International Journal of Emerging Trends in Computer Science and Information Technology
ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.1JETCSIT-V711P105
Eureka Vision Publication | Volume 7, Issue 1, 23-29, 2026

Original Article

Developing End-to-End Concourse CI/CD Pipelines with
Automated Testing, Scanning, Canary Deployments, and
Rollback Logic

Sneha Palvai?, Vivek Jain?
1DevOps/AWS Engineer, Comcast, Philadelphia, USA.

?Digital Development Manager, Academy Sports Plus Outdoors, Texas, USA.

Received On: 23/11/2025 Revised On: 24/12/2025
Abstract - The increasing demand for rapid software delivery
has elevated Continuous Integration and Continuous
Delivery/Deployment (CI/CD) pipelines into mission-critical
systems. Modern pipelines must not only automate builds
and deployments but also ensure software quality, security,
reliability, and compliance. This paper presents a
comprehensive end-to-end approach for designing and
implementing CI/CD pipelines using Concourse Cl,
integrating automated testing, security scanning, progressive
canary deployments, and automated rollback mechanisms. A
reference architecture and reusable pipeline patterns are
proposed, followed by three practical case studies across
cloud-native microservices, regulated enterprise platforms,
and data engineering pipelines. The paper further evaluates
pipeline effectiveness using industry-standard metrics and
explores future directions including policy-as-code, software
supply chain security, SBOM-driven delivery, and Al-
assisted continuous testing.

Keywords - CI/CD, Concourse Cl, DevSecOps, Continuous
Testing, Canary Deployment, Rollback Automation,
Kubernetes, Software Supply Chain.

1. Introduction

Continuous delivery has become a foundational
capability for modern software-driven organizations. High-
performing teams deploy changes frequently while
maintaining system reliability and security. However,
increased deployment velocity introduces significant
operational risk if validation, security, and release controls
are insufficient. Research in Site Reliability Engineering
(SRE) emphasizes that reliability must be designed into
systems through automation, observability, and controlled
release strategies rather than relying on manual intervention

[1].

Concourse CI is an open-source CI/CD platform that
emphasizes declarative pipelines, containerized execution,
and explicit modeling of external state [2]. These
characteristics make it well-suited for building reproducible,
auditable, and scalable delivery pipelines. While Concourse
is often adopted for build automation, its design enables the
construction of fully automated delivery systems that include

Accepted On: 01/01/2026 Published On: 14/01/2026
testing, security scanning, progressive deployment, and
rollback logic.

This paper presents an end-to-end CI/CD architecture using
Concourse Cl and makes the following contributions:

1. A reference architecture for secure and reliable
CI/CD pipelines.

2. Pipeline design patterns for automated testing,
DevSecOps integration, canary deployments, and
rollback.

3. Real-world-inspired case studies demonstrating
practical adoption.

4. A discussion of future trends shaping next-
generation CI/CD systems.

DevSecOps Architecture Diagram

DEVELOPER

CODE Ecom
Repo

+ 1aC Security
+ Policy Checks
+ Compliance Controls

Figure 1. DevSecOps Architecture Diagram

Code Development Continuous Integration

Continuous Deployment

> OpsMx
@ - y,
Jenkine b

uuuuuuuuuu

Figure 2. CI/CD Pipeline

Sneha Palvai & Vivek Jain / IJETCSIT, 7(1), 23-29, 2026

2. Background and Motivation
2.1. Evolution of CI/CD Pipelines

Traditional CI systems focused primarily on code
compilation and unit testing. Over time, CI/CD pipelines
have expanded to include infrastructure provisioning,
security validation, and production deployment automation
[3]. The adoption of containers and Kubernetes further
accelerated this shift toward immutable artifacts and
declarative environments [4].

