
International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V7I1P105
Eureka Vision Publication | Volume 7, Issue 1, 23-29, 2026

Original Article

Developing End-to-End Concourse CI/CD Pipelines with

Automated Testing, Scanning, Canary Deployments, and

Rollback Logic

Sneha Palvai1, Vivek Jain2

1DevOps/AWS Engineer, Comcast, Philadelphia, USA.
2Digital Development Manager, Academy Sports Plus Outdoors, Texas, USA.

Received On: 23/11/2025 Revised On: 24/12/2025 Accepted On: 01/01/2026 Published On: 14/01/2026

Abstract - The increasing demand for rapid software delivery

has elevated Continuous Integration and Continuous

Delivery/Deployment (CI/CD) pipelines into mission-critical

systems. Modern pipelines must not only automate builds

and deployments but also ensure software quality, security,

reliability, and compliance. This paper presents a

comprehensive end-to-end approach for designing and

implementing CI/CD pipelines using Concourse CI,

integrating automated testing, security scanning, progressive

canary deployments, and automated rollback mechanisms. A

reference architecture and reusable pipeline patterns are

proposed, followed by three practical case studies across

cloud-native microservices, regulated enterprise platforms,

and data engineering pipelines. The paper further evaluates

pipeline effectiveness using industry-standard metrics and

explores future directions including policy-as-code, software

supply chain security, SBOM-driven delivery, and AI-

assisted continuous testing.

Keywords - CI/CD, Concourse CI, DevSecOps, Continuous

Testing, Canary Deployment, Rollback Automation,

Kubernetes, Software Supply Chain.

1. Introduction
Continuous delivery has become a foundational

capability for modern software-driven organizations. High-

performing teams deploy changes frequently while

maintaining system reliability and security. However,

increased deployment velocity introduces significant

operational risk if validation, security, and release controls

are insufficient. Research in Site Reliability Engineering

(SRE) emphasizes that reliability must be designed into

systems through automation, observability, and controlled

release strategies rather than relying on manual intervention

[1].

Concourse CI is an open-source CI/CD platform that

emphasizes declarative pipelines, containerized execution,

and explicit modeling of external state [2]. These

characteristics make it well-suited for building reproducible,

auditable, and scalable delivery pipelines. While Concourse

is often adopted for build automation, its design enables the

construction of fully automated delivery systems that include

testing, security scanning, progressive deployment, and

rollback logic.

This paper presents an end-to-end CI/CD architecture using

Concourse CI and makes the following contributions:

1. A reference architecture for secure and reliable

CI/CD pipelines.

2. Pipeline design patterns for automated testing,

DevSecOps integration, canary deployments, and

rollback.

3. Real-world-inspired case studies demonstrating

practical adoption.

4. A discussion of future trends shaping next-

generation CI/CD systems.

Figure 1. DevSecOps Architecture Diagram

Figure 2. CI/CD Pipeline

Sneha Palvai & Vivek Jain / IJETCSIT, 7(1), 23-29, 2026

24

2. Background and Motivation
2.1. Evolution of CI/CD Pipelines

Traditional CI systems focused primarily on code

compilation and unit testing. Over time, CI/CD pipelines

have expanded to include infrastructure provisioning,

security validation, and production deployment automation

[3]. The adoption of containers and Kubernetes further

accelerated this shift toward immutable artifacts and

declarative environments [4].

Figure 3. Continuous Delivery Vs Continuous Deployment

2.2. Continuous Testing as a Core Capability
Continuous testing ensures that quality checks are

embedded across the entire delivery lifecycle rather than

isolated to a single stage. Empirical studies show that

integrating automated testing at every pipeline phase reduces

defect leakage, accelerates feedback, and improves release

confidence [6], [15]. Continuous testing is therefore a

prerequisite for safe high-frequency deployments.

2.3. Motivation for Concourse CI
Concourse CI enforces a strict separation between

pipeline definition and execution, using ephemeral

containers for all tasks [2]. This model reduces configuration

drift, improves reproducibility, and supports strong

governance and audit requirements. These properties make

Concourse particularly suitable for regulated and large-scale

environments.

3. Reference Architecture
3.1. End-to-End Pipeline Stages

The proposed CI/CD pipeline consists of the following

stages:

1. Source and Build: Source code checkout, static

analysis, unit testing, and artifact creation.

2. Verification: Integration tests, contract tests, and

performance smoke tests.

3. Security and Compliance: SAST, SCA, container

image scanning, secret detection, and IaC

validation.

4. Artifact Hardening: Image signing, Software Bill of

Materials (SBOM) generation, and metadata

attachment.

5. Progressive Deployment: Canary deployment with

incremental traffic shifting.

