It authenticates the caller, resolves tenant identity, 

and validates that the caller is authorized to ingest content for 

that tenant. It then performs document normalization and 

chunking, and attaches required metadata to each chunk. The 

minimum metadata set includes tenant ID, document ID, 

chunk ID, ACL attributes, lineage identifiers, and timestamps 

for creation and update. The service routes payloads and 

metadata to the correct storage boundary based on the tenant's 

isolation tier. In Silo, routing targets tenant-dedicated stores. 

In Pool, routing targets shared stores with tenant 

discriminators. In Bridge, routing targets are tier-specific and 

must be derived from the tenant registry rather than 

configuration embedded in the client. 

 

 

 

Threat Silo Pool Bridge 

Cross-tenant 

embedding leakage 

Lower likelihood due to 

tenant-scoped indices and 

stores 

Higher likelihood if filters or 

routing fail 

Tier-dependent, reduced for 

tenant-scoped vector tiers 

Membership 

inference risk 

Reduced cross-tenant 

exposure paths, still requires 

output and telemetry controls 

Higher risk if retrieval artifacts or 

behavior leak across tenants 

Tier-dependent, shared 

inference and telemetry can 

dominate 

Vector index 

poisoning 

Contained to a tenant 

boundary when ingestion and 

indexing are tenant-scoped 

Can affect shared infrastructure and 

shared quality signals, cross-tenant 

impact if scoping fails 

Typically contained within tier, 

but shared services can 

propagate effects 

Retrieval 

contamination 

Primarily within-tenant if 

boundaries are correct 

Cross-tenant impact possible if 

orchestration validation is weak 

Tier-dependent, boundary and 

routing correctness is critical 

Metadata inference 
Reduced coupling between 

tenants 

More coupling through shared 

resources unless mitigated 

Reduced for isolated tiers, 

shared components still leak 

metadata without controls 
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5.2.2. Embedding Generation Service 

The embedding service accepts tenant-scoped chunk 

references and computes embeddings. It must treat tenant 

context as mandatory input and must not generate or cache 

embeddings in a way that allows cross-tenant reuse. If 

batching is used for efficiency, batching must not merge 

tenant contexts in a way that weakens auditability or causes 

ambiguous attribution. Each embedding write must include 

tenant ID and chunk identifiers that allow downstream 

provenance checks to validate ownership. The embedding 

service should write embeddings to the vector DB and write 

embedding metadata to the metadata store, enabling later 

verification that a retrieved vector corresponds to an 

authorized chunk. 

 

5.2.3. Vector Indexing Service 

The indexing service manages index updates, 

compaction, and any background maintenance that affects 

retrieval behavior. It selects the correct index boundary based 

on the isolation pattern. In Silo, each tenant has a dedicated 

index boundary. In Pool, tenants share index infrastructure 

and rely on filtering and validation. In Bridge, index 

boundaries are tier-specific, and the indexer must enforce that 

vectors are written only into the tenant's permitted tier. Index 

update operations must be auditable and reversible in the 

operational sense. At minimum, indexer actions should be 

traced with tenant context, index identifiers, and the source 

batch lineage so that poison or contamination events [13] can 

be investigated and scoped. 

 

5.3. Retrieval Path 

 The retrieval path is the highest sensitivity path because 

it selects content that will be inserted into the prompt. 

Isolation failures at this stage can lead to cross-tenant 

retrieval leakage and retrieval contamination [14]. 

 

5.3.1. Query Gateway 

The query gateway authenticates the request and 

constructs an immutable tenant context from validated 

credentials, such as JSON Web Token (JWT) claims or API 

key mappings. It applies per-tenant rate limits and quotas to 

reduce noisy-neighbor effects [18] and probing risk [10], 

[11], [12], and it normalizes request inputs to reduce injection 

and parsing ambiguity. The gateway also enforces coarse 

authorization, such as whether the principal can invoke 

retrieval for a given tenant and which collections or 

knowledge sources are in scope. The gateway emits a trace 

identifier that is propagated through the full request path to 

support deterministic auditing. 

 

5.3.2. Retriever Service 

The retriever service performs tenant-scoped search 

against the vector database and any optional sparse index. 

