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Abstract - Multi-tenant Retrieval-Augmented Generation
(RAG) enables enterprise SaaS platforms to ground large
language model outputs in customer-specific data while
sharing infrastructure across tenants. This deployment
model introduces a hard requirement for strict tenant
isolation across storage, embedding generation, vector
indexing, retrieval orchestration, and response construction,
without unacceptable cost or performance variance under
mixed workloads. This paper formalizes three isolation
patterns for multi-tenant RAG systems, Silo, Pool, and
Bridge, and introduces an isolation taxonomy across four
planes: data plane, vector plane, orchestration plane, and
LLM plane. A threat model specific to multi-tenant RAG is
presented, covering cross-tenant embedding leakage through
similarity search, membership inference risk, retrieval
contamination from incorrect scoping or poisoned content,
and metadata inference. A Kubernetes-native reference
architecture is specified to implement tenant-aware controls
and explicit policy enforcement points across ingestion and
retrieval. The paper also defines an evaluation approach for
comparing isolation patterns using leakage testing under
adversarial retrieval scenarios, mixed-tenant latency
measurements (P50 and P95) to quantify noisy-neighbor
effects, cost-per-query decomposition, and operational
overhead.

Keywords - Retrieval-Augmented Generation, Multi-tenancy,
Tenant isolation, Enterprise SaaS, Vector databases,
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Microservices, Kubernetes, Noisy neighbor effects.

1. Introduction

Retrieval-Augmented Generation (RAG) [1] is widely
adopted for grounding large language model outputs in
enterprise knowledge sources such as product documentation,
support content, contracts, and internal policies. In a typical
RAG pipeline [1], user queries are transformed into retrieval
requests, relevant content is fetched from a document store or
vector index, and selected context is assembled into a prompt
that constrains the model response. This design improves
factuality and domain alignment relative to prompting alone
[3], but it also expands the system boundary. Data flows
through ingestion, embedding generation, indexing, retrieval,
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orchestration, and generation components, each of which can
introduce security and performance failure modes.

Most enterprise deployments of RAG are delivered as
Software as a Service (SaaS). That delivery model typically
requires multi-tenancy [9], where multiple customers share
infrastructure to achieve acceptable unit economics,
simplified operations, and faster onboarding. Introducing
RAG can increase the complexity of multi-tenant isolation
because retrieval and prompt assembly add additional
enforcement points. The degree of difficulty depends on
implementation choices, existing isolation infrastructure, and
the capabilities of the selected vector database and serving
stack. A correct multi-tenant RAG system must ensure that
tenant identity and authorization constraints remain intact
across every stage that can influence generated output.

Tenant isolation in this paper is defined as three
properties. First, retrieval isolation requires that queries from
one tenant must not retrieve content owned by another tenant.
Second, context assembly isolation requires that retrieved
context included in the prompt must be scoped to the
requesting tenant and principal permissions. Third, inference
exposure resistance requires that the system reduce the risk of
cross-tenant exposure through model outputs, logs, and
observable side channels including retrieval behavior and
response artifacts.

1.1. Motivation

Cloud and vector database vendors describe practical
multi-tenant patterns for SaaS systems and provide
prescriptive guidance for RAG components. AWS, Microsoft
Azure, Milvus [25], and Pinecone [24] publish architecture
documentation identifying Silo, Pool, and Bridge approaches.
These materials are useful for implementation, but they stop
at architectural recommendations and do not provide a
repeatable methodology to compare isolation patterns under
adversarial conditions, mixed-tenant load, and explicit cost-
per-query accounting. Multi-tenant RAG introduces failure
modes less prominent in traditional SaaS designs, such as
cross-tenant retrieval leakage from mis-scoped similarity
search [10], [11], [12] or retrieval contamination when
context assembly includes unauthorized chunks.
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A second motivation concerns security modeling.
Conventional multi-tenant security analysis focuses on
storage isolation and request authorization. RAG requires
extending the threat model to cover embeddings [15], vector
indices, retrieval-time filtering, and the orchestration layer
that constructs the model prompt. Without a threat model
specific to these components [14], it is difficult to justify
where enforcement must occur and how to validate that
isolation holds under normal and adversarial workloads.

Finally, there is an operational motivation. Architects
must decide where to place boundaries, which services can be
safely shared, which data stores must be partitioned, and what
controls are mandatory for safe pooling. Those decisions
directly affect tail latency under contention, noisy-neighbor
behavior [18], cost drivers such as index footprint and token
usage, and the operational overhead of onboarding and
maintaining tenants. A structured comparison of Silo, Pool,
and Bridge patterns makes those decisions explicit and
testable.

1.2. Research Questions

This paper focuses on three questions that arise when
building a RAG-powered SaaS product serving multiple
tenants on shared infrastructure. The first question asks how
Silo, Pool, and Bridge isolation patterns differ in isolation
guarantees across storage, embedding generation, vector
indexing, retrieval orchestration, and prompt construction.
The second question asks what noisy-neighbor effects are
measurable under mixed-tenant workloads and which shared
components dominate tail latency behavior. The third
question asks what the cost-per-query profile of each pattern
is and which cost drivers dominate as tenant count, corpus
size, and query volume change. These questions are framed to
support engineering decisions, and each corresponds to
measurable properties that can be validated through leakage
testing, latency percentile analysis, and cost decomposition.

1.3. Contributions

This paper makes four contributions. First, it introduces
an isolation taxonomy for multi-tenant RAG across four
planes: data plane, vector plane, orchestration plane, and
LLM plane. The taxonomy provides a consistent vocabulary
for specifying what is isolated, where isolation is enforced,
and what failure modes remain. Second, it defines three
isolation patterns for multi-tenant RAG pipelines: Silo, Pool,
and Bridge. Each pattern is described in terms of shared
versus tenant-scoped components and the isolation invariants
that must hold.

Third, it provides a threat model tailored to multi-tenant
RAG. The threat model covers embedding-space and
retrieval-specific risks such as cross-tenant retrieval leakage
via similarity search, membership inference risk, vector index
poisoning, retrieval contamination through incorrect scoping,
and metadata inference through observable behavior. Fourth,
it specifies a Kubernetes-native reference architecture that
implements tenant-aware controls using explicit policy
enforcement points across ingestion and retrieval. The paper
also defines an evaluation methodology to compare patterns

using leakage rate under adversarial retrieval scenarios,
latency percentiles (p50 and p95) under mixed-tenant
workloads, cost-per-query decomposition, and operational
overhead indicators.

2. BACKGROUND AND RELATED WORK
2.1. RAG Pipeline Decomposition

A Retrieval-Augmented Generation (RAG) system [1]
transforms raw enterprise documents into grounded model
responses through a sequence of stages. The ingestion stage
accepts documents from upstream sources, segments them
into chunks, attaches metadata required for isolation and
governance, and generates embeddings that encode chunk
semantics. Chunking strategies include fixed token windows,
boundary-aware segmentation, semantic chunking based on
embedding similarity, recursive chunking, and parent-child
hierarchical approaches. This list is not exhaustive; chunking
affects retrieval granularity and index size but does not
change the isolation requirements defined in this paper.

The storage stage persists two distinct data types. A
document store retains raw text or chunk payloads and
associated metadata, commonly using object storage or a
document database. A vector store maintains embeddings and
identifiers that link vectors back to source chunks. Some
deployments co-locate payload and vector data in one system,
while others separate them to scale and secure each tier
independently. The indexing stage builds structures that
accelerate similarity search in high-dimensional embedding
spaces. Approximate nearest neighbor (ANN) methods are
common, including graph-based indexing such as
Hierarchical Navigable Small World (HNSW) [4] and
cluster-based inverted file methods such as Inverted File
Index (IVF). HNSW organizes vectors into a navigable graph
to improve query latency [4]. IVF partitions vectors into
coarse clusters and searches a subset of clusters per query to
reduce comparisons. Some systems also use hybrid retrieval
[2], where dense similarity search is combined with lexical
retrieval. This can improve robustness for certain query
classes but adds orchestration complexity and cost accounting
at query time.

The retrieval and orchestration stage processes incoming
queries, encodes them into the embedding space, executes
similarity search, optionally reranks results using cross-
encoder models that typically require access to chunk text
rather than embeddings alone, and assembles retrieved
chunks into a context window. This stage is a primary
isolation boundary because any cross-tenant retrieval error
can directly introduce unauthorized content into the prompt.
The generation stage constructs the final prompt by
combining system instructions, retrieved context, and the user
query, then invokes the LLM for inference and applies post-
processing such as output filtering, citations, and audit
logging. Canonical RAG formulations [1] explicitly treat
retrieval as a first-class component whose outputs condition
generation, which is why retrieval-time controls must be
treated as part of the security and isolation model.

