Ny

International Journal of Emerging Trends in Computer Science and Information Technology
ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.1JETCSIT-V711P104
Eureka Vision Publication | Volume 7, Issue 1, 19-22, 2026

Original Article

Ambient Queue Management: Real-Time Load Distribution
across Parallel User Journeys in Android

Received On: 20/11/2025 Revised On: 21/12/2025

Abstract - Modern Android applications particularly large-
scale e-commerce and transactional platforms—must
support thousands of concurrent user journeys under
unpredictable peak loads. Traditional concurrency and task-
scheduling mechanisms, while effective in isolation, fail to
provide holistic load fairness when multiple user journeys
compete for shared system resources such as CPU, memory,
network bandwidth, and Ul rendering pipelines. This paper
introduces Ambient Queue Management (AQM), a real-time,
context-aware load distribution model de-signed specifically
for Android applications operating under high concurrency.
AQM dynamically observes runtime signals—including Ul
frame latency, coroutine saturation, network throughput, and
user intent priority—and redistributes execution across
multiple parallel queues without disrupting foreground
responsiveness. Unlike static prioritization or server-side
throttling approaches, AQM operates continuously in the
background (“ambiently”), adapting execution strategies as
device and application conditions evolve. This paper
presents the architectural foundation of AQM, its Android-
specific implementation using Kotlin coroutines and reactive
streams, and an empirical evaluation conducted under
simulated peak traffic conditions inspired by large-scale
retail mobile applications. Results demonstrate measurable
improve-ments in Ul stability, network fairness, and system
throughput, positioning AQM as a practical and scalable
model for real-time mobile load orchestration.

Keywords - Android performance, concurrency manage-
ment, real-time load balancing, Kotlin coroutines, reactive
streams, mobile systems optimization.

1. Introduction

The evolution of Android applications from single-
purpose utilities into full-scale digital platforms has
fundamentally altered performance expectations.
Contemporary Android ap-plications are required to
simultaneously support real-time search, personalization,
payment processing, analytics, ex-perimentation, and
background synchronization—all ~ while maintaining
consistent Ul responsiveness. This challenge is amplified
during peak traffic periods, such as product launches, flash
sales, or seasonal demand surges, where thousands of users
interact concurrently with shared backend services and on-
device resources. Traditional ~Android concurrency
mechanisms including thread pools, coroutine dispatchers,

Varun Reddy Guda
Lead Android Developer Little EIm, Texas, USA.
Accepted On: 28/12/2025 Published On: 11/01/2026
and task prioritiza-tion were designed to optimize individual
execution flows rather than manage fairness across parallel
user journeys. As a result, competing flows often create
localized bottlenecks, leading to Ul jank, increased latency,
and unpredictable execu-tion ordering. Server-side load
balancing can mitigate backend pressure but cannot account
for on-device contention between foreground and
background operations.

This paper proposes Ambient Queue Management
(AQM) as a novel approach to real-time load distribution
across parallel user journeys within Android applications.
The term ambient reflects the system’s ability to
continuously observe and adapt without explicit user
intervention or rigid schedul-ing boundaries. Rather than
statically assigning priorities, AQM dynamically rebalances
work queues based on real-time telemetry, ensuring that
critical user interactions remain responsive even under heavy
load. The remainder of this paper explores the theoretical
founda-tions of AQM, its architectural design, Android
implementa-tion details, and experimental evaluation under
simulated high-concurrency conditions.

2. Background and Related Work
2.1. Android Concurrency Models

Android’s concurrency evolution has progressed from
tradi-tional Java threads and handlers to modern abstractions
such as Kotlin coroutines, structured concurrency, and
reactive streams. Coroutines allow developers to express
asynchronous logic in a sequential manner while delegating
execution to dis-patchers optimized for CPU-bound, 10-
bound, or main-thread operations. While this model improves
developer productivity, it does not inherently prevent
resource starvation when multi-ple coroutine scopes compete
for shared dispatchers. WorkManager and JobScheduler
provide guarantees for deferred execution but are optimized
for reliability rather than real-time fairness. As a result,
applications with complex, concurrent user journeys often
rely on ad-hoc throttling or manual prioritization strategies
that degrade under dynamic load.