6. Observation and Decision: Runtime telemetry

evaluation to determine promotion or rollback.

7. Post-Deployment: Release tagging, notifications,

audit logging, and metrics collection.

This layered architecture aligns with DevSecOps and secure

software delivery frameworks [5], [9].

3.2. Key System Components

 Version Control: Git-based repositories for

application and infrastructure code.

 Artifact Registry: OCI-compliant container

registries.

 Security Toolchain: SAST, SCA, container, and IaC

scanning tools.

 Runtime Platform: Kubernetes with ingress or

service mesh support.

 Observability Stack: Metrics, logs, and traces (e.g.,

Prometheus-based monitoring).

 Progressive Delivery Controller: Canary

management using rollout controllers.

4. Pipeline Design Patterns
Modern CI/CD systems must balance speed, safety, and

reliability. The following pipeline design patterns illustrate

how Concourse CI enables high-confidence continuous

delivery through declarative automation, progressive

validation, and closed-loop feedback.

4.1. Immutable Artifact Promotion
Artifacts are built once and promoted across

environments using immutable identifiers such as digests or

commit hashes. This approach eliminates environment-

specific builds and improves traceability and auditability [4],

[10].

Figure 4. Immutable Infrastructure CI/CD

4.1.1. Key Characteristics

 Single source of truth for artifacts

 Artifact identity is immutable and verifiable

 Promotion is a metadata operation, not a rebuild

4.1.2. Benefits

 Eliminates configuration drift between

environments

Sneha Palvai & Vivek Jain / IJETCSIT, 7(1), 23-29, 2026

25

 Improves traceability and auditability, as every

deployment can be traced back to a specific commit and

build [4], [10]

 Enables deterministic rollback by redeploying a

known-good artifact

4.1.3. Concourse Implementation

 Artifact produced once (e.g., Docker image)

 Stored in a registry with immutable tags or digests

 Promotion jobs reference the same artifact across all

environments

4.2. Automated Testing Pyramid
The pipeline enforces a structured testing strategy:

 Unit tests executed on every commit.

 Integration and contract tests executed before

environment promotion.

 End-to-end tests executed during canary or post-

deployment phases.

Research indicates that such continuous testing

strategies significantly improve delivery outcomes and

system stability [6], [15].

Figure 5. Testing Phases

Figure 6. Testing Pyramid

4.3. DevSecOps Gates and Policy-as-Code
Security controls are embedded directly into the pipeline

using automated gates. Policies define acceptable

vulnerability thresholds and configuration rules. Policy-as-

code ensures consistency, versioning, and auditability across

environments [11].

Figure 7. DevSecOps for IAC

4.4. Canary Deployment and Rollback Automation
Canary deployments gradually expose a new version to

production traffic while monitoring key Service Level

Indicators (SLIs) such as error rate and latency [7]. If

thresholds are exceeded, the pipeline automatically triggers a

rollback, restoring the previous stable version and rerouting

traffic [8].

Figure 8. Progressive-Delivery-Rollouts-Analysis

5. Case Studies
This section presents real-world-inspired case studies

demonstrating how the proposed Concourse-based CI/CD

architecture and pipeline design patterns are applied across

diverse operational contexts. Each case highlights

measurable improvements in reliability, security, and

recovery, aligning with established SRE and DevSecOps

principles.

5.1. Cloud-Native Microservices Platform

5.1.1. Context

A large-scale retail platform operated a cloud-native

microservices architecture deployed on Kubernetes. The

system comprised dozens of independently deployable

services supporting high-traffic e-commerce workflows.

Frequent releases were necessary to support rapid feature

experimentation and seasonal demand spikes.

5.1.2. Pipeline Implementation

The organization implemented Concourse-based CI/CD

pipelines with the following characteristics:

 Immutable artifact creation and promotion across

environments

 Automated testing and security scans at each

promotion stage

 Canary deployments using Kubernetes-native traffic

routing

 Continuous monitoring of real-time metrics during

rollout

Sneha Palvai & Vivek Jain / IJETCSIT, 7(1), 23-29, 2026

26

5.1.3. Observability and Control

During canary rollout, the pipeline evaluated key Service

Level Indicators (SLIs):

 HTTP error rates

 Request latency percentiles

 Pod health and restart frequency

Promotion decisions were fully automated. If SLI thresholds

were exceeded, rollback jobs were triggered immediately.

5.1.4. Outcomes

 Reduced change failure rate by limiting the blast

radius of releases

 Improved Mean Time to Recovery (MTTR) through

automated rollback

 Enabled higher deployment frequency without

compromising stability

These outcomes align closely with SRE best practices

emphasizing automation, observability, and controlled

release strategies [1], [7].