Tenant scoping is applied before similarity search when the 

datastore query model supports it [6], [7]. If pre-filtering is 

not available, the service performs post-filter validation and 

rejects any cross-tenant candidates. Results are forwarded to 

context assembly only after tenant ownership and 

authorization constraints are satisfied. The retriever should 

return candidates together with provenance fields required for 

downstream validation, including chunk ID, document ID, 

tenant ID, and the filter predicate applied. A defense-in-depth 

measure [9], [14] is to perform cross-tenant result detection as 

a separate validation step, where the retriever explicitly 

checks that the returned candidate set matches tenant 

ownership and logs any mismatch as a policy violation signal. 

 

If reranking is used, reranking must not weaken scoping 

guarantees. The reranker should operate only on tenant-

validated candidates and should not introduce additional 

retrieval calls that bypass the tenant filter path. If the reranker 

relies on external models, the request payloads must be 

treated as sensitive and must follow the LLM plane logging 

and redaction constraints. 

 

5.3.3. Context Assembly 

Context assembly is responsible for constructing the 

context window that will condition generation. It is the final 

gate before the model sees any retrieved content, so it must 

enforce tenant and principal authorization deterministically. 

Context assembly should verify chunk provenance against the 

metadata store [20], reject any chunk that fails tenant 

ownership or ACL checks, and record the provenance 

decision trace. Context size management should be tier-

aware. Bridge deployments often allocate larger context 

windows or higher retrieval depth to certain tiers, but this 

must be driven by tenant policy rather than request-controlled 

parameters. 

 

5.3.4. LLM Gateway 

The LLM gateway constructs the final prompt using 

tenant-scoped system prompts, tenant-specific tool 

configuration, and the validated context window. It enforces 

per-tenant quotas for inference and token usage [18], and 

applies response post-processing such as redaction, policy 

checks, and citation formatting when enabled. It must 

produce audit logs that associate the response with the tenant 

context, the provenance identifiers of included chunks, and 

the policy checks applied. Logging must be configured to 

avoid storing raw prompts or retrieved context unless 

required for debugging under tightly controlled access paths. 

 

5.4. Kubernetes Implementation Patterns 

The architecture maps directly onto Kubernetes 

primitives [22] so that isolation and governance can be 

enforced at the platform layer in addition to application logic. 

The goal is not to claim Kubernetes alone provides tenant 

isolation, but to use it to reduce blast radius, constrain 

communication paths, and make misconfiguration harder. 

 

5.4.1. Namespace Strategy 

In Silo, namespace-per-tenant is used to separate 

workloads, secrets, service accounts, and network policy 

scopes. In Pool, a shared namespace is used for shared 

services, and tenant isolation is enforced primarily through 

request context and data-plane controls, with Kubernetes 

labels used for operational grouping rather than as the 

primary security boundary. In Bridge, namespaces are 

organized by tier, with tenant-scoped resources placed in 
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tenant namespaces or tier-specific namespaces, while pooled 

services remain shared. 

 

5.4.2. Resource Controls 

Resource controls are required to manage noisy-neighbor 

effects [18] and prevent a single tenant from exhausting 

shared compute. ResourceQuota and LimitRange define per-

namespace limits for CPU, memory, and object counts. 

PriorityClass can ensure retrieval pods are scheduled 

preferentially and are less likely to be preempted during 

resource contention, though it influences scheduling and 

preemption rather than runtime resource allocation. These 

controls should be tier-aware in Bridge patterns and should be 

aligned with the evaluation methodology for tail latency and 

fairness. 

 

5.4.3. Network Policies 

NetworkPolicy rules [22] constrain east-west traffic and 

reduce cross-namespace communication by default. In Silo 

and Bridge, policies should restrict traffic so tenant 

namespaces can communicate only with shared platform 

services that are explicitly required. Where a service mesh is 

used, mutual TLS and identity-based routing can strengthen 

service-to-service authentication and improve observability, 

but it must be configured to preserve tenant context 

propagation and to avoid leaking sensitive headers into logs 

or traces. NetworkPolicy enforces isolation at layers 3 and 4. 

It does not validate application-layer tenant context, so tenant 

scoping and authorization enforcement remain required in the 

services and data access layers. 