2.2. Load Balancing in Mobile Systems

Most load balancing research has focused on server-side
architectures, where requests can be redistributed across
nodes using consistent hashing or adaptive routing
algorithms [1], [2]. Mobile environments differ significantly

Varun Reddy Guda / IJETCSIT, 7(1), 19-22, 2026

due to con-strained resources, Ul thread sensitivity, and
unpredictable network conditions. Prior studies on mobile
task scheduling primarily emphasize energy efficiency or
background execu-tion limits rather than fairness across user
journeys [3], [4].

User Journeys Adaptive Queues

C Foreground Transactional Ambient

o Search Queues Queues Queues

Checkout D n m—
[:] D . . T — Ul Dispatcher

m Analytics
Background
Tasks

(]]}

Ambient Queue Management (AQM) Layer

IR

Telemetry

—p | Network Dispatcher

> 10 Dispatcher

Load Balancer Decision Engine

Figurel. Ambient Queue Management Architecture

2.3. Reactive Backpressure and Flow Control

Reactive ~ programming frameworks introduce
backpressure mechanisms to prevent producers from
overwhelming con-sumers [5]. While effective for stream
processing, these mech-anisms operate at the data-flow level
and lack awareness of user intent or Ul criticality. AQM
extends these concepts by incorporating contextual signals
into queue management decisions.

3. Problem Statement AND Motivation
Large-scale Android applications frequently execute
multi-ple independent user journeys in parallel—for example,
brows-ing, search, checkout, personalization, and analytics.
Each journey may spawn several asynchronous operations,
including network calls, database reads, and Ul updates.
When these operations are scheduled without coordination,
contention emerges across dispatchers and system resources.

Empirical observations from production-scale Android ap-
plications reveal several recurring issues:
1) Foreground starvation, where background analytics
or prefetching tasks degrade Ul responsiveness.
2) Unfair network utilization, where a single user
journey monopolizes bandwidth.
3) Unpredictable execution latency, resulting from
dis-patcher saturation under peak load.

These challenges motivate the need for a system that not
only schedules tasks efficiently but also balances execution
fairly across concurrent user journeys in real time.

4. Ambient Queue Management Architecture
4.1. Conceptual Overview

Ambient Queue Management introduces a multi-queue
or-chestration layer that sits between application logic and
corou-tine dispatchers. Instead of directly launching
asynchronous tasks, user journeys submit work units to
AQM-managed queues categorized by intent and criticality.

Each queue dy-namically adjusts execution rates based on
real-time telemetry, ensuring no single journey overwhelms
shared resources.

4.2. Queue Classification
AQM defines three primary queue classes:
1) Foreground Interaction Queues — Ul-critical tasks
such as rendering, input handling, and navigation.
2) Transactional Queues — Network and business-

critical operations such as checkout or
authentication.

3) Ambient Queues - Background operations
including analytics, logging, and speculative

prefetching.

Ambient Queue Management (AQM)

* Queue Classifier
* Telemetry Monitor

User Journeys —I-nb Adaptive Scheduler
Browse —
Search 7I I I

Checkout — Coroitine Dispatchers

TXQ Ambient Q
(Network) (BG)
Adaptive Queues
\ 4

Coroutine Dispatchers (Main, 10, Default)

Profile)

Figure 2. Ambient Queue Scheduling and Execution
Flow across Parallel user Journeys.

4.3. Telemetry-Driven Adaptation

AQM continuously monitors signals such as frame
render time, coroutine backlog depth, and network latency.
These metrics feed into a lightweight decision engine that
throttles or accelerates queues accordingly.

5. Android Implementation Details
5.1. Coroutine-Oriented Design

AQM is implemented using Kotlin coroutines and Flow.
Each queue operates within a dedicated coroutine scope,
allowing structured cancellation and isolation between jour-
neys. Dispatchers are selected dynamically based on runtime
conditions rather than statically assigned.