For clarity, a document refers to the original ingested
content. A chunk is a segmented unit derived from a
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document and used as the retrieval unit. A payload refers to
the text content of a chunk, distinct from its embedding and
metadata. Tenant scoping refers to enforcing that data access
and retrieval operations are constrained to a single tenant; the
terms tenant filter and tenant discriminator are used as
equivalent mechanisms for tenant scoping.

2.2. Multi-Tenant SaaS Model

Multi-tenancy in SaaS systems [9] is commonly
implemented using one of three isolation approaches:
database-per-tenant, schema-per-tenant, or shared database
with row-level separation. Stronger physical separation
generally improves isolation and reduces blast radius but
increases cost and operational overhead as tenant counts
grow. Shared storage with row-level separation improves
resource efficiency but shifts isolation responsibility into
application logic, query correctness, and enforcement depth.

Tenant identity in enterprise SaaS is typically represented
by a tenant identifier for the customer organization plus
principal identifiers for users or service accounts, with roles
and scopes that constrain access. In distributed microservice
architectures, this identity must propagate across service
boundaries so downstream components can enforce
authorization consistently. RAG systems intensify this
requirement because multiple services participate in retrieval
and context assembly, and any stage that loses or misroutes
tenant context can create cross-tenant exposure.

A common architectural separation divides a shared
control plane from a tenant-scoped data plane. The control
plane manages onboarding, configuration, and platform
services. The data plane hosts customer workloads and data,
and is where retrieval and prompt assembly must enforce
tenant isolation. The boundary between these planes
determines which components can be pooled and which
require per-tenant deployment, and it strongly influences cost
allocation, observability, and incident response.

2.3. Vector Database Isolation Mechanisms

Vector databases provide multi-tenancy primitives that
parallel traditional isolation models, but operate over
embedding stores and similarity search paths. One approach
is namespace-style logical separation, where each tenant's
vectors are stored in a distinct namespace within shared
infrastructure.  Pinecone  documents  namespace-based
multitenancy [24], where queries are scoped to a namespace
(within a single index) to prevent cross-namespace retrieval
by construction. Pinecone provides namespace-based
isolation within a single index, allowing logically separate
vector sets to share the underlying index infrastructure.

Another approach is partition-based separation within
collections. Milvus documents multi-tenancy strategies [25]
using partitions or partition keys to target queries to tenant-
specific partitions. Partition-based strategies must account for
platform limits; Milvus documentation notes that a collection
can hold up to 1,024 partitions per collection [25], which
constrains partition-per-tenant designs at high tenant counts
and can influence pattern selection. Collection-level

separation, where each tenant has a dedicated collection, can
provide clearer boundaries but can increase operational and
memory overhead as tenant count grows.

Metadata filtering [6], [7] is a widely used mechanism
across vector systems. In this model, all tenant vectors coexist
in shared indexes and each query includes a predicate such as
tenant_id equals X. This maximizes index sharing and can
reduce per-tenant overhead, but it raises the consequence of
filter omission or misapplication. It also increases the
importance of defense-in-depth validation, such as verifying
that returned results match the request tenant context before
context assembly.

Relational vector stores such as PostgreSQL with
pgvector [21] can use database-native access control.
PostgreSQL row-level security [20] allows policies that
restrict which rows can be returned based on roles or session
context. AWS explicitly describes using row-level security to
enforce tenant isolation in a pgvector-based multi-tenant
design. These mechanisms can provide strong enforcement at
the data access layer, but they still require correct tenant
context propagation and auditing in the orchestration layer.

2.4. Related Work and Gap Analysis

Prior research addresses important aspects of multi-
tenant behavior in systems adjacent to the end-to-end
architecture question. For multi-tenant RAG efficiency,
recent work [18] analyzes caching and fairness in multi-
tenant RAG deployments and quantifies efficiency and
tenant-level fairness trade-offs under shared workloads. This
motivates treating performance isolation and tail latency as
first-class evaluation dimensions, not secondary concerns.

For multi-tenant vector indexing, Curator [8] examines
the trade-off between per-tenant indices and shared indices
with filtering, proposing indexing techniques intended to
reduce overhead while preserving tenant-level performance
characteristics. This is directly relevant to the Pool versus Silo
decision at the vector plane and provides a basis for analyzing
index footprint and query-time behavior under multi-tenant
load.

For RAG security, membership inference attacks against
retrieval corpora and RAG systems are studied in the
literature [10], [11], [12], including settings where attackers
attempt to infer whether specific documents are present in the
retrieval database by probing the system and observing
outputs. Additional work proposes membership inference
frameworks for RAG-based systems under black-box and
grey-box assumptions. These results support treating retrieval
behavior and response artifacts as part of the attack surface,
alongside conventional access control.

The gap addressed in this paper is the lack of an integrated,
end-to-end treatment that aligns three elements in a single
engineering framework:
1) A plane-based isolation taxonomy covering data,
vector, orchestration, and LLM concerns.
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2) A threat model mapped to concrete enforcement
points in a microservice RAG architecture.

3) A repeatable evaluation methodology for comparing
Silo, Pool, and Bridge patterns across leakage
testing, noisy-neighbor effects, cost-per-query
decomposition, and operational overhead.

3. Isolation Taxonomy across Four Planes

Multi-tenant RAG isolation is an end-to-end property. It
must hold across every component that can influence retrieval
results, prompt construction, and generated output. Treating
isolation as a single database setting or a single gateway
check is insufficient because RAG systems [1] introduce
additional state and decision points, including embeddings,
vector indices, reranking, and context assembly. To make
requirements explicit and testable, this section defines a four-
plane isolation taxonomy. Each plane represents a category of
resources and operations where tenant separation must be
maintained, and where specific failure modes tend to appear
in production SaaS deployments.

3.1. Isolation Planes Definition
3.1.1. Data Plane

The data plane covers persistence and access of tenant
documents, derived chunks, and authoritative metadata,
including access control attributes and lineage. Isolation at
this plane determines whether tenant data is separated through
dedicated storage boundaries or through logical scoping in
shared stores. In a store-per-tenant model, each tenant is
assigned a dedicated database, bucket, container, or
equivalent boundary. This reduces blast radius and simplifies
some audits, but it increases operational overhead and can
duplicate baseline capacity. In a shared-store model [9],
multiple tenants share the same storage system and isolation
relies on a tenant discriminator plus authorization policies that
are applied on every access path.

Chunking introduces a practical requirement that is easy
to miss. Retrieved units are typically chunks, not whole
documents, so chunks must carry tenant identity and
authorization-relevant metadata end-to-end. If chunk
payloads and chunk metadata are stored in different systems,
the architecture must define which system is the source of
truth for enforcement, and how consistency is maintained
under updates and deletions.

Authorization patterns at this plane are commonly row-
level for relational stores [20] and object-level for document
and object stores. Row-level approaches can bind access to
session context or database roles, while object-level checks
often execute in a storage adapter or policy service.
Encryption boundaries also belong in the data plane. Per-
tenant keys reduce the impact of key compromise for certain
threat scenarios. Shared keys with per-tenant derivation can
reduce key management overhead, but increase reliance on
correct derivation, rotation, and correct use across all
services.

Common data plane failure modes are operational and
consistency-related. Examples include missing tenant scoping

predicates, stale ACL state after permission changes, and
inconsistent metadata between the document store and the
retrieval metadata store. These failures are high impact in
RAG because they can directly affect which chunks become
eligible for retrieval and prompt inclusion.

3.1.2. Vector Plane

The vector plane covers embeddings, vector persistence,
index organization, and similarity search behavior under
tenant scoping. Isolation choices at this plane have strong cost
and performance implications because vector indices are
often memory intensive and retrieval latency sensitive. The
primary architectural decision is between per-tenant indices
and shared indices with tenant-aware filtering [8]. Per-tenant
indices reduce reliance on query-time filtering for isolation
and can simplify correctness validation, but they increase
index duplication and operational work as tenant counts grow.
Shared indices improve resource sharing and can reduce
baseline memory footprint, but place strict requirements on
filter correctness, filter placement in the query path, and
validation of results before context assembly.

Indexing mechanisms influence performance under
scoping. For example, graph-based [4] and cluster-based
ANN approaches reduce search cost by pruning the candidate
set. Tenant scoping can be implemented by selecting the
correct tenant-specific index or partition, or by filtering
within a shared index [6], [7]. From an isolation perspective,
the retrieval path must not return cross-tenant candidates to
orchestration. From a performance perspective, tenant
scoping must not destabilize tail latency. This risk is highest
when large and small tenants share the same retrieval
infrastructure and compete for the same index and compute
resources.

Partitioning strategies include namespace separation [24],
collection separation [25], shard-level separation, and key-
based segmentation. Each strategy shifts the default isolation
properties and changes operational scaling behavior. The
embedding pipeline also introduces isolation considerations
because embedding generation is often centralized for
efficiency. If embedding computation and caching are shared,
boundaries must prevent incorrect reuse across tenants and
must ensure that tenant context is not lost during
asynchronous ingestion.