Continuous Delivery

Application Integration Acceptance
n s i » il

Automatic Manual
trigger » trigger

Application Integration Acceptance
n s i . il

Continuous Deployment

Figure 3. Continuous Delivery Vs Continuous Deployment

2.2. Continuous Testing as a Core Capability

Continuous testing ensures that quality checks are
embedded across the entire delivery lifecycle rather than
isolated to a single stage. Empirical studies show that
integrating automated testing at every pipeline phase reduces
defect leakage, accelerates feedback, and improves release
confidence [6], [15]. Continuous testing is therefore a
prerequisite for safe high-frequency deployments.

2.3. Motivation for Concourse ClI

Concourse Cl enforces a strict separation between
pipeline definition and execution, using ephemeral
containers for all tasks [2]. This model reduces configuration
drift, improves reproducibility, and supports strong
governance and audit requirements. These properties make
Concourse particularly suitable for regulated and large-scale
environments.

3. Reference Architecture

3.1. End-to-End Pipeline Stages

The proposed CI/CD pipeline consists of the following
stages:

1. Source and Build: Source code checkout, static
analysis, unit testing, and artifact creation.

2. Verification: Integration tests, contract tests, and
performance smoke tests.

3. Security and Compliance: SAST, SCA, container
image scanning, secret detection, and laC
validation.

4. Artifact Hardening: Image signing, Software Bill of
Materials (SBOM) generation, and metadata
attachment.

5. Progressive Deployment: Canary deployment with
incremental traffic shifting.

6. Observation and Decision: Runtime telemetry
evaluation to determine promotion or rollback.

7. Post-Deployment: Release tagging, natifications,
audit logging, and metrics collection.

This layered architecture aligns with DevSecOps and secure
software delivery frameworks [5], [9].

3.2. Key System Components

e Version Control: Git-based repositories for
application and infrastructure code.

e Artifact Registry: OCl-compliant container
registries.

e Security Toolchain: SAST, SCA, container, and laC
scanning tools.

e Runtime Platform: Kubernetes with ingress or
service mesh support.

o Observability Stack: Metrics, logs, and traces (e.g.,
Prometheus-based monitoring).

e Progressive Delivery Controller:
management using rollout controllers.

Canary

4. Pipeline Design Patterns

Modern CI/CD systems must balance speed, safety, and
reliability. The following pipeline design patterns illustrate
how Concourse CIl enables high-confidence continuous
delivery through declarative automation, progressive
validation, and closed-loop feedback.

4.1. Immutable Artifact Promotion

Artifacts are built once and promoted across
environments using immutable identifiers such as digests or
commit hashes. This approach eliminates environment-
specific builds and improves traceability and auditability [4],
[10].

Operating System | Operating System | Operating System | Operating System | Operating System
Liraries Libraries Lirares Libraries Lirares

wllll

Host DEV..n Host TEST1 HOStTEST2 HOStSTAGE1 HostSTAGE2

Distribute

su:sL»RV

SC142 STAGE

Software image 142

SC142 TEST
o\ Sc142
SC142 DEV ’J

SC142 SCAN
Promote

Figure 4. Immutable Infrastructure CI/CD

4.1.1. Key Characteristics
e Single source of truth for artifacts
e Artifact identity is immutable and verifiable
e Promotion is a metadata operation, not a rebuild

4.1.2. Benefits
. Eliminates
environments

configuration drift between

24

Sneha Palvai & Vivek Jain / IJETCSIT, 7(1), 23-29, 2026

. Improves traceability and auditability, as every
deployment can be traced back to a specific commit and
build [4], [10]

. Enables deterministic rollback by redeploying a
known-good artifact

4.1.3. Concourse Implementation

. Artifact produced once (e.g., Docker image)
) Stored in a registry with immutable tags or digests
) Promotion jobs reference the same artifact across all

environments

4.2. Automated Testing Pyramid
The pipeline enforces a structured testing strategy:
e Unit tests executed on every commit.
e Integration and contract tests executed before
environment promotion.
e End-to-end tests executed during canary or post-
deployment phases.

Research indicates that such continuous testing
strategies significantly improve delivery outcomes and
system stability [6], [15].