5.2. Integration with Ul Layer

In Jetpack Compose-based applications, AQM integrates
directly with ViewModel scopes, ensuring lifecycle
awareness and preventing leaked execution when Ul
components are disposed.

5.3. Observability and Instrumentation

Performance metrics are collected using Android perfor-
mance APIs and exported to monitoring systems for offline
analysis and tuning.

6. Experimental Setup
To evaluate the effectiveness of Ambient Queue
Manage-ment (AQM), a controlled experimental

20

Varun Reddy Guda / IJETCSIT, 7(1), 19-22, 2026

environment was constructed to simulate high-concurrency
Android application behavior resembling large-scale e-
commerce workloads. The evaluation focused on comparing
baseline Android coroutine scheduling with the proposed
AQM-enabled architecture.

6.1. Test Environment

The experiments were conducted using a reference
Android application designed to emulate real-world user
journeys, including product browsing, search, checkout,
personalization, and analytics logging. The application was
executed on both physical devices and emulators
representing mid-range and high-end Android hardware
configurations. The Android OS wversions ranged from
Android 12 to Android 14 to ensure compatibility with
modern runtime constraints.

A synthetic load generator was employed to simulate
up to 10,000 concurrent user journeys, each triggering
multiple asynchronous operations such as network requests,
database access, and Ul state updates. Network conditions
were varied using throttling tools to replicate real-world
latency and packet loss scenarios.

Frame Render
Time (ms)

40
30
20
10

0

0 10 20 30 40 Time
(seconds)

Baseline mm AQM

Figure 3. Ul Frame Stability Comparison under Peak
Load

6.2. Baseline vs. AQM Configuration
Two configurations were evaluated:

e Baseline Configuration: Standard Kotlin coroutine
execution using default dispatchers
(Dispatchers.Main, Dispatchers.I0, and
Dispatchers.Default) without dynamic queue
orchestration.

e AQM Configuration: Task execution routed through
the Ambient Queue Man-agement layer, with
dynamic queue prioritization and telemetry-driven
throttling enabled.

6.3. Evaluation Metrics
The following metrics were collected:
e Average and percentile-based Ul frame render times
Coroutine backlog depth per dispatcher
Network request latency and throughput distribution
Application crash rate under peak load
End-to-end journey completion time
All metrics were collected over repeated test runs to

ensure statistical stability.

7. Results and Evaluation
7.1. Ul Responsiveness

Under peak load, the baseline configuration exhibited
sig-nificant Ul degradation, with frame render times
exceeding the 16 ms threshold in over 22% of sampled
frames. In contrast, the AQM-enabled configuration reduced
frame drops by approximately 31%, maintaining smoother
Ul transitions even during heavy background activity.

7.2. Network Fairness and Throughput

Baseline execution showed uneven network utilization,
where certain user journeys monopolized available
bandwidth. AQM redistributed network execution more
evenly, reducing the standard deviation of per-journey
throughput by approxi-mately 27%. This resulted in more
predictable response times across concurrent users.

7.2.1. System Stability

QM demonstrated improved system stability under stress.
Crash rates related to resource exhaustion and timeout con-
ditions were reduced by approximately 24% compared to
the baseline. Coroutine cancellation behavior was more pre-
dictable, preventing cascading failures across unrelated user
journeys.

7.2.2. End-to-End Performance

Overall journey completion time improved by 15-18% on
average when AQM was enabled, particularly for foreground
and transactional flows. Background operations experienced
minor delays, but without negative impact on user-perceived
performance.

8. Discussion

The experimental results validate Ambient Queue
Manage-ment as an effective approach for real-time load
distribution in Android applications. By introducing an
intermediary or-chestration layer between application logic
and execution dis-patchers, AQM addresses a critical gap in
existing concurrency models: fairness across parallel user
journeys. One of the key strengths of AQM lies in its
adaptability. Unlike static priority systems, AQM
continuously responds to runtime signals, enabling it to
adjust execution strategies as device conditions evolve. This
is particularly valuable in mo-bile environments where CPU
availability, network conditions, and user behavior can
change rapidly.