 

5.4.4. Policy Enforcement 

Admission control policies can prevent unsafe 

configurations from entering the cluster. Open Policy Agent 

(OPA) Gatekeeper [23] can enforce that workloads include 

required labels, that privileged pods are disallowed, and that 

only approved network policy patterns are used. For multi-

tenant RAG, a practical admission policy is to enforce the 

presence and correctness of tenant and tier labels on tenant-

scoped resources, and to ensure that secrets and service 

accounts are not shared across tenant namespaces in Silo 

configurations. Audit logging should capture admission 

decisions so platform-level violations can be correlated with 

application-level audit trails. 

 

Table 3: Enforcement Point Checklist 

 

5.5. Observability and Auditability 

Observability is part of the isolation story because it 

enables detection and proof of enforcement. Distributed 

tracing should provide an end-to-end trace from the API 

gateway through retrieval and context assembly to the LLM 

gateway, with tenant identity represented as controlled 

metadata that is not exposed to unprivileged operators. 

Metrics should be emitted per tenant and per tier for latency 

percentiles, error rates, filter rejection rates, and queueing 

delays. Retrieval recall proxies, such as hit rates at top-k after 

filtering and reranking acceptance rates, are useful for 

performance diagnosis but must be scoped and access-

controlled to avoid metadata inference [14]. Logs must be 

designed for least exposure. The system should log retrieval 

provenance identifiers and policy decisions rather than raw 

chunk text. Where prompt logging is necessary for 

debugging, logs should be redacted and protected with strict 

operational access controls. Audit logs should capture the 

minimal set needed to reconstruct the decision path for a 

request, including tenant context, policy decision identifiers, 

retrieved chunk identifiers, and trace IDs. 

 

6. Evaluation Methodology 
This section defines a repeatable evaluation methodology 

for comparing Silo, Pool, and Bridge patterns across isolation 

strength, performance under contention, cost-per-query, and 

operational overhead. The goal is to measure properties that 

matter to SaaS architects and that map directly to the 

enforcement points and failure modes defined in Sections III 

to V. The methodology is designed to be implementable in a 

Kubernetes testbed with deterministic datasets and controlled 

workloads so that results can be reproduced and compared 

across pattern variants. 

 

6.1. Metrics Definition 

Metrics are defined so they can be computed from 

recorded traces and logs without relying on subjective 

judgment. Each metric is measured for both retrieval-only and 

end-to-end request paths, because noisy-neighbor behavior 

[18] often appears in the slowest shared component, which 

may differ across patterns. 

 

6.1.1. Leakage Rate (Isolation Strength) 

Leakage is measured using two metrics that separate 

retrieval-path violations from end-to-end isolation failures. 

The cross-tenant candidate-return rate is the fraction of 

adversarial retrieval attempts where the vector search returns 

at least one cross-tenant candidate prior to any downstream 

filtering. The prompt contamination rate is the fraction of 

adversarial attempts where a cross-tenant chunk appears in 

the final context assembled for the model. The candidate-

return rate captures retrieval-path violations and side-channel 

exposure risk, while the prompt contamination rate captures 

the most severe end-to-end failure. Both metrics should target 

zero. 

 

Enforcement Point Identity Validation Tenant Scoping ACL Check Provenance Validation Logging Required 

Query Gateway Required Required Coarse N/A Trace ID emission 

Retriever Service Verify context Filter injection N/A Candidate validation Filter decisions 

Storage Adapter Verify context Required Required N/A Access decisions 

Context Assembly Verify context Required Required Required Inclusion decisions 

LLM Gateway Verify context Required Policy check Chunk provenance Full audit trail 
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Leakage is detected by validating retrieved candidate 

identifiers against an authoritative mapping in the metadata 

store. The check is performed before context assembly, and 

again after payload fetch, to distinguish vector-layer leakage 

from payload-layer authorization failures. A request is 

counted as leaked if any returned candidate violates tenant 

ownership, even if the candidate is later filtered out, because 

the event indicates an isolation failure in the retrieval path. 

Assertions should verify that required scoping constraints 

were applied at each enforcement point [14], for example that 

tenant filters were present in vector queries and that storage 

fetches executed with tenant-scoped authorization context. 