Plan Author Organize Execute Analyze

End-to-end testing - [0 Webapps

= [J Native mobile apps
Jeoseses Regression testing
3 J-= [Weband mobile broswers

Integration testing e &2 Desktop apps

Figure 5. Testing Phases

Complete system is test
Black-Box Testing - TA

Pl endg nt ire teste

AP Test Black-Box Testing - TA
) jratior e tested

Integration / Contract White-Box Testing - DEV

Test

i J tested
Unit/ Component Test White-Box Testing - DEV

Figure 6. Testing Pyramid

4.3. DevSecOps Gates and Policy-as-Code

Security controls are embedded directly into the pipeline
using automated gates. Policies define acceptable
vulnerability thresholds and configuration rules. Policy-as-
code ensures consistency, versioning, and auditability across
environments [11].

Figure 7. DevSecOps for IAC

4.4, Canary Deployment and Rollback Automation

Canary deployments gradually expose a new version to
production traffic while monitoring key Service Level
Indicators (SLIS) such as error rate and latency [7]. If
thresholds are exceeded, the pipeline automatically triggers a
rollback, restoring the previous stable version and rerouting
traffic [8].
@ o {fi |

i |I AnalysisRun |-

.‘0 Prometheus
Canary ReplicaSet H
9 Canary Pod :
20%

Stabla ReplicaSet

Figure 8. Progressive-Delivery-Rollouts-Analysis

Y

5. Case Studies

This section presents real-world-inspired case studies
demonstrating how the proposed Concourse-based CI/CD
architecture and pipeline design patterns are applied across
diverse operational contexts. Each case highlights
measurable improvements in reliability, security, and
recovery, aligning with established SRE and DevSecOps
principles.

5.1. Cloud-Native Microservices Platform
5.1.1. Context

A large-scale retail platform operated a cloud-native
microservices architecture deployed on Kubernetes. The
system comprised dozens of independently deployable
services supporting high-traffic e-commerce workflows.
Frequent releases were necessary to support rapid feature
experimentation and seasonal demand spikes.

5.1.2. Pipeline Implementation
The organization implemented Concourse-based CI/CD
pipelines with the following characteristics:
e Immutable artifact creation and promotion across
environments
e Automated testing and security scans at each
promotion stage
e Canary deployments using Kubernetes-native traffic
routing
e Continuous monitoring of real-time metrics during
rollout

25

Sneha Palvai & Vivek Jain / IJETCSIT, 7(1), 23-29, 2026

5.1.3. Observability and Control
During canary rollout, the pipeline evaluated key Service
Level Indicators (SLIs):

e HTTP error rates

e Request latency percentiles

e Pod health and restart frequency

Promotion decisions were fully automated. If SLI thresholds
were exceeded, rollback jobs were triggered immediately.

5.1.4. Outcomes
e Reduced change failure rate by limiting the blast
radius of releases
e Improved Mean Time to Recovery (MTTR) through
automated rollback
e Enabled higher deployment frequency without
compromising stability

These outcomes align closely with SRE best practices
emphasizing automation, observability, and controlled
release strategies [1], [7].

Typical Delivery Process for Microservices
Architecture

Disassembling '

O w0

[ooccoc JOAYN

Figure 9. Typical Delivery Process for Microservices
Architecture

(] Cl pipeline Outputs
commit trigger
' - ol Build code »| Code artifacts
repo
Dev Run unit tests - Test results
Build image »| Container image
push (\ Container
Push image » @iy Registry
Helm package »| Chart archive file
push r\ Helm
Push chart - @iim i
CD pipeline
Deploy to QA helm upgrade v test/QA
cluster
Integration tests
Retag image

Push image

helm upgrade
approve »| Deploy to production e

2 wlije

production
>
cluster

Figure 10. AKS CI/CD Flow

5.2. Regulated Enterprise Environment
5.2.1. Context

A highly regulated enterprise environment—subject to
stringent compliance and audit requirements—required
strong guarantees around software provenance, integrity, and
security controls. Manual approvals and ad hoc security
checks had historically slowed delivery and increased audit
overhead.