Figure 9. Typical Delivery Process for Microservices

Architecture

Figure 10. AKS CI/CD Flow

5.2. Regulated Enterprise Environment

5.2.1. Context

A highly regulated enterprise environment—subject to

stringent compliance and audit requirements—required

strong guarantees around software provenance, integrity, and

security controls. Manual approvals and ad hoc security

checks had historically slowed delivery and increased audit

overhead.

5.2.2. Pipeline Implementation

The organization adopted Concourse pipelines with security

and compliance embedded as code, including:

 Mandatory static and dependency security scans

 Cryptographic artifact signing during build

 Promotion-by-digest to ensure artifact immutability

 Automated policy evaluation at each pipeline stage

Security policies were version-controlled and enforced

uniformly across all environments.

5.2.3. Compliance Alignment

The pipeline design aligned with secure software supply

chain and NIST secure software development guidelines,

ensuring:

 Full traceability from source commit to production

deployment

 Deterministic and repeatable deployments

 Automatically generated audit artifacts

5.2.4. Outcomes

 Simplified audit preparation through built-in

evidence generation

 Reduced reliance on manual approvals without

weakening controls

 Improved consistency and confidence in production

releases [9], [10]

This case demonstrates how automation can strengthen

compliance rather than undermine it.

Figure 11. Secure and Compliant CI/CD Pipeline with

Artifact Signing and Policy Enforcement.

5.3. Data Engineering and ETL Pipelines

5.3.1. Context

A large-scale data platform managed complex ETL

pipelines responsible for analytics and downstream business

reporting. Failures in production data pipelines posed a high

risk of data corruption and downstream inaccuracies,

making traditional rollback approaches impractical.

5.3.2. Pipeline Implementation

The platform implemented staged promotion using

Concourse pipelines:

 Data transformations were validated on sampled

datasets

Sneha Palvai & Vivek Jain / IJETCSIT, 7(1), 23-29, 2026

27

 Canary processing was applied to subsets of

production data

 Pipeline stages were fully observable with data-

quality metrics

Instead of reverting state, rollback was implemented as a

forward-fix strategy, replaying data with corrected logic.

5.3.3. Rollback and Resilience Strategy

Key mechanisms included:

 Idempotent data processing tasks

 Controlled replay of historical datasets

 Automated detection of schema and quality

violations

5.3.4. Outcomes

 Reduced risk of large-scale data corruption

 Improved pipeline resilience and recovery speed

 Increased confidence in production data releases

[12]

This case highlights that CI/CD principles—when

adapted correctly—extend beyond application delivery to

data engineering systems.

Figure 12. Stage promotion and rollback strategy for data

engineering and ETL pipelines

6. Future Trends in it budgeting
Future CI/CD systems are evolving beyond automation

efficiency toward trust, intelligence, and governance by

design. As software delivery becomes increasingly

distributed and security-critical, pipelines themselves are

emerging as first-class, policy-governed systems.

6.1.1. Software Supply Chain Security and SLSA Provenance

Figure 13. Software Supply Chain Security Using SLSA-

Compliant Provenance And Attestations

Modern attacks increasingly target the software supply

chain, exploiting weaknesses in build systems, dependencies,

and artifact repositories. To mitigate these risks, future

pipelines will adopt SLSA-compliant (Supply-chain Levels

for Software Artifacts) provenance models.

Key characteristics include:

 Cryptographically verifiable build provenance

 Non-falsifiable attestations linking source, build,

and artifact

 Tamper-resistant metadata stored alongside artifacts

SLSA-aligned pipelines ensure that every deployed

artifact can be traced back to a trusted build process,

significantly reducing the risk of dependency poisoning and

unauthorized modifications [10].

6.1.2. SBOM-First Delivery Models

Sneha Palvai & Vivek Jain / IJETCSIT, 7(1), 23-29, 2026

28

Figure 14. SBOM-First CI/CD Delivery Pipeline Enabling

Vulnerability Transparency

Future CI/CD systems will treat Software Bills of

Materials (SBOMs) as mandatory deployment artifacts

rather than optional reports. SBOM-first delivery enables

organizations to understand and manage risk across their

entire dependency graph.

Emerging practices include:

 Automatic SBOM generation during build stages

 Continuous vulnerability assessment against

deployed SBOMs

 Compliance reporting integrated directly into

release pipelines

This approach improves vulnerability transparency,

accelerates incident response, and aligns with regulatory

expectations in regulated and enterprise environments [9].