 

6.1.2. Latency Under Mixed Workloads (Noisy-Neighbor 

Effects) 

Noisy-neighbor effects [18] are measured using latency 

percentiles under controlled mixed-tenant load. The primary 

metrics are p50 and p95 latency for retrieval and for end-to-

end response. Latency should be decomposed into gateway 

processing, vector search, reranking if enabled, context 

assembly, and model inference to identify which component 

dominates tail behavior. The workload includes multiple 

tenants with different load profiles to simulate contention. A 

high-load tenant is driven to a sustained target throughput 

while one or more co-tenants operate at low and moderate 

throughput. Workload profiles include uniform load, bursty 

load with short spikes, and skewed distributions where one 

tenant contributes the majority of requests. A noisy-neighbor 

index can be defined as the relative degradation of a low-load 

tenant's p95 latency when the high-load tenant is active, 

compared to the low-load tenant's p95 latency in isolation 

under the same request rate. This metric is computed per 

pattern and per tier in Bridge configurations to quantify 

isolation effectiveness for performance, not only for security. 

 

6.1.3. Cost-Per-Query Decomposition 

Cost-per-query is decomposed so architects can attribute 

cost to specific pipeline stages. The cost model includes 

compute cost for embedding generation on ingestion, vector 

search and orchestration on retrieval, and LLM inference on 

response generation. Storage cost includes document storage, 

metadata storage, and vector index footprint. The index 

footprint component should explicitly account for memory-

resident structures when applicable [4], [5], [8], because that 

is often a dominant cost driver for high-performance 

Approximate Nearest Neighbor (ANN) indexes. 

 

A practical cost-per-query estimate is computed as 

monthly infrastructure cost divided by monthly query 

volume, with ingestion cost either amortized by ingestion 

volume or reported separately. The model should include 

pattern-specific overhead such as duplicated control plane 

components in Silo, shared networking and observability 

overhead in Pool, and tier management overhead in Bridge. 

The objective is not to produce a universal cloud bill, but to 

produce a comparable cost decomposition across patterns 

under the same workload and capacity targets. 

 

For planning purposes, end-to-end cost per query can 

vary by orders of magnitude, often ranging from roughly 

$0.01 to $1.00 depending on model selection, context 

window size, retrieval depth, and workload shape. In many 

deployments, LLM inference dominates variable cost, while 

vector index footprint drives fixed monthly cost. For 

example, storing a single 768-dimensional float32 embedding 

requires about 3 KB, so a 10 million-vector corpus implies on 

the order of tens of gigabytes before accounting for 

approximate nearest neighbor index overhead [4], [5], 

replication, and metadata. 

 

Absolute cost magnitudes are deployment-specific and 

should be measured using the cost model and workload 

defined in this section. In many deployments, model 

inference dominates variable cost, while vector index 

footprint and memory provisioning dominate fixed cost, but 

the balance depends on corpus size, retrieval configuration, 

and token budgets. 

 

6.1.4. Operational Overhead 

Operational overhead is measured as the effort and time 

required to onboard and operate tenants under each pattern. 

Tenant onboarding time is defined as provisioning latency 

from an onboarding request to a tenant being able to ingest 

documents and serve queries with policy enforcement active. 

Deployment complexity can be measured by counting distinct 

deployments, configuration objects, and secret objects 

required per tenant or per tier, and by identifying which 

objects must be customized per tenant. Maintenance burden 

includes routine upgrades, scaling actions, key rotation, index 

rebuilds, and policy changes such as ACL updates. 

Automation potential is measured as the proportion of these 

actions that can be executed through deterministic automation 

without manual steps. This metric is particularly relevant for 

Silo and Bridge patterns where lifecycle operations scale with 

tenant count. 

 

Table 2: Metric Definitions & Computation Sources 

Metric Definition Data Source Ground Truth Required 

Leakage Rate 
Fraction of adversarial queries returning 

cross-tenant candidates 

Retrieval logs, 

provenance traces 

Chunk-to-tenant ownership 

mapping 

p50/p95 Latency 
Latency percentiles for retrieval and end-to-

end response 
Distributed traces N/A 

Noisy-Neighbor 

Index 

Relative p95 degradation under co-tenant 

load vs isolation 

Traces with tenant 

attribution 
Baseline measurements 

Cost-Per-Query 
Monthly infrastructure cost / monthly query 

volume 

Resource metrics, billing 

data 
Capacity targets 
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6.2. Test Environment Specification 

The test environment is specified so measurements are 

comparable across patterns. The system runs on a Kubernetes 

cluster [22] with fixed node allocation and fixed resource 

limits per service, unless the scenario explicitly tests 

autoscaling behavior. Node types, CPU and memory 

allocations, and storage classes should be held constant across 

patterns. Each pattern variant should be deployed using the 

same service implementations and configuration structure, 

differing only in isolation configuration such as namespace 

strategy, index boundaries, and policy placement. 