5.2.2. Pipeline Implementation
The organization adopted Concourse pipelines with security
and compliance embedded as code, including:

Mandatory static and dependency security scans
Cryptographic artifact signing during build
Promotion-by-digest to ensure artifact immutability
Automated policy evaluation at each pipeline stage

Security policies were version-controlled and enforced
uniformly across all environments.

5.2.3. Compliance Alignment
The pipeline design aligned with secure software supply
chain and NIST secure software development guidelines,
ensuring:

e Full traceability from source commit to production

deployment
o Deterministic and repeatable deployments
e Automatically generated audit artifacts

5.2.4. Outcomes
e Simplified audit
evidence generation
e Reduced reliance on manual approvals without
weakening controls
e Improved consistency and confidence in production
releases [9], [10]

preparation through built-in

This case demonstrates how automation can strengthen
compliance rather than undermine it.

Attacks are not restricted to code alone

Compromise Package
Manager / Artifact
Signing

Compromise Compromise
Source Control Build System

'
Submit \ Alter Build

Bypass CI/CD, Abuse
Bad Code : Pipeline Inject Bad Privileges
. i Artifact
e L
i v v ! \d
® ']
Reference o YN 2y | @ t
Workflow ® ! a o K= @ [==)
| |
A vy v I
Developer Source Build Artifacts Deploy \ Operate

Trick User to Use

Inject Bad/ Bad Resource

o 0
Vulnerable 9/%
Dependency %O

Dependencies

Figure 11. Secure and Compliant CI/CD Pipeline with
Artifact Signing and Policy Enforcement.

5.3. Data Engineering and ETL Pipelines
5.3.1. Context

A large-scale data platform managed complex ETL
pipelines responsible for analytics and downstream business
reporting. Failures in production data pipelines posed a high
risk of data corruption and downstream inaccuracies,
making traditional rollback approaches impractical.

5.3.2. Pipeline Implementation
The platform implemented
Concourse pipelines:
e Data transformations were validated on sampled
datasets

staged promotion using

26

Sneha Palvai & Vivek Jain / IJETCSIT, 7(1), 23-29, 2026

e Canary processing was applied to subsets of
production data

e Pipeline stages were fully observable with data-
quality metrics

Instead of reverting state, rollback was implemented as a
forward-fix strategy, replaying data with corrected logic.

5.3.3. Rollback and Resilience Strategy
Key mechanisms included:
e ldempotent data processing tasks
e Controlled replay of historical datasets
e Automated detection of schema and quality
violations

5.3.4. Outcomes
e Reduced risk of large-scale data corruption
e Improved pipeline resilience and recovery speed
e Increased confidence in production data releases
[12]

This case highlights that CI/CD principles—when
adapted correctly—extend beyond application delivery to
data engineering systems.

=]

S= &
SQL RDBMS @

Data Files
(excel, .dta, .pickle, .rds)

Transform
Document Files

(csv, txt, excel, pdf) Extract p Load —=
—
. > =

] SH

Webpages

Local Data Warehouse

=

Cloud Data Warehouse

(Intermediate Storage Area)

®

API

Data Source

New Paradigm

oy ot oo jroipsominy

oo 0EE

E00 ‘l‘__J 6} :})

oo - %%
s
Data Sources Data Lake / Data Warehouse

Figure 12. Stage promotion and rollback strategy for data
engineering and ETL pipelines

6. Future Trends in it budgeting

Future CI/CD systems are evolving beyond automation
efficiency toward trust, intelligence, and governance by
design. As software delivery becomes increasingly

distributed and security-critical, pipelines themselves are
emerging as first-class, policy-governed systems.

6.1.1. Software Supply Chain Security and SLSA Provenance

SOURCE THREATS BUILD THREATS

A & & & &4 & b

Developer Source Build Package Consumer

A . Dependencies

DEPENDENCY THREATS

SOURCE THREATS BUILD THREATS DEPENDENCY THREATS

A Bypassed code review € Modified code after source control E Using a bad dependency

B Compromised source control system D Compromised build platform

F Bypassed CI/CD
G Compromised package repo

H Using a bad package

Figure 13. Software Supply Chain Security Using SLSA-
Compliant Provenance And Attestations

Modern attacks increasingly target the software supply
chain, exploiting weaknesses in build systems, dependencies,
and artifact repositories. To mitigate these risks, future
pipelines will adopt SLSA-compliant (Supply-chain Levels
for Software Artifacts) provenance models.