A recurring vector plane failure mode is late or
inconsistent filtering. When tenant filters are applied only
after a broad candidate set is generated, cross-tenant vectors
may be processed before being discarded, which increases
side-channel exposure risk. Post-filtering can also increase
latency substantially when a tenant's vectors are a small
fraction of a shared index because the system may scan many
irrelevant candidates before collecting enough tenant-scoped
results [7]. This complicates correctness validation and
increases the importance of defense-in-depth checks in
orchestration before any retrieved content can influence
prompt construction.
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3.1.3. Orchestration Plane

The orchestration plane spans the services that coordinate
ingestion workflows, query processing, retrieval, reranking,
and context assembly. lIsolation at this plane depends on
tenant identity being a first-class control signal. Tenant
identity is established at the authentication boundary,
typically at an APl gateway, and must propagate through
every downstream service call, message, and asynchronous
job that can influence retrieval or prompt assembly.

Policy enforcement point placement must be explicit.
Enforcement often occurs at the gateway for authentication
and coarse authorization, at the retrieval service for query
scoping and validation, at the vector query layer for tenant-
aware search constraints, and at storage adapters for payload
fetch authorization. Defense in depth is essential because a
single missed check in a pooled system can lead to cross-
tenant retrieval or context mixing.

Query routing and scoping are core orchestration
responsibilities. In per-tenant index designs, routing must
select the correct tenant index or partition deterministically.
In shared-index designs, routing must attach the correct tenant
filter and ensure that the filter is applied on all query variants,
including hybrid retrieval and reranking paths. Context
assembly is the highest sensitivity step because it determines
what enters the model prompt. Context assembly rules must
require provenance validation, must reject any chunk that
fails tenant or principal authorization checks, and must ensure
that only authorized chunks can be included in the final
context window.

A deterministic audit record is required for validation and
incident response. At minimum, it should capture tenant
identity, authorization context, filters applied, retrieved item
identifiers, and which items were included in the final
prompt.

3.1.4. LLM Plane

The LLM plane covers prompt construction, inference
execution, response filtering, and telemetry. Multi-tenancy at
this plane is typically implemented through policy scoping
rather than physical separation, although tenant-dedicated
endpoints are possible in high-isolation deployments. Shared
model endpoints can be cost efficient, but require strict
controls on tenant-specific prompt templates, tool access,
quota enforcement, and logging practices. Tenant-dedicated
endpoints reduce shared resource contention, but increase
operational overhead and can complicate model lifecycle
management across a broad tenant population.

Prompt construction isolation requires that system
prompts, tool configurations, and retrieved context are scoped
to the tenant and the requesting principal's permissions. Rate
limiting, quotas, and fair scheduling [18] belong in this plane
because inference capacity is often a dominant contributor to
tail latency and cost-per-query. Response filtering and tenant-
scoped output validation are required to reduce the risk of
unintended disclosure through generated output artifacts.
Logging and redaction requirements must be explicit because

prompts and retrieved context can contain sensitive tenant
data, and shared operational tooling can become an indirect
exposure path if logs are not properly scoped and protected.

Inference-time isolation extends beyond prompt content
to execution state. In shared serving deployments, key-value
(KV) cache optimizations [17] such as prefix sharing and
cache reuse can introduce side channels [16]. If cache entries
are not tenant-partitioned, one tenant may infer information
about another tenant's prompt through cache timing or hit-rate
behavior [16]. This risk is most relevant when multiple
tenants share the same model serving stack.

3.2. Pattern Definitions
3.2.1. Silo Pattern

The silo pattern dedicates resources per tenant across all
four planes for components that process tenant content. A
shared control plane that handles tenant onboarding,
configuration distribution, and operational tooling, but never
processes tenant documents or tenant queries, may still be
used to reduce operational overhead. Document and metadata
storage are tenant-scoped. Embedding indices and vector
storage are tenant-scoped. Orchestration is either tenant-
dedicated or implemented with strict tenant-specific routing
and state boundaries. Model inference can be tenant-
dedicated or strongly partitioned through policy and resource
controls. The main advantage is reduced blast radius and
reduced dependence on correct runtime filtering for isolation.
The main trade-offs are higher baseline cost due to duplicated
infrastructure and higher operational overhead due to per-
tenant lifecycle management, scaling, and configuration.

3.2.2. 111.B.2. Pool Pattern

The Pool pattern shares infrastructure across tenants and
enforces isolation through tenant discriminators, authorization
checks, and runtime filtering. The document store, vector
index, orchestration services, and model endpoints may all be
shared. Isolation is therefore primarily logical and depends on
the correctness of identity propagation and enforcement at
multiple checkpoints. Pool can offer strong efficiency and
simplified infrastructure, but it increases the consequences of
misconfiguration and tends to expose tenants to higher noisy-
neighbor risk [18] because retrieval and inference resources
are contended. In Pool deployments, defense-in-depth
validation, provenance-based context assembly, and auditable
enforcement are mandatory controls, not optional
enhancements.

3.2.3. Bridge Pattern

The Bridge pattern is a hybrid that combines pooled
services with selected tenant-scoped components. Typical
variants include shared orchestration with tenant-scoped
vector indices, or shared retrieval services with tenant-scoped
document stores. Bridge is used when Pool is too risky for
some tenants or workloads and Silo is too costly for the full
tenant population. Tiering criteria often include regulatory
requirements, data sensitivity, workload predictability, and
performance SLO strictness. Because Bridge spans both
pooled and tenant-scoped boundaries, routing, policy
enforcement, and auditability must remain consistent across
tiers. Migration paths must be designed explicitly because
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moving tenants between tiers can require index rebuilds, key
management changes, and configuration updates across
services.

intended as a decision aid and as a checklist for evaluation.
Isolation properties should be treated as expected
characteristics that still require validation, especially in Pool
and Bridge configurations where enforcement depends on
3.3. Pattern Comparison Matrix correct propagation and policy placement.
Table | summarizes the three patterns across the four

planes and key operational dimensions. The matrix is

Table 1:Isolation Models in Multi-Tenant Al Architectures: Comparative Analysis of Silo, Pool, and Bridge

Approaches
Dimension Silo Pool Bridge
Dizctffaﬂ’ilsﬂe Tenant-scoped stores Shared store with tenant scoping Tier-dependent
Vector plane Tenant-scoped indices Shared index with filtering Often tenant-scoped for high-
isolation isolation tiers

Orchestration plane

Tenant-dedicated or strongly

Shared services with strict
identity propagation and

Shared services with tier-aware

isolation partitioned routing N routing and controls
validation
LLM plane Tenant-dedicated or strongly Shared endpoint with tenant- .
. . .. o - Tier-dependent
isolation partitioned policies scoped policies

Primary failure

Provisioning and routing errors

Filter omission, context mis-
scoping, identity propagation

Tier boundary errors and
inconsistent enforcement across

mode within a tenant boundary defects tiers
Blast radius Primarily per tenant Potentially multi-tenant Typically bound_ed toatier
population
. Infrastructure duplication, per- Shared index and shared Mixed duplication and shared
Cost drivers - . - . .
tenant index footprint inference capacity contention

Operational High per-tenant lifecycle Lower shared operations, higher .
S Moderate, plus tier management
overhead management validation burden
Compliance fit Strongest by default Requires strong controls and Tier-dependent

evidence

4. Threat Model for Multi-Tenant Rag

This section defines a threat model for multi-tenant RAG
systems with an emphasis on where isolation breaks in
practice and how those failures propagate into prompts and
generated outputs. The intent is not to exhaustively enumerate
every security issue in distributed systems, but to focus on
threats that are either unique to RAG [14] or amplified by
retrieval, embeddings, and context assembly.

4.1. Threat Model Scope and Assumptions

The protected assets in scope include tenant documents,
derived chunks, chunk metadata, embeddings, vector indexes,
prompts, model outputs, logs and traces, and encryption keys.
Loss of confidentiality is the primary concern because cross-
tenant exposure is the critical failure mode in multi-tenant
SaaS. Integrity is also in scope because poisoned or
manipulated content [13] can alter retrieval results and lead to
incorrect or unsafe responses.

The threat actors considered are a malicious tenant acting
through legitimate APIs, an external attacker who has
obtained tenant credentials or can exploit exposed interfaces,
and an insider with elevated operational access. Adversary
capabilities range from repeated probing of the retrieval and
generation interfaces, to content injection via the ingestion
pipeline, to attempts to exploit misconfigurations in identity
propagation, routing, filtering, or logging. The model treats

the adversary as capable of generating large numbers of
requests and observing system behavior, including response
content, latency, and error messages, within the limits of SaaS
rate controls.