 

The evaluation should use a reproducible vector database 

deployment, and the methodology should support alternative 

backends such as a relational vector store [21] or a dedicated 

vector database [24], [25]. Embedding model selection should 

favor open-source models to support deterministic 

benchmarking. LLM serving should be configured locally 

when possible to reduce variability from external API rate 

limits and service changes. Tenant simulation parameters 

include number of tenants, corpus size per tenant, chunk size 

distribution, and ACL complexity. These parameters must be 

recorded as part of the benchmark artifacts. 

 

6.3. Workload Design 

The workload dataset is constructed to control tenant 

separation while allowing realistic retrieval behavior. Tenant 

corpora should be primarily disjoint, with optional controlled 

overlap scenarios where similar topics appear across tenants 

without sharing identical documents. This allows testing 

whether semantic similarity can expose cross-tenant leakage 

when scoping is incorrect. ACL variations should be included 

so that authorization is not equivalent to tenant ownership. 

For example, within a tenant, some documents can be 

restricted to specific roles to validate principal-scoped 

enforcement during context assembly. 

 

The query mix should include baseline queries intended 

to retrieve relevant chunks, burst patterns that stress queues 

and shared caches, and heavy-versus-small tenant mixes that 

expose contention. Adversarial queries [10], [11], [12] are 

included specifically for leakage testing and should be tagged 

so they can be analyzed separately from baseline traffic. All 

queries and expected ownership assertions should be 

generated deterministically from the dataset so that leakage 

checks are repeatable. 

 

6.4. Evaluation Scenarios 

Isolation validation scenarios execute adversarial 

retrieval tests for each pattern, including explicit filter bypass 

attempts, boundary-condition queries that target scoping 

weaknesses, and misrouting tests that validate fail-closed 

behavior when tenant context is inconsistent [14]. Expected 

outcomes should be stated as assertions rather than numeric 

results, for example that no cross-tenant candidate identifiers 

are returned, and that any violation triggers a policy event and 

request rejection. 

 

Performance characterization scenarios measure baseline 

latency for each pattern under single-tenant load and then 

measure mixed-tenant degradation under controlled 

contention [18]. The methodology should include runs with 

and without background ingestion and indexing activity, 

because indexing can materially affect tail latency in pooled 

architectures [8]. Scalability scenarios increase tenant count 

and corpus size while holding per-tenant request rate constant 

to observe whether shared components exhibit superlinear 

degradation. 

 

Cost analysis scenarios compute cost-per-query 

decomposition using measured resource consumption and 

recorded index footprint. A break-even analysis framework 

compares patterns as tenant count and utilization change. 

Sensitivity analysis varies tenant count, corpus size, query 

rate, and context window size, because these parameters shift 

which pipeline stage dominates cost and which isolation 

boundary becomes a bottleneck. 

 

Table 3: Evaluation Scenario Matrix 

 

6.5. Benchmark Harness and Repeatability 

The benchmark harness consists of a traffic generator 

that can emulate multiple tenants, a tenant identity injection 

mechanism that produces authenticated requests for each 

tenant and principal role, and an instrumentation layer that 

collects traces, logs, and metrics. The harness should record 

the exact deployment configuration, including Kubernetes 

manifests, policy definitions, and datastore configuration, as 

versioned artifacts. Datasets should be deterministic, and 

evaluation prompts should be fixed so that changes in results 

are attributable to architecture changes rather than prompt 

drift. 