6.1.3. Policy-as-Code Standardization Across Governance

Domains

Figure 15. Policy-as-Code Enforcement Across Security,

Compliance, And Governance Domains

As delivery complexity grows, organizations are

converging on policy-as-code as a unifying mechanism for

enforcing security, compliance, and operational governance.

Future pipelines will standardize:

 Security policies (vulnerability thresholds, secrets

handling)

 Infrastructure governance (networking, IAM,

encryption)

 Release and operational controls (promotion rules,

blast-radius limits)

By codifying policies and versioning them alongside

application code, CI/CD pipelines become self-governing

systems, ensuring consistency, auditability, and cross-team

alignment [11].

6.1.4. AI-Assisted Continuous Testing and Pipeline

Optimization

Figure 15. AI-Assisted Continuous Testing and Adaptive

Pipeline Optimization

Artificial intelligence and machine learning are poised to

transform CI/CD pipelines from static workflows into

adaptive, self-optimizing systems.

Emerging AI-driven capabilities include:

 Intelligent test selection based on code-change

impact

 Failure prediction using historical pipeline

telemetry

Sneha Palvai & Vivek Jain / IJETCSIT, 7(1), 23-29, 2026

29

 Dynamic optimization of pipeline execution paths

These techniques reduce test execution time while

improving defect detection rates, enabling faster feedback

loops without sacrificing quality. Research indicates that AI-

assisted continuous testing significantly enhances delivery

performance and system reliability [14], [15].

6.2. Synthesis: The Next Generation of CI/CD

Collectively, these trends signal a shift toward CI/CD

systems that are:

 Trust-aware (secure by provenance and attestation)

 Transparent (SBOM-driven visibility)

 Governed (policy-as-code enforcement)

 Intelligent (AI-assisted decision-making)

Such systems align closely with SRE principles by

embedding reliability, security, and resilience directly into

the delivery lifecycle rather than treating them as external

concerns.

7. Conclusion
This paper demonstrates how Concourse CI can be used

to design and implement robust, end-to-end CI/CD pipelines

that integrate automated testing, security scanning,

progressive canary deployments, and automated rollback

logic. By combining immutable artifact promotion,

continuous testing, policy-driven security and governance

gates, and telemetry-based decision-making, organizations

can safely increase deployment velocity while significantly

reducing operational risk. The proposed reference

architecture and real-world-inspired case studies illustrate

that reliable continuous delivery is achievable at scale when

automation, observability, and governance are treated as

first-class pipeline concerns rather than post-deployment

safeguards. These results reinforce SRE principles that

reliability must be engineered into delivery systems through

declarative workflows, measurable signals, and controlled

release strategies. As CI/CD systems continue to evolve

toward supply chain security, policy standardization, and AI-

assisted optimization, platforms such as Concourse CI

provide a strong foundation for building secure, auditable,

and resilient delivery pipelines capable of supporting modern

software-driven enterprises.

References
[1] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, Site

Reliability Engineering: How Google Runs Production

Systems, O’Reilly Media, 2016.

[2] Concourse CI, ―Concourse Documentation,‖

https://concourse-ci.org

[3] J. Humble and D. Farley, Continuous Delivery,

Addison-Wesley, 2011.

[4] Kubernetes Authors, ―Kubernetes Documentation,‖

https://kubernetes.io

[5] OWASP Foundation, ―OWASP Software Assurance

Maturity Model (SAMM),‖ 2020.

[6] L. Crispin and J. Gregory, Agile Testing, Addison-

Wesley, 2009.

[7] Argo Project, ―Argo Rollouts: Progressive Delivery for

Kubernetes,‖ https://argo-rollouts.readthedocs.io

[8] M. Fowler, ―Blue-Green Deployment,‖

martinfowler.com, 2010.

[9] [NIST, Secure Software Development Framework

(SSDF), NIST SP 800-218, 2022.

[10] OpenSSF, ―Supply-chain Levels for Software Artifacts

(SLSA),‖ https://slsa.dev

[11] Open Policy Agent, ―Policy-as-Code,‖

https://www.openpolicyagent.org

[12] G. Dehghani, Data Mesh, O’Reilly Media, 2022.

[13] N. Forsgren, J. Humble, and G. Kim, Accelerate, IT

Revolution Press, 2018.

[14] Google Research, ―Machine Learning for Systems and

Systems for Machine Learning,‖ 2020.

[15] V. Jain, ―Continuous Testing in CI/CD Pipelines,‖

International Journal of Innovative Research and

Creative Technology, vol. 9, no. 1, pp. 1–7, 2023, doi:

10.5281/zenodo.14883221.

https://concourse-ci.org/
https://kubernetes.io/
https://argo-rollouts.readthedocs.io/
https://slsa.dev/
https://www.openpolicyagent.org/