Trust boundaries are defined at the APl boundary where
authentication and tenant context are established, at service-
to-service boundaries inside the microservice mesh, at the

TABLE 1. PATTERN COMPARISON MATRIX
data plane boundary for document and metadata access, at the
vector database boundary for similarity search, and at the
LLM endpoint boundary where prompts are submitted and
outputs are returned. Logging and telemetry pipelines are
treated as an additional operational boundary because they
can contain sensitive prompts and retrieved context.

The baseline assumption is that transport is encrypted in
transit using Transport Layer Security (TLS) and that
standard cryptographic primitives are not broken. The model
does not assume perfect correctness in policy configuration or
perfect correctness in distributed propagation of tenant
context. Misconfiguration and partial failure are treated as
realistic, because they are common root causes of multi-
tenant incidents.
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4.2. Embedding-Space Vulnerabilities

Embedding-space vulnerabilities arise because retrieval
depends on similarity search over shared or partially shared
vector structures. This creates failure modes where the system
can expose cross-tenant content directly through retrieved
chunks, or indirectly through observable retrieval behavior
and output artifacts. OWASP's guidance on generative Al
security [19] explicitly calls out weaknesses associated with
vectors and embeddings, which aligns with treating the vector
plane as part of the attack surface rather than a neutral storage
layer.

4.2.1. Cross-Tenant Embedding Leakage

Cross-tenant embedding leakage occurs when similarity
search returns vectors or chunk identifiers that belong to a
different tenant than the requester. In pooled deployments, the
dominant attack vector is a missing, malformed, or bypassed
tenant filter, or a misrouted tenant identifier that causes a
query to execute against the wrong namespace, partition, or
index. A second class of failures appears when filtering is
applied inconsistently across retrieval variants, such as hybrid
retrieval, reranking, or fallback paths.

The impact ranges from direct disclosure of content, if
payload fetch is performed without an additional tenant
check, to indirect disclosure of document identifiers, titles, or
metadata if those fields are returned in retrieval results or
logs. The most useful detection signal is retrieval provenance
that includes tenant identity and retrieved item identifiers. If a
retrieval log or trace shows chunk identifiers mapped to a
different tenant than the request tenant, the system has a
measurable isolation violation. This is why deterministic
audit records are treated as part of the isolation model, not a
monitoring convenience. Additionally, embedding inversion
attacks [15] show that embeddings can leak substantially
more than similarity metadata. Under some conditions,
reconstructed text can be recovered from embeddings with
meaningful fidelity [15], so embeddings should be treated as
sensitive tenant data rather than benign derived features.

4.2.2. Membership Inference

Membership inference in RAG refers to attempts to infer
whether a target document, or a semantically related
document, exists in another tenant's retrieval corpus by
probing the system and observing outputs or retrieval
behavior. Prior work [10], [11], [12] studies membership
inference against RAG systems, including black-box and
grey-box settings, and demonstrates that retrieval behavior
and downstream outputs can leak information about the
presence of documents in the underlying corpus. In a multi-
tenant context, this becomes a cross-tenant concern when an
attacker can influence or observe retrieval outcomes beyond
its own tenant boundary, or when system-level telemetry and
error behavior reveal corpus characteristics.

The primary attack vectors include repeated probing with
semantically targeted queries, observing response differences
that correlate with retrieval hits, and exploiting confidence
signals or debugging fields if the system exposes them. Even
when content is not directly disclosed, corpus membership

can leak competitive information, such as whether a tenant
has documents related to a product line, acquisition, or
incident.

Detection signals include anomalous query patterns,
repeated near-duplicate queries, and probing workloads that
sweep a semantic neighborhood. Mitigation is primarily
architectural and operational. It requires strict tenant scoping,
strict suppression of cross-tenant retrieval artifacts, careful
control of debug outputs, rate limits tuned for probing
resistance, and audit trails sufficient to identify probing
behavior.

4.2.3. Vector Index Poisoning

Vector index poisoning [13] occurs when an attacker
injects crafted content through the ingestion pipeline to
influence retrieval results, degrade retrieval quality, or cause
systematic misdirection of responses. In pooled indexes,
poisoning can also become a cross-tenant integrity issue if
shared retrieval infrastructure allows poisoned vectors to
appear in the candidate set for other tenants due to filtering
errors or shared reranking paths. The direct impact can
include degraded relevance, denial of service through index
bloat or retrieval hotspots, and response manipulation if
poisoned chunks are repeatedly selected into prompts.

This threat is best addressed with layered controls.
Ingestion must enforce tenant-scoped authorization, content
validation, and rate controls. Indexing must ensure that tenant
scoping is correct and that updates are auditable. Retrieval
must validate provenance and enforce deny-by-default
behavior when scope is ambiguous. Operationally, the system
should support rollbacks or quarantine of recently ingested
content for a tenant when abnormal retrieval patterns are
detected.

This subsection focuses on integrity and isolation risks.
A related availability risk is computational denial of service,
where adversarial embeddings or documents are crafted to
increase retrieval cost, expand candidate sets, or degrade
index performance. These attacks impact tail latency and
shared resource stability and should be evaluated as part of
capacity protection and abuse controls.

4.2.4. LLM Serving Side Channels

In  shared inference deployments, optimization
techniques for KV-cache management [17] can create cross-
tenant leakage paths [16]. Prefix sharing and cache reuse
improve throughput by avoiding redundant computation for
common prompt prefixes, but they may allow one tenant to
infer portions of another tenant's prompt through cache timing
or hit-rate observation [16]. Mitigations include tenant-
isolated inference sessions, strict cache partitioning, or
disabling cross-tenant cache reuse. Dedicated model
endpoints eliminate this vector by construction.

4.3. Data-Plane Vulnerabilities

Data-plane vulnerabilities often appear as traditional
authorization failures, but their consequence in RAG is
amplified because they can propagate into prompts and
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outputs. Two classes are particularly relevant to multi-tenant
RAG: retrieval contamination and metadata inference.

4.3.1. Retrieval Contamination

Retrieval contamination occurs when chunks from the
wrong tenant, or chunks that the requesting principal is not
authorized to access, enter the context window used for
generation. This can happen even if vector retrieval returns
correct candidates, for example if payload fetch uses a
different authorization path, if ACL evaluation is inconsistent
across services, or if asynchronous pipelines produce stale
permission state. Orchestration bugs, such as race conditions
around ACL updates or incorrect cache scoping, can also
cause contamination.

The impact is direct data leakage in generated responses
and potential regulatory non-compliance, since the prompt
includes unauthorized content. The most effective defense is
to treat context assembly as a policy-enforced operation.
Before any chunk is included in the prompt, the system
should validate tenant ownership and principal authorization
using an authoritative policy decision path, and record the
provenance decision in an audit log.

4.3.2. Metadata Inference

Metadata inference refers to learning sensitive
information about another tenant without directly accessing
its content. Examples include inferring tenant activity levels,
document counts, update frequency, or query volume. Attack
vectors include timing analysis, observing resource
consumption patterns, and exploiting error message
differences. In multi-tenant systems, metadata leakage can
occur through shared rate limit behavior, shared queue
latency, shared index maintenance events, or unscoped
operational metrics.

The impact is competitive intelligence and usage
profiling. Mitigation includes scoping operational metrics by
tenant and access role, reducing high-cardinality exposure in
shared dashboards, standardizing error responses, and using
quotas and scheduling policies that reduce observable
coupling between tenants.

4.3.3. Controls Mapped to Enforcement Points

Controls are most effective when mapped to explicit
enforcement points and treated as invariants. Tenant identity
should be established once at the authentication boundary and
propagated as immutable request context through service-to-
service calls. In practice, this commonly uses signed tokens or
signed headers with strict validation at each hop. Identity
propagation must also cover asynchronous ingestion paths,
including job queues and batch processors, because ingestion
is a write path into the retrieval corpus.

Authorization checks should execute at multiple layers
[9]. The API gateway should enforce authentication and
coarse access controls. The retrieval service should enforce
tenant-scoped query construction and validate the scope of
results. Storage adapters should enforce tenant and principal
authorization on payload fetch, even if vector retrieval
already applied filters. Where supported, database-level
policies such as row-level security [20] can provide an
additional layer of enforcement, but they should be treated as
defense-in-depth rather than the only control. Defense-in-
depth is widely recommended [9], [14] because single
enforcement points are vulnerable to misconfiguration, and
redundant checks reduce the likelihood that one defect results
in cross-tenant exposure.

Vector filtering must be designed so that tenant scope is
not optional. When possible, filters should constrain
candidate generation [6], [7], not only filter after scoring.
When filters cannot be applied early due to datastore
limitations, post-filter validation must be strict and must fail
closed. Fail-closed behavior prioritizes isolation over
availability. Operators should monitor rejection rates,
configure alerting thresholds, and define fallback policies or
graceful degradation paths for transient identity propagation
failures. Any retrieved item that does not match tenant scope
should be rejected before context assembly, and the event
should be logged as a policy violation signal. Output controls
reduce exposure through generated text and telemetry. These
include redaction policies, citation and provenance
constraints, and response policy checks aligned to tenant
configuration. Logs and traces must be scoped, access-
controlled, and redacted to prevent operational exposure of
prompts and retrieved context. Audit logging should capture
retrieval provenance, policy decisions, and trace identifiers so
that violations can be detected and reconstructed.