 

Validation checks should run as part of every benchmark 

execution. These include assertions that tenant filters are 

present in vector queries, that storage fetches are tenant-

Onboarding Time Provisioning latency to operational readiness 
Automation logs, 

timestamps 
N/A 

Scenario Workload Profile Patterns Compared Metrics Collected 

Isolation Validation Adversarial queries Silo, Pool, Bridge Leakage rate, policy violations 

Baseline Performance Single tenant, steady state Silo, Pool, Bridge p50/p95 latency 

Noisy-Neighbor Mixed load, high-load tenant Pool, Bridge Noisy-neighbor index 

Scalability Increasing tenant count Silo, Pool, Bridge Latency, throughput 

Cost Analysis Fixed workload, varying scale Silo, Pool, Bridge Cost-per-query decomposition 

Break-Even Varying tenant count Silo vs Pool Cost crossover point 
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scoped, that context assembly performs provenance 

validation, and that audit logs contain required identifiers and 

policy decision traces. These checks ensure that a benchmark 

run cannot silently pass with missing enforcement [14], which 

is widely recommended when comparing isolation patterns 

where correctness depends on configuration. 

 

This paper specifies an evaluation methodology rather 

than reporting empirical benchmark results. The metrics, 

scenarios, and benchmark harness are defined to enable 

reproducible comparison of isolation patterns, but execution 

and measurement on representative deployments remains 

future work. Any discussion of tradeoffs in later sections is 

derived from architectural analysis and documented platform 

behavior rather than measured performance data. Independent 

empirical validation using the methodology defined in this 

section is encouraged. 

 

7. Discussion 
This section interprets the implications of the isolation 

taxonomy, threat model, and reference architecture for real 

SaaS deployments. The intent is to translate the analysis into 

actionable selection guidance, highlight minimum controls 

required for safe pooling, and clarify where conclusions 

depend on assumptions or environment-specific constraints. 

 

7.1. Pattern Selection Decision Framework 

Pattern selection should be driven by explicit 

requirements rather than defaulting to whichever architecture 

is easiest to deploy. The primary criteria are regulatory 

requirements, tenant trust level, workload variability, cost 

constraints, and service-level objectives for latency and 

availability. Regulatory constraints typically set the minimum 

acceptable isolation boundary for the data plane and, in some 

cases, constrain where inference and telemetry can be 

processed. Tenant trust level matters when tenants can 

actively probe the system [10], [11], [12] or upload untrusted 

content [13], which increases the likelihood of adversarial 

behavior against retrieval and context assembly. Workload 

variability and burstiness determine whether shared 

infrastructure can meet tail latency targets [18] without 

expensive overprovisioning. Cost constraints are best 

evaluated using cost-per-query decomposition because the 

dominant driver may differ across deployments, for example 

index footprint versus inference cost. SLA targets, especially 

p95 latency and availability, determine how much 

performance isolation is required in practice. 

 

A practical decision tree begins with the strictest 

requirement. If regulatory or contractual constraints require 

tenant-dedicated storage boundaries and auditable separation 

for retrieval artifacts, then a Silo configuration for the data 

plane and vector plane is typically the default, with shared 

control plane services allowed only if they do not access 

tenant content. If regulatory constraints allow shared storage 

with strong access control [20], then the next decision point is 

whether pooled retrieval can be made defensible with 

defense-in-depth enforcement [9], [14] and continuous 

validation. If the organization can operationalize strict policy 

enforcement, provenance validation, and automated leakage 

testing, then Pool can be viable for lower-risk tiers, provided 

performance isolation is managed through quotas and 

capacity controls. If the deployment requires mixed 

guarantees, such as a subset of tenants needing strict isolation 

while the majority are cost sensitive, Bridge becomes the 

default because it allows tiered placement without forcing one 

pattern for the entire tenant population. 

 

Migration paths matter because tenant requirements 

change. Pool-to-Bridge migration is often driven by 

increasing regulatory demands or by tenants whose workloads 

cause sustained contention. Bridge-to-Silo migration is 

typically triggered by the need to reduce blast radius further 

or to guarantee performance isolation for a small set of high-

value tenants. These migrations should be treated as first-

class design requirements. The architecture should support 

moving a tenant between tiers with deterministic routing, 

explicit index rebuild procedures, and auditable verification 

that data-plane and vector-plane boundaries were updated 

correctly. 

 

7.2. Implementation Guidance 

Implementation guidance focuses on the practical 

controls required to make the patterns safe and operable. The 

emphasis is on preventing silent isolation failures and on 

minimizing the number of paths through the system that can 

bypass tenant scoping. 

 

7.2.1. Minimum Viable Controls for Pool 

Pool has the strongest dependence on correctness of 

identity propagation and enforcement placement [9]. The 

minimum viable control set should be defined as mandatory 

invariants. Tenant identity must be established at 

authentication and propagated as immutable request context. 