Key characteristics include:
e Cryptographically verifiable build provenance
e Non-falsifiable attestations linking source, build,
and artifact
e Tamper-resistant metadata stored alongside artifacts

SLSA-aligned pipelines ensure that every deployed
artifact can be traced back to a trusted build process,

significantly reducing the risk of dependency poisoning and
unauthorized modifications [10].

6.1.2. SBOM-First Delivery Models

Software Bill of Materials Lifecycle

INVENTORY ITEMS

Components & Versions

Usage info Alerts [Notfications Tasks

© B =

Third-party Notices

=]

27

Sneha Palvai & Vivek Jain / IJETCSIT, 7(1), 23-29, 2026

Integration of SBOM into the CI/CD Pipeline

=

st
+ Application bulkd pracess
‘and S80M generation.

Scan

+ Source eode submitted to
the repository.

Figure 14. SBOM-First CI/CD Delivery Pipeline Enabling
Vulnerability Transparency

Future CI/CD systems will treat Software Bills of
Materials (SBOMs) as mandatory deployment artifacts
rather than optional reports. SBOM-first delivery enables
organizations to understand and manage risk across their
entire dependency graph.

Emerging practices include:
e Automatic SBOM generation during build stages
e Continuous vulnerability — assessment against
deployed SBOMs
e Compliance reporting
release pipelines

integrated directly into

This approach improves vulnerability transparency,
accelerates incident response, and aligns with regulatory
expectations in regulated and enterprise environments [9].

6.1.3. Policy-as-Code Standardization Across Governance
Domains

Network |
example Policy |
policies ~ , | haming |

conventions |

Togging |

_Standards

Security/Compliance Team

@

I

Get Custom Policies.
|
|

1) Policy Engine
@ checkov =7

g & :
Raise PR _ - KA
.: T 7 forTaC
OPA Kyverno

DevOps - 4-&
Engineer Trigger CI Pipeline (2) -
§ =
2 . |
I

Code Analysis on TaC
against policies

CI/CD Tool =

Predefined Tool Based
Policy Database For

SN TaC Tools

- @) . (Terraform, Helm etc)

IaC Code Analysis
N\

B s
Fail Passed
l | By Bibin Wikson
Notify Merge PR
1 |
v v

Figure 15. Policy-as-Code Enforcement Across Security,
Compliance, And Governance Domains

As delivery complexity grows, organizations are
converging on policy-as-code as a unifying mechanism for
enforcing security, compliance, and operational governance.

Future pipelines will standardize:
e Security policies (vulnerability thresholds, secrets
handling)
e Infrastructure
encryption)
e Release and operational controls (promotion rules,
blast-radius limits)

governance (networking, 1AM,

By codifying policies and versioning them alongside
application code, CI/CD pipelines become self-governing
systems, ensuring consistency, auditability, and cross-team
alignment [11].

6.1.4. Al-Assisted Continuous Testing and Pipeline
Optimization
9} 4 N "E:' D ﬁ*

Repository AWS CodePipeiine AWS CodeBulg JOCker
A

AWS Step Functions Workfiow 2
v

Amazon SageMaker

il
17 < o st
8 @ - (’ Trem&:‘g g
7 N

Accept Amazon SNS Craaie ?
AWS Step Functions Model o
/4 2
14 Batch @ i
& Transform

- o = ; Amazon §3

a - (Serialized

SageMaker Model)

Inference

Amazon API Gateway Endpoint
et o AWS Lambda 'y

Scientist /
Applications

¢ {contmious |
V| oeuvemy |}

Data
:' CONTINIQUS ."
W | INTEGRATION |

Code

Model

Figure 15. Al-Assisted Continuous Testing and Adaptive
Pipeline Optimization

Artificial intelligence and machine learning are poised to
transform CI/CD pipelines from static workflows into
adaptive, self-optimizing systems.