4.4. Pattern Resilience Analysis

Resilience differs across Silo, Pool, and Bridge patterns
primarily through blast radius and dependence on correct
runtime filtering. Silo reduces cross-tenant exposure risk by
limiting shared data and shared indexes, but it still requires
correct identity and authorization within each tenant
boundary. Pool has the highest dependence on correct tenant
context propagation, correct filtering, and strict context
assembly validation. Bridge inherits both modes. It can
reduce blast radius for tenants placed in higher isolation tiers,
but it introduces tier boundary risks where routing,
enforcement, and auditability must remain consistent across
pooled and tenant-scoped components.

Table Il summarizes expected resilience properties. The

entries are expressed as expected characteristics that still
require validation and continuous testing.
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Table 2: Threat Resilience by Isolation Pattern

Threat Silo

Pool Bridge

Lower likelihood due to
tenant-scoped indices and
stores

Cross-tenant
embedding leakage

Higher likelihood if filters or

Tier-dependent, reduced for

routing fail tenant-scoped vector tiers

Reduced cross-tenant
exposure paths, still requires
output and telemetry controls

Membership
inference risk

Higher risk if retrieval artifacts or
behavior leak across tenants

Tier-dependent, shared
inference and telemetry can
dominate

Contained to a tenant
boundary when ingestion and
indexing are tenant-scoped

Vector index
poisoning

Can affect shared infrastructure and
shared quality signals, cross-tenant
impact if scoping fails

Typically contained within tier,
but shared services can
propagate effects

Retrieval
contamination

Primarily within-tenant if
boundaries are correct

Cross-tenant impact possible if
orchestration validation is weak

Tier-dependent, boundary and
routing correctness is critical

Reduced coupling between

Metadata inference
tenants

5. Kubernetes-Native Reference Architecture

This section specifies a Kubernetes-native reference
architecture for multi-tenant RAG that supports Silo, Pool,
and Bridge isolation patterns. The design goal is to make
tenant isolation enforceable and auditable by placing policy
checks at multiple points in both ingestion and retrieval paths,
and by treating tenant identity as immutable request context
rather than an optional application field.

5.1. Architecture Overview

The architecture decomposes the system into a small set
of microservices with explicit responsibilities. The ingestion
service accepts documents and produces chunk payloads plus
metadata. The embedding service computes embeddings for
chunks and writes vectors with tenant-scoped metadata. The
indexer manages vector index updates and compaction. The
retrieval service executes tenant-scoped similarity search and
optional reranking, and returns provenance-tagged candidates.
The prompt builder performs context assembly and constructs
the final prompt based on tenant policy. The LLM gateway
invokes the model endpoint and applies output controls,
including redaction and audit logging. A policy service
provides authorization decisions and policy configuration,
while a tenant registry resolves tenant tier, routing targets,
and keying material references.

Data is persisted in three logical stores. The document
store retains raw documents and chunk payloads. The
metadata store retains authoritative chunk metadata, including
tenant ownership, ACL attributes, lineage, and timestamps.
The vector database stores embeddings and supports
similarity search with tenant scoping. These stores can be
deployed as tenant-dedicated or shared depending on the
isolation pattern. A shared control plane supports tenant
lifecycle operations through a tenant registry, configuration
service, and secrets management system.

Tenant identity is a first-class control signal. It is
established at the authentication boundary and propagated
end-to-end as immutable context [9]. Services do not accept
tenant identity from untrusted request fields. They accept only
a validated tenant context derived from authenticated

More coupling through shared
resources unless mitigated

Reduced for isolated tiers,
shared components still leak
metadata without controls

credentials, then enforce scoping at every data access and
retrieval action. This design aligns with the threat model [14]
by reducing filter omission risk, limiting blast radius, and
enabling deterministic auditing.

A practical way to keep the design verifiable is to define
explicit enforcement points and require fail-closed behavior.
If tenant context is missing, inconsistent, or unverifiable, the
request is rejected before any retrieval or payload fetch
occurs. Fail-closed behavior prioritizes isolation over
availability. Operators should monitor rejection rates,
configure alerting thresholds, and define fallback policies or
graceful degradation paths for transient identity propagation
failures. If retrieved candidates fail provenance validation,
they are rejected and the event is recorded as a policy
violation signal.

5.2. Ingestion Path

The ingestion path is a write path into the retrieval corpus
and must enforce tenant ownership, access control metadata
integrity, and auditability. In multi-tenant deployments [9],
ingestion is also a common source of cross-tenant
contamination because content is transformed into chunks and
then indexed for later retrieval.

5.2.1. Document Intake Service

The document intake service is the entry point for tenant
content. It authenticates the caller, resolves tenant identity,
and validates that the caller is authorized to ingest content for
that tenant. It then performs document normalization and
chunking, and attaches required metadata to each chunk. The
minimum metadata set includes tenant 1D, document ID,
chunk ID, ACL attributes, lineage identifiers, and timestamps
for creation and update. The service routes payloads and
metadata to the correct storage boundary based on the tenant's
isolation tier. In Silo, routing targets tenant-dedicated stores.
In Pool, routing targets shared stores with tenant
discriminators. In Bridge, routing targets are tier-specific and
must be derived from the tenant registry rather than
configuration embedded in the client.
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5.2.2. Embedding Generation Service

The embedding service accepts tenant-scoped chunk
references and computes embeddings. It must treat tenant
context as mandatory input and must not generate or cache
embeddings in a way that allows cross-tenant reuse. If
batching is used for efficiency, batching must not merge
tenant contexts in a way that weakens auditability or causes
ambiguous attribution. Each embedding write must include
tenant ID and chunk identifiers that allow downstream
provenance checks to validate ownership. The embedding
service should write embeddings to the vector DB and write
embedding metadata to the metadata store, enabling later
verification that a retrieved vector corresponds to an
authorized chunk.

5.2.3. Vector Indexing Service

The indexing service manages index updates,
compaction, and any background maintenance that affects
retrieval behavior. It selects the correct index boundary based
on the isolation pattern. In Silo, each tenant has a dedicated
index boundary. In Pool, tenants share index infrastructure
and rely on filtering and validation. In Bridge, index
boundaries are tier-specific, and the indexer must enforce that
vectors are written only into the tenant's permitted tier. Index
update operations must be auditable and reversible in the
operational sense. At minimum, indexer actions should be
traced with tenant context, index identifiers, and the source
batch lineage so that poison or contamination events [13] can
be investigated and scoped.

5.3. Retrieval Path

The retrieval path is the highest sensitivity path because
it selects content that will be inserted into the prompt.
Isolation failures at this stage can lead to cross-tenant
retrieval leakage and retrieval contamination [14].

5.3.1. Query Gateway

The query gateway authenticates the request and
constructs an immutable tenant context from validated
credentials, such as JSON Web Token (JWT) claims or API
key mappings. It applies per-tenant rate limits and quotas to
reduce noisy-neighbor effects [18] and probing risk [10],
[11], [12], and it normalizes request inputs to reduce injection
and parsing ambiguity. The gateway also enforces coarse
authorization, such as whether the principal can invoke
retrieval for a given tenant and which collections or
knowledge sources are in scope. The gateway emits a trace
identifier that is propagated through the full request path to
support deterministic auditing.

5.3.2. Retriever Service

The retriever service performs tenant-scoped search
against the vector database and any optional sparse index.
Tenant scoping is applied before similarity search when the
datastore query model supports it [6], [7]. If pre-filtering is
not available, the service performs post-filter validation and
rejects any cross-tenant candidates. Results are forwarded to
context assembly only after tenant ownership and
authorization constraints are satisfied. The retriever should
return candidates together with provenance fields required for

downstream validation, including chunk ID, document ID,
tenant ID, and the filter predicate applied. A defense-in-depth
measure [9], [14] is to perform cross-tenant result detection as
a separate validation step, where the retriever explicitly
checks that the returned candidate set matches tenant
ownership and logs any mismatch as a policy violation signal.

If reranking is used, reranking must not weaken scoping
guarantees. The reranker should operate only on tenant-
validated candidates and should not introduce additional
retrieval calls that bypass the tenant filter path. If the reranker
relies on external models, the request payloads must be
treated as sensitive and must follow the LLM plane logging
and redaction constraints.

5.3.3. Context Assembly

Context assembly is responsible for constructing the
context window that will condition generation. It is the final
gate before the model sees any retrieved content, so it must
enforce tenant and principal authorization deterministically.
Context assembly should verify chunk provenance against the
metadata store [20], reject any chunk that fails tenant
ownership or ACL checks, and record the provenance
decision trace. Context size management should be tier-
aware. Bridge deployments often allocate larger context
windows or higher retrieval depth to certain tiers, but this
must be driven by tenant policy rather than request-controlled
parameters.