Every retrieval request must include tenant scoping 

constraints, and those constraints must be validated at the 

retriever and again during context assembly using provenance 

checks. Payload fetch must enforce tenant and principal 

authorization even if vector search was scoped, because 

retrieval contamination can occur when authorization logic 

differs between vector and payload paths. The system should 

fail closed [14] when tenant context is missing, inconsistent, 

or unverifiable. 

 

Filter enforcement requires both prevention and 

detection. Prevention includes enforcing that all retrieval code 

paths apply scoping, including hybrid retrieval, reranking, 

and fallback flows. Detection includes logging and metrics 

that record the applied scoping predicate, returned candidate 

ownership, and rejection counts. Audit logging must capture 

enough information to prove that the system applied scoping 

consistently and to support investigation if a suspected 

leakage occurs. Configuration validation should include 

automated tests that intentionally attempt bypass scenarios 

and assert that no cross-tenant candidates can reach context 

assembly. These tests should run continuously in staging and 

as part of deployment pipelines so that drift in configuration 

or code does not silently weaken isolation. 
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7.2.2. When Bridge is the Pragmatic Choice 

Bridge is typically the pragmatic choice when Pool is too 

risky for a subset of tenants and Silo is too expensive or too 

operationally heavy for the full population. In practice, 

Bridge often isolates the components with the highest 

confidentiality and blast radius risk, while pooling 

components where sharing is less risky and where strong 

enforcement is easier. A common approach is to silo the data 

plane and, for higher-risk tiers, silo the vector plane by using 

tenant-scoped indices, while keeping orchestration services 

and the LLM gateway shared but strictly tenant-aware. 

Another approach is to keep shared storage [20] but silo 

vector indices for tenants that require stronger retrieval 

isolation or more predictable performance. 

 

Choosing what to silo versus pool should be based on the 

threat model [14] and the cost decomposition. If cross-tenant 

retrieval leakage is the dominant risk, tenant-scoped vector 

boundaries are often the first escalation step. If metadata 

inference [14] through shared observability is a primary 

concern, then tier-specific telemetry isolation and operational 

access controls may be required even if compute remains 

pooled. Migration strategies should prioritize reversibility and 

auditability. A tenant's tier change should produce an 

auditable sequence of actions that includes data movement or 

index rebuilds if required, routing updates, key and secret 

updates, and a post-migration validation run that executes 

leakage tests and baseline latency checks. 

 

7.2.3. Operational Considerations 

Operational workflows influence isolation outcomes 

because most real failures are triggered by misconfiguration, 

drift, or incomplete lifecycle procedures [9]. Tenant 

onboarding workflows should be deterministic and automated 

where possible. Onboarding should include creation of tenant 

registry entries, provisioning of any tenant-scoped stores or 

indices, application of policies and network rules [22], [23], 

and a validation step that confirms scoping enforcement and 

audit logging are active. Incident response for suspected 

leakage should be planned explicitly. The system should 

support rapid containment actions, such as temporarily 

disabling retrieval for a tenant, restricting pooled services to 

known-safe tiers, or isolating a suspect ingestion batch [13]. 

Audit trails must support reconstructing which chunks entered 

prompts for specific requests, which is widely recommended 

[19] for scoping the impact of a suspected event. 

 

Key rotation, index rebuilds, and ACL updates are 

recurring operations that can break isolation if not designed 

carefully. Key rotation must be coordinated with storage 

access and ingestion pipelines so that encryption boundaries 

remain consistent. Index rebuild procedures must preserve 

tenant scoping and must avoid accidental mixing during 

backfills. ACL updates must propagate deterministically to 

both metadata enforcement and retrieval-time filters, and 

caching layers must respect the new authorization state to 

avoid stale access decisions. 

 

7.3. Limitations 

Several limitations bound the generality of the results. 

Implementations and performance characteristics vary across 

LLM serving stacks [17] and across vector databases [21], 

[24], [25], which can change the magnitude and location of 

noisy-neighbor effects. The evaluation workload is focused 

on document-based RAG [1] and may not represent other 

retrieval modalities such as code, images, or structured 

knowledge graphs. The threat model [14] is formalized 

around the most relevant multi-tenant RAG threats, but not 

every attack class is empirically validated in the evaluation 

methodology, and some threats are treated through 

architecture and controls rather than through demonstrated 

exploitability. Finally, deployment environments differ in 

network topology, observability tooling, and operational 

access models, which can influence metadata inference risk 

and the practicality of certain controls. 