Emerging Al-driven capabilities include:
e Intelligent test selection based on code-change
impact
e Failure
telemetry

prediction using historical pipeline

28

Sneha Palvai & Vivek Jain / IJETCSIT, 7(1), 23-29, 2026

e Dynamic optimization of pipeline execution paths

These techniques reduce test execution time while
improving defect detection rates, enabling faster feedback
loops without sacrificing quality. Research indicates that Al-
assisted continuous testing significantly enhances delivery
performance and system reliability [14], [15].

6.2. Synthesis: The Next Generation of CI/CD

Collectively, these trends signal a shift toward CI/CD
systems that are:

Trust-aware (secure by provenance and attestation)
Transparent (SBOM-driven visibility)

Governed (policy-as-code enforcement)

Intelligent (Al-assisted decision-making)

Such systems align closely with SRE principles by
embedding reliability, security, and resilience directly into
the delivery lifecycle rather than treating them as external
concerns.

7. Conclusion

This paper demonstrates how Concourse Cl can be used
to design and implement robust, end-to-end CI/CD pipelines
that integrate automated testing, security scanning,
progressive canary deployments, and automated rollback
logic. By combining immutable artifact promotion,
continuous testing, policy-driven security and governance
gates, and telemetry-based decision-making, organizations
can safely increase deployment velocity while significantly
reducing operational risk. The proposed reference
architecture and real-world-inspired case studies illustrate
that reliable continuous delivery is achievable at scale when
automation, observability, and governance are treated as
first-class pipeline concerns rather than post-deployment
safeguards. These results reinforce SRE principles that
reliability must be engineered into delivery systems through
declarative workflows, measurable signals, and controlled
release strategies. As CI/CD systems continue to evolve

toward supply chain security, policy standardization, and Al-
assisted optimization, platforms such as Concourse CI
provide a strong foundation for building secure, auditable,
and resilient delivery pipelines capable of supporting modern
software-driven enterprises.

References

[1]1 B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, Site
Reliability Engineering: How Google Runs Production
Systems, O’Reilly Media, 2016.

[21 Concourse Cl, “Concourse
https://concourse-ci.org

[31 J. Humble and D. Farley,
Addison-Wesley, 2011.

[4] Kubernetes Authors,
https://kubernetes.io

[5] OWASP Foundation, “OWASP Software Assurance
Maturity Model (SAMM),” 2020.

[6] L. Crispin and J. Gregory, Agile Testing, Addison-
Wesley, 2009.

[71 Argo Project, “Argo Rollouts: Progressive Delivery for
Kubernetes,” https://argo-rollouts.readthedocs.io

[8] M. Fowler, “Blue-Green Deployment,”
martinfowler.com, 2010.

[91 [NIST, Secure Software Development Framework
(SSDF), NIST SP 800-218, 2022.

[10] OpenSSF, “Supply-chain Levels for Software Artifacts
(SLSA),” https://slsa.dev

[11] Open Policy Agent,
https://www.openpolicyagent.org

[12] G. Dehghani, Data Mesh, O’Reilly Media, 2022.

[13] N. Forsgren, J. Humble, and G. Kim, Accelerate, IT
Revolution Press, 2018.

[14] Google Research, “Machine Learning for Systems and
Systems for Machine Learning,” 2020.

[15] V. Jain, “Continuous Testing in CI/CD Pipelines,”
International Journal of Innovative Research and
Creative Technology, vol. 9, no. 1, pp. 1-7, 2023, doi:
10.5281/zenod0.14883221.

Documentation,”
Continuous Delivery,

“Kubernetes Documentation,”

“Policy-as-Code,”

29

https://concourse-ci.org/
https://kubernetes.io/
https://argo-rollouts.readthedocs.io/
https://slsa.dev/
https://www.openpolicyagent.org/