5.3.4. LLM Gateway

The LLM gateway constructs the final prompt using
tenant-scoped  system  prompts, tenant-specific  tool
configuration, and the validated context window. It enforces
per-tenant quotas for inference and token usage [18], and
applies response post-processing such as redaction, policy
checks, and citation formatting when enabled. It must
produce audit logs that associate the response with the tenant
context, the provenance identifiers of included chunks, and
the policy checks applied. Logging must be configured to
avoid storing raw prompts or retrieved context unless
required for debugging under tightly controlled access paths.

5.4. Kubernetes Implementation Patterns

The architecture maps directly onto Kubernetes
primitives [22] so that isolation and governance can be
enforced at the platform layer in addition to application logic.
The goal is not to claim Kubernetes alone provides tenant
isolation, but to use it to reduce blast radius, constrain
communication paths, and make misconfiguration harder.

5.4.1. Namespace Strategy

In Silo, namespace-per-tenant is used to separate
workloads, secrets, service accounts, and network policy
scopes. In Pool, a shared namespace is used for shared
services, and tenant isolation is enforced primarily through
request context and data-plane controls, with Kubernetes
labels used for operational grouping rather than as the
primary security boundary. In Bridge, namespaces are
organized by tier, with tenant-scoped resources placed in
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tenant namespaces or tier-specific namespaces, while pooled
services remain shared.

5.4.2. Resource Controls

Resource controls are required to manage noisy-neighbor
effects [18] and prevent a single tenant from exhausting
shared compute. ResourceQuota and LimitRange define per-
namespace limits for CPU, memory, and object counts.
PriorityClass can ensure retrieval pods are scheduled
preferentially and are less likely to be preempted during
resource contention, though it influences scheduling and
preemption rather than runtime resource allocation. These
controls should be tier-aware in Bridge patterns and should be
aligned with the evaluation methodology for tail latency and
fairness.

5.4.3. Network Policies

NetworkPolicy rules [22] constrain east-west traffic and
reduce cross-namespace communication by default. In Silo
and Bridge, policies should restrict traffic so tenant
namespaces can communicate only with shared platform
services that are explicitly required. Where a service mesh is

used, mutual TLS and identity-based routing can strengthen
service-to-service authentication and improve observability,
but it must be configured to preserve tenant context
propagation and to avoid leaking sensitive headers into logs
or traces. NetworkPolicy enforces isolation at layers 3 and 4.
It does not validate application-layer tenant context, so tenant
scoping and authorization enforcement remain required in the
services and data access layers.

5.4.4. Policy Enforcement

Admission  control policies can prevent unsafe
configurations from entering the cluster. Open Policy Agent
(OPA) Gatekeeper [23] can enforce that workloads include
required labels, that privileged pods are disallowed, and that
only approved network policy patterns are used. For multi-
tenant RAG, a practical admission policy is to enforce the
presence and correctness of tenant and tier labels on tenant-
scoped resources, and to ensure that secrets and service
accounts are not shared across tenant namespaces in Silo
configurations. Audit logging should capture admission
decisions so platform-level violations can be correlated with
application-level audit trails.

Table 3: Enforcement Point Checklist

Enforcement Point | Identity Validation | Tenant Scoping | ACL Check | Provenance Validation | Logging Required
Query Gateway Required Required Coarse N/A Trace ID emission
Retriever Service Verify context Filter injection N/A Candidate validation Filter decisions
Storage Adapter Verify context Required Required N/A Access decisions
Context Assembly Verify context Required Required Required Inclusion decisions
LLM Gateway Verify context Required Policy check Chunk provenance Full audit trail

5.5. Observability and Auditability

Observability is part of the isolation story because it
enables detection and proof of enforcement. Distributed
tracing should provide an end-to-end trace from the API
gateway through retrieval and context assembly to the LLM
gateway, with tenant identity represented as controlled
metadata that is not exposed to unprivileged operators.
Metrics should be emitted per tenant and per tier for latency
percentiles, error rates, filter rejection rates, and queueing
delays. Retrieval recall proxies, such as hit rates at top-k after
filtering and reranking acceptance rates, are useful for
performance diagnosis but must be scoped and access-
controlled to avoid metadata inference [14]. Logs must be
designed for least exposure. The system should log retrieval
provenance identifiers and policy decisions rather than raw
chunk text. Where prompt logging is necessary for
debugging, logs should be redacted and protected with strict
operational access controls. Audit logs should capture the
minimal set needed to reconstruct the decision path for a
request, including tenant context, policy decision identifiers,
retrieved chunk identifiers, and trace IDs.

6. Evaluation Methodology

This section defines a repeatable evaluation methodology
for comparing Silo, Pool, and Bridge patterns across isolation
strength, performance under contention, cost-per-query, and
operational overhead. The goal is to measure properties that
matter to SaaS architects and that map directly to the

enforcement points and failure modes defined in Sections Il
to V. The methodology is designed to be implementable in a
Kubernetes testbed with deterministic datasets and controlled
workloads so that results can be reproduced and compared
across pattern variants.

6.1. Metrics Definition

Metrics are defined so they can be computed from
recorded traces and logs without relying on subjective
judgment. Each metric is measured for both retrieval-only and
end-to-end request paths, because noisy-neighbor behavior
[18] often appears in the slowest shared component, which
may differ across patterns.

6.1.1. Leakage Rate (Isolation Strength)

Leakage is measured using two metrics that separate
retrieval-path violations from end-to-end isolation failures.
The cross-tenant candidate-return rate is the fraction of
adversarial retrieval attempts where the vector search returns
at least one cross-tenant candidate prior to any downstream
filtering. The prompt contamination rate is the fraction of
adversarial attempts where a cross-tenant chunk appears in
the final context assembled for the model. The candidate-
return rate captures retrieval-path violations and side-channel
exposure risk, while the prompt contamination rate captures
the most severe end-to-end failure. Both metrics should target
zero.
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Leakage is detected by validating retrieved candidate
identifiers against an authoritative mapping in the metadata
store. The check is performed before context assembly, and
again after payload fetch, to distinguish vector-layer leakage
from payload-layer authorization failures. A request is
counted as leaked if any returned candidate violates tenant
ownership, even if the candidate is later filtered out, because
the event indicates an isolation failure in the retrieval path.
Assertions should verify that required scoping constraints
were applied at each enforcement point [14], for example that
tenant filters were present in vector queries and that storage
fetches executed with tenant-scoped authorization context.

6.1.2. Latency Under Mixed Workloads (Noisy-Neighbor
Effects)

Noisy-neighbor effects [18] are measured using latency
percentiles under controlled mixed-tenant load. The primary
metrics are p50 and p95 latency for retrieval and for end-to-
end response. Latency should be decomposed into gateway
processing, vector search, reranking if enabled, context
assembly, and model inference to identify which component
dominates tail behavior. The workload includes multiple
tenants with different load profiles to simulate contention. A
high-load tenant is driven to a sustained target throughput
while one or more co-tenants operate at low and moderate
throughput. Workload profiles include uniform load, bursty
load with short spikes, and skewed distributions where one
tenant contributes the majority of requests. A noisy-neighbor
index can be defined as the relative degradation of a low-load
tenant's p95 latency when the high-load tenant is active,
compared to the low-load tenant's p95 latency in isolation
under the same request rate. This metric is computed per
pattern and per tier in Bridge configurations to quantify
isolation effectiveness for performance, not only for security.

6.1.3. Cost-Per-Query Decomposition

Cost-per-query is decomposed so architects can attribute
cost to specific pipeline stages. The cost model includes
compute cost for embedding generation on ingestion, vector
search and orchestration on retrieval, and LLM inference on
response generation. Storage cost includes document storage,
metadata storage, and vector index footprint. The index
footprint component should explicitly account for memory-
resident structures when applicable [4], [5], [8], because that
is often a dominant cost driver for high-performance
Approximate Nearest Neighbor (ANN) indexes.

A practical cost-per-query estimate is computed as
monthly infrastructure cost divided by monthly query
volume, with ingestion cost either amortized by ingestion
volume or reported separately. The model should include
pattern-specific overhead such as duplicated control plane
components in Silo, shared networking and observability
overhead in Pool, and tier management overhead in Bridge.
The objective is not to produce a universal cloud bill, but to
produce a comparable cost decomposition across patterns
under the same workload and capacity targets.

For planning purposes, end-to-end cost per query can
vary by orders of magnitude, often ranging from roughly
$0.01 to $1.00 depending on model selection, context
window size, retrieval depth, and workload shape. In many
deployments, LLM inference dominates variable cost, while
vector index footprint drives fixed monthly cost. For
example, storing a single 768-dimensional float32 embedding
requires about 3 KB, so a 10 million-vector corpus implies on
the order of tens of gigabytes before accounting for
approximate nearest neighbor index overhead [4], [5],
replication, and metadata.