 

7.4. Future Directions 

Future work can strengthen isolation and reduce 

operational risk in several ways. Confidential computing can 

provide stronger guarantees for certain processing steps by 

reducing exposure of plaintext data in memory under specific 

adversary models, though its applicability depends on 

deployment constraints and performance impact. Federated 

RAG approaches could enable selective cross-tenant 

knowledge sharing under explicit privacy constraints, but 

require rigorous policy models and robust auditing. 

Automated tenant placement and dynamic pattern selection 

are promising for Bridge deployments, where the system 

could assign tenants to tiers based on measured workload 

behavior and risk classification, then migrate tenants safely as 

conditions change. 

 

Standardization is also a practical direction, particularly 

for defining evaluation interfaces and minimum conformance 

requirements for tenant isolation in RAG pipelines. A 

conformance testing suite that exercises leakage probes, 

scoping assertions, and auditability checks would reduce 

reliance on ad hoc validation and would make comparisons 

across implementations more meaningful. 

 

8. Conclusion 
Multi-tenant RAG enables enterprise SaaS platforms to 

ground model outputs in tenant-specific knowledge while 

operating on shared infrastructure. This deployment model 

introduces a strict requirement for tenant isolation that spans 

storage, embeddings, retrieval, orchestration, and inference, 

and it creates failure modes that are not addressed by 

traditional multi-tenant patterns alone. The core result of this 

work is a structured way to reason about isolation in RAG 

systems, implement it in a cloud-native stack, and evaluate 

tradeoffs across security, performance, cost, and operational 

overhead. 

 

8.1. Summary of Contributions 

This paper introduced a formal taxonomy for multi-

tenant RAG isolation across four planes: data, vector, 

orchestration, and LLM. The taxonomy makes isolation 

requirements explicit, identifies where enforcement must 
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occur, and provides a consistent vocabulary for comparing 

architectural choices. A threat model tailored to multi-tenant 

RAG was defined, covering embedding-space vulnerabilities 

and data-plane risks, and grounding the discussion in concrete 

trust boundaries and enforcement points. A Kubernetes-native 

reference architecture was specified to implement tenant-

aware controls through explicit policy enforcement points 

across ingestion and retrieval paths, with auditability treated 

as a first-class requirement. Finally, the paper defined an 

evaluation methodology that measures isolation strength 

through leakage testing, quantifies noisy-neighbor effects 

using latency percentiles under mixed-tenant load, 

decomposes cost-per-query into attributable components, and 

characterizes operational overhead through measurable 

lifecycle metrics. 

 

8.2. Key Takeaways 

No single isolation pattern dominates across all 

dimensions. Silo, Pool, and Bridge represent fundamentally 

different tradeoffs between blast radius, performance 

isolation, cost efficiency, and operational complexity. 

Isolation in multi-tenant RAG is an end-to-end property. It 

cannot be achieved by a single datastore setting or a single 

gateway control because retrieval and context assembly can 

introduce cross-tenant exposure even when storage 

boundaries appear correct. In pooled architectures, leakage 

risk is driven primarily by configuration and enforcement 

correctness, including identity propagation, scoping 

consistency across retrieval variants, provenance validation, 

and auditability. Pattern selection therefore requires explicit 

tradeoff analysis across isolation strength, latency targets, 

cost drivers such as index footprint and inference 

consumption, and the operational maturity required to run 

continuous validation. 

 

8.3. Closing Statement 

Multi-tenant RAG is a practical foundation for enterprise 

AI adoption because it aligns grounding with SaaS delivery 

economics, but it demands rigor in how isolation is defined, 

enforced, and verified. The taxonomy, threat model, reference 

architecture, and evaluation methodology presented here 

provide a defensible basis for selecting and operating Silo, 

Pool, and Bridge patterns in production SaaS environments. 

A clear next step is broader independent benchmarking and 

standardization of isolation and evaluation interfaces so that 

multi-tenant RAG systems can be compared consistently and 

validated continuously as platforms evolve. 
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