Absolute cost magnitudes are deployment-specific and
should be measured using the cost model and workload
defined in this section. In many deployments, model
inference dominates variable cost, while vector index
footprint and memory provisioning dominate fixed cost, but
the balance depends on corpus size, retrieval configuration,
and token budgets.

6.1.4. Operational Overhead

Operational overhead is measured as the effort and time
required to onboard and operate tenants under each pattern.
Tenant onboarding time is defined as provisioning latency
from an onboarding request to a tenant being able to ingest
documents and serve queries with policy enforcement active.
Deployment complexity can be measured by counting distinct
deployments, configuration objects, and secret objects
required per tenant or per tier, and by identifying which
objects must be customized per tenant. Maintenance burden
includes routine upgrades, scaling actions, key rotation, index
rebuilds, and policy changes such as ACL updates.
Automation potential is measured as the proportion of these
actions that can be executed through deterministic automation
without manual steps. This metric is particularly relevant for
Silo and Bridge patterns where lifecycle operations scale with
tenant count.

Table 2: Metric Definitions & Computation Sources

Metric Definition

Data Source Ground Truth Required

Leakage Rate cross-tenant candidates

Fraction of adversarial queries returning

Retrieval logs,
provenance traces

Chunk-to-tenant ownership
mapping

p50/p95 Latency end response

Latency percentiles for retrieval and end-to-

Distributed traces N/A

Noisy-Neighbor

Relative p95 degradation under co-tenant

Traces with tenant .
Baseline measurements

Index load vs isolation attribution
Cost-Per-Query Monthly infrastructure cost / monthly query | Resource metrics, billing Capacity targets
volume data
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Onboarding Time

Provisioning latency to operational readiness

Automation logs,

. N/A
timestamps

6.2. Test Environment Specification

The test environment is specified so measurements are
comparable across patterns. The system runs on a Kubernetes
cluster [22] with fixed node allocation and fixed resource
limits per service, unless the scenario explicitly tests
autoscaling behavior. Node types, CPU and memory
allocations, and storage classes should be held constant across
patterns. Each pattern variant should be deployed using the
same service implementations and configuration structure,
differing only in isolation configuration such as namespace
strategy, index boundaries, and policy placement.

The evaluation should use a reproducible vector database
deployment, and the methodology should support alternative
backends such as a relational vector store [21] or a dedicated
vector database [24], [25]. Embedding model selection should
favor open-source models to support deterministic
benchmarking. LLM serving should be configured locally
when possible to reduce variability from external API rate
limits and service changes. Tenant simulation parameters
include number of tenants, corpus size per tenant, chunk size
distribution, and ACL complexity. These parameters must be
recorded as part of the benchmark artifacts.

6.3. Workload Design

The workload dataset is constructed to control tenant
separation while allowing realistic retrieval behavior. Tenant
corpora should be primarily disjoint, with optional controlled
overlap scenarios where similar topics appear across tenants
without sharing identical documents. This allows testing
whether semantic similarity can expose cross-tenant leakage
when scoping is incorrect. ACL variations should be included
so that authorization is not equivalent to tenant ownership.
For example, within a tenant, some documents can be
restricted to specific roles to validate principal-scoped
enforcement during context assembly.

The query mix should include baseline queries intended
to retrieve relevant chunks, burst patterns that stress queues

and shared caches, and heavy-versus-small tenant mixes that
expose contention. Adversarial queries [10], [11], [12] are
included specifically for leakage testing and should be tagged
so they can be analyzed separately from baseline traffic. All
queries and expected ownership assertions should be
generated deterministically from the dataset so that leakage
checks are repeatable.

6.4. Evaluation Scenarios

Isolation validation scenarios execute adversarial
retrieval tests for each pattern, including explicit filter bypass
attempts, boundary-condition queries that target scoping
weaknesses, and misrouting tests that validate fail-closed
behavior when tenant context is inconsistent [14]. Expected
outcomes should be stated as assertions rather than numeric
results, for example that no cross-tenant candidate identifiers
are returned, and that any violation triggers a policy event and
request rejection.

Performance characterization scenarios measure baseline
latency for each pattern under single-tenant load and then
measure  mixed-tenant  degradation under controlled
contention [18]. The methodology should include runs with
and without background ingestion and indexing activity,
because indexing can materially affect tail latency in pooled
architectures [8]. Scalability scenarios increase tenant count
and corpus size while holding per-tenant request rate constant
to observe whether shared components exhibit superlinear
degradation.

Cost analysis scenarios compute  cost-per-query
decomposition using measured resource consumption and
recorded index footprint. A break-even analysis framework
compares patterns as tenant count and utilization change.
Sensitivity analysis varies tenant count, corpus size, query
rate, and context window size, because these parameters shift
which pipeline stage dominates cost and which isolation
boundary becomes a bottleneck.

Table 3: Evaluation Scenario Matrix

Scenario Workload Profile

Patterns Compared Metrics Collected

Isolation Validation Adversarial queries

Silo, Pool, Bridge | Leakage rate, policy violations

Baseline Performance Single tenant, steady state

Silo, Pool, Bridge p50/p95 latency

Noisy-Neighbor Mixed load, high-load tenant

Pool, Bridge Noisy-neighbor index

Scalability Increasing tenant count Silo, Pool, Bridge Latency, throughput
Cost Analysis Fixed workload, varying scale | Silo, Pool, Bridge | Cost-per-query decomposition
Break-Even Varying tenant count Silo vs Pool Cost crossover point

6.5. Benchmark Harness and Repeatability

The benchmark harness consists of a traffic generator
that can emulate multiple tenants, a tenant identity injection
mechanism that produces authenticated requests for each
tenant and principal role, and an instrumentation layer that
collects traces, logs, and metrics. The harness should record
the exact deployment configuration, including Kubernetes
manifests, policy definitions, and datastore configuration, as

versioned artifacts. Datasets should be deterministic, and
evaluation prompts should be fixed so that changes in results
are attributable to architecture changes rather than prompt
drift.

Validation checks should run as part of every benchmark

execution. These include assertions that tenant filters are
present in vector queries, that storage fetches are tenant-
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scoped, that context assembly performs provenance
validation, and that audit logs contain required identifiers and
policy decision traces. These checks ensure that a benchmark
run cannot silently pass with missing enforcement [14], which
is widely recommended when comparing isolation patterns
where correctness depends on configuration.

This paper specifies an evaluation methodology rather
than reporting empirical benchmark results. The metrics,
scenarios, and benchmark harness are defined to enable
reproducible comparison of isolation patterns, but execution
and measurement on representative deployments remains
future work. Any discussion of tradeoffs in later sections is
derived from architectural analysis and documented platform
behavior rather than measured performance data. Independent
empirical validation using the methodology defined in this
section is encouraged.

7. Discussion

This section interprets the implications of the isolation
taxonomy, threat model, and reference architecture for real
SaaS deployments. The intent is to translate the analysis into
actionable selection guidance, highlight minimum controls
required for safe pooling, and clarify where conclusions
depend on assumptions or environment-specific constraints.

7.1. Pattern Selection Decision Framework

Pattern selection should be driven by explicit
requirements rather than defaulting to whichever architecture
is easiest to deploy. The primary criteria are regulatory
requirements, tenant trust level, workload variability, cost
constraints, and service-level objectives for latency and
availability. Regulatory constraints typically set the minimum
acceptable isolation boundary for the data plane and, in some
cases, constrain where inference and telemetry can be
processed. Tenant trust level matters when tenants can
actively probe the system [10], [11], [12] or upload untrusted
content [13], which increases the likelihood of adversarial
behavior against retrieval and context assembly. Workload
variability and burstiness determine whether shared
infrastructure can meet tail latency targets [18] without
expensive overprovisioning. Cost constraints are best
evaluated using cost-per-query decomposition because the
dominant driver may differ across deployments, for example
index footprint versus inference cost. SLA targets, especially
p95 latency and availability, determine how much
performance isolation is required in practice.

A practical decision tree begins with the strictest
requirement. If regulatory or contractual constraints require
tenant-dedicated storage boundaries and auditable separation
for retrieval artifacts, then a Silo configuration for the data
plane and vector plane is typically the default, with shared
control plane services allowed only if they do not access
tenant content. If regulatory constraints allow shared storage
with strong access control [20], then the next decision point is
whether pooled retrieval can be made defensible with
defense-in-depth enforcement [9], [14] and continuous
validation. If the organization can operationalize strict policy
enforcement, provenance validation, and automated leakage

testing, then Pool can be viable for lower-risk tiers, provided
performance isolation is managed through quotas and
capacity controls. If the deployment requires mixed
guarantees, such as a subset of tenants needing strict isolation
while the majority are cost sensitive, Bridge becomes the
default because it allows tiered placement without forcing one
pattern for the entire tenant population.

Migration paths matter because tenant requirements
change. Pool-to-Bridge migration is often driven by
increasing regulatory demands or by tenants whose workloads
cause sustained contention. Bridge-to-Silo migration is
typically triggered by the need to reduce blast radius further
or to guarantee performance isolation for a small set of high-
value tenants. These migrations should be treated as first-
class design requirements. The architecture should support
moving a tenant between tiers with deterministic routing,
explicit index rebuild procedures, and auditable verification
that data-plane and vector-plane boundaries were updated
correctly.

7.2. Implementation Guidance

Implementation guidance focuses on the practical
controls required to make the patterns safe and operable. The
emphasis is on preventing silent isolation failures and on
minimizing the number of paths through the system that can
bypass tenant scoping.

7.2.1. Minimum Viable Controls for Pool

Pool has the strongest dependence on correctness of
identity propagation and enforcement placement [9]. The
minimum viable control set should be defined as mandatory
invariants. Tenant identity must be established at
authentication and propagated as immutable request context.
Every retrieval request must include tenant scoping
constraints, and those constraints must be validated at the
retriever and again during context assembly using provenance
checks. Payload fetch must enforce tenant and principal
authorization even if vector search was scoped, because
retrieval contamination can occur when authorization logic
differs between vector and payload paths. The system should
fail closed [14] when tenant context is missing, inconsistent,
or unverifiable.

Filter enforcement requires both prevention and
detection. Prevention includes enforcing that all retrieval code
paths apply scoping, including hybrid retrieval, reranking,
and fallback flows. Detection includes logging and metrics
that record the applied scoping predicate, returned candidate
ownership, and rejection counts. Audit logging must capture
enough information to prove that the system applied scoping
consistently and to support investigation if a suspected
leakage occurs. Configuration validation should include
automated tests that intentionally attempt bypass scenarios
and assert that no cross-tenant candidates can reach context
assembly. These tests should run continuously in staging and
as part of deployment pipelines so that drift in configuration
or code does not silently weaken isolation.
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7.2.2. When Bridge is the Pragmatic Choice

Bridge is typically the pragmatic choice when Pool is too
risky for a subset of tenants and Silo is too expensive or too
operationally heavy for the full population. In practice,
Bridge often isolates the components with the highest
confidentiality and blast radius risk, while pooling
components where sharing is less risky and where strong
enforcement is easier. A common approach is to silo the data
plane and, for higher-risk tiers, silo the vector plane by using
tenant-scoped indices, while keeping orchestration services
and the LLM gateway shared but strictly tenant-aware.
Another approach is to keep shared storage [20] but silo
vector indices for tenants that require stronger retrieval
isolation or more predictable performance.

Choosing what to silo versus pool should be based on the
threat model [14] and the cost decomposition. If cross-tenant
retrieval leakage is the dominant risk, tenant-scoped vector
boundaries are often the first escalation step. If metadata
inference [14] through shared observability is a primary
concern, then tier-specific telemetry isolation and operational
access controls may be required even if compute remains
pooled. Migration strategies should prioritize reversibility and
auditability. A tenant's tier change should produce an
auditable sequence of actions that includes data movement or
index rebuilds if required, routing updates, key and secret
updates, and a post-migration validation run that executes
leakage tests and baseline latency checks.

7.2.3. Operational Considerations

Operational workflows influence isolation outcomes
because most real failures are triggered by misconfiguration,
drift, or incomplete lifecycle procedures [9]. Tenant
onboarding workflows should be deterministic and automated
where possible. Onboarding should include creation of tenant
registry entries, provisioning of any tenant-scoped stores or
indices, application of policies and network rules [22], [23],
and a validation step that confirms scoping enforcement and
audit logging are active. Incident response for suspected
leakage should be planned explicitly. The system should
support rapid containment actions, such as temporarily
disabling retrieval for a tenant, restricting pooled services to
known-safe tiers, or isolating a suspect ingestion batch [13].
Audit trails must support reconstructing which chunks entered
prompts for specific requests, which is widely recommended
[19] for scoping the impact of a suspected event.

Key rotation, index rebuilds, and ACL updates are
recurring operations that can break isolation if not designed
carefully. Key rotation must be coordinated with storage
access and ingestion pipelines so that encryption boundaries
remain consistent. Index rebuild procedures must preserve
tenant scoping and must avoid accidental mixing during
backfills. ACL updates must propagate deterministically to
both metadata enforcement and retrieval-time filters, and
caching layers must respect the new authorization state to
avoid stale access decisions.

7.3. Limitations

Several limitations bound the generality of the results.
Implementations and performance characteristics vary across
LLM serving stacks [17] and across vector databases [21],
[24], [25], which can change the magnitude and location of
noisy-neighbor effects. The evaluation workload is focused
on document-based RAG [1] and may not represent other
retrieval modalities such as code, images, or structured
knowledge graphs. The threat model [14] is formalized
around the most relevant multi-tenant RAG threats, but not
every attack class is empirically validated in the evaluation
methodology, and some threats are treated through
architecture and controls rather than through demonstrated
exploitability. Finally, deployment environments differ in
network topology, observability tooling, and operational
access models, which can influence metadata inference risk
and the practicality of certain controls.

7.4. Future Directions

Future work can strengthen isolation and reduce
operational risk in several ways. Confidential computing can
provide stronger guarantees for certain processing steps by
reducing exposure of plaintext data in memory under specific
adversary models, though its applicability depends on
deployment constraints and performance impact. Federated
RAG approaches could enable selective cross-tenant
knowledge sharing under explicit privacy constraints, but
require rigorous policy models and robust auditing.
Automated tenant placement and dynamic pattern selection
are promising for Bridge deployments, where the system
could assign tenants to tiers based on measured workload
behavior and risk classification, then migrate tenants safely as
conditions change.

Standardization is also a practical direction, particularly
for defining evaluation interfaces and minimum conformance
requirements for tenant isolation in RAG pipelines. A
conformance testing suite that exercises leakage probes,
scoping assertions, and auditability checks would reduce
reliance on ad hoc validation and would make comparisons
across implementations more meaningful.

8. Conclusion

Multi-tenant RAG enables enterprise SaaS platforms to
ground model outputs in tenant-specific knowledge while
operating on shared infrastructure. This deployment model
introduces a strict requirement for tenant isolation that spans
storage, embeddings, retrieval, orchestration, and inference,
and it creates failure modes that are not addressed by
traditional multi-tenant patterns alone. The core result of this
work is a structured way to reason about isolation in RAG
systems, implement it in a cloud-native stack, and evaluate
tradeoffs across security, performance, cost, and operational
overhead.

8.1. Summary of Contributions

This paper introduced a formal taxonomy for multi-
tenant RAG isolation across four planes: data, vector,
orchestration, and LLM. The taxonomy makes isolation
requirements explicit, identifies where enforcement must
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occur, and provides a consistent vocabulary for comparing
architectural choices. A threat model tailored to multi-tenant
RAG was defined, covering embedding-space vulnerabilities
and data-plane risks, and grounding the discussion in concrete
trust boundaries and enforcement points. A Kubernetes-native
reference architecture was specified to implement tenant-
aware controls through explicit policy enforcement points
across ingestion and retrieval paths, with auditability treated
as a first-class requirement. Finally, the paper defined an
evaluation methodology that measures isolation strength
through leakage testing, quantifies noisy-neighbor effects
using latency percentiles under mixed-tenant load,
decomposes cost-per-query into attributable components, and
characterizes operational overhead through measurable
lifecycle metrics.

8.2. Key Takeaways

No single isolation pattern dominates across all
dimensions. Silo, Pool, and Bridge represent fundamentally
different tradeoffs between blast radius, performance
isolation, cost efficiency, and operational complexity.
Isolation in multi-tenant RAG is an end-to-end property. It
cannot be achieved by a single datastore setting or a single
gateway control because retrieval and context assembly can
introduce cross-tenant exposure even when storage
boundaries appear correct. In pooled architectures, leakage
risk is driven primarily by configuration and enforcement
correctness, including identity propagation, scoping
consistency across retrieval variants, provenance validation,
and auditability. Pattern selection therefore requires explicit
tradeoff analysis across isolation strength, latency targets,
cost drivers such as index footprint and inference
consumption, and the operational maturity required to run
continuous validation.

8.3. Closing Statement

Multi-tenant RAG is a practical foundation for enterprise
Al adoption because it aligns grounding with SaaS delivery
economics, but it demands rigor in how isolation is defined,
enforced, and verified. The taxonomy, threat model, reference
architecture, and evaluation methodology presented here
provide a defensible basis for selecting and operating Silo,
Pool, and Bridge patterns in production SaaS environments.
A clear next step is broader independent benchmarking and
standardization of isolation and evaluation interfaces so that
multi-tenant RAG systems can be compared consistently and
validated continuously as platforms evolve.
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