From an industry perspective, AQM aligns well with the
operational needs of large-scale mobile platforms. It reduces
the need for ad-hoc throttling logic scattered across code-
bases and provides a centralized mechanism for managing
concurrency. The architecture is also compatible with
modern Android development paradigms, including Jetpack
Compose and reactive state management. However, AQM
introduces additional architectural complex-ity. Careful tuning
of telemetry thresholds and queue weights is required to
avoid over-throttling background work. Observ-ability and
instrumentation are therefore essential components of any

21

Varun Reddy Guda / IJETCSIT, 7(1), 19-22, 2026

production deployment.

9. Future Work
Several avenues exist for extending the Ambient Queue
Management model:

e Predictive Queue Optimization: Incorporating on-
device machine learning models to anticipate load
spikes based on historical usage patterns and
proactively adjust queue behavior.

e Cross-Platform Applicability: Extending the AQM
concept to iOS and cross-platform frameworks such
as Flutter, enabling consistent concur-rency
management across ecosystems.

o Edge-Aware Coordination: Integrating AQM with
edge-based backend throttling mechanisms to create
end-to-end load awareness span-ning client and
server.

e Automated Policy Tuning:Developing self-tuning
mechanisms that continuously optimize queue
parameters based on observed perfor-mance
outcomes.

These enhancements would further strengthen AQM as a
general-purpose solution for mobile concurrency
management.

9. Conclusion

This paper introduced Ambient Queue Management, a
real-time, adaptive load distribution framework designed to
address the challenges of parallel user journeys in Android
applica-tions. By leveraging runtime telemetry and dynamic
queue orchestration, AQM ensures fair resource utilization
while preserving Ul responsiveness and system stability.
Through architectural design and experimental evaluation,
the study demonstrated that AQM significantly improves
per-formance predictability, reduces crash rates, and
enhances overall user experience under peak load conditions.
Unlike traditional scheduling approaches, AQM operates
continuously and contextually, making it well-suited for
modern, high-traffic mobile platforms. As Android
applications continue to grow in complexity and scale,

approaches such as Ambient Queue Management will
become increasingly important. AQM represents a step
toward more intelligent, self-regulating mobile systems capa-
ble of delivering consistent performance in the face of rising
concurrency demands.

References

[1]1 L. Kleinrock, Queueing Systems, Volume 1: Theory,
Wiley, 1975.

[21 G. Hunt et al., “Distributed systems for large-scale
services,” |IEEE Computer, vol. 41, no. 8, pp. 37-46,
2008.

[3] A. Carroll and G. Heiser, “An analysis of power con-
sumption in a smartphone,” USENIX ATC, 2010.

[4] Y. Liu et al., “Adaptive task scheduling for mobile
systems,” IEEE Transactions on Mobile Computing, vol.
15, no. 8, pp. 20112024, 2016.

[5] C. Parnin et al., “Reactive programming for mobile
applications,” IEEE Software, vol. 34, no. 5, pp. 86-93,
2017.

[6] J. Reinders, Intel Threading Building Blocks, O’Reilly,
2007.

[71 M. Zaharia et al., “Delay scheduling: A simple technique
for achieving locality and fairness,” EuroSys, 2010.

[8] Android Developers, “Kotlin coroutines on Android,”
Google, 2023.

[9] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to
build high-performance network programs,” IEEE
Internet Computing, vol. 14, no. 6, pp. 80-83, 2010.

[10] E. Gamma et al., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1994,

[11] J. Dean and L. Barroso, “The tail at scale,” Communi-
cations of the ACM, vol. 56, no. 2, pp. 74-80, 2013.

[12] S. Hong et al., “Mobile workload characterization,”
[13] IEEE ISPASS, 2014.Google, “Jetpack Compose runtime
internals,” Android Developer Documentation, 2024.
[14] M. Fowler, Patterns of Enterprise Application Archi-

tecture, Addison-Wesley, 2002.

[15] T. Li et al., “Performance modeling of mobile applica-
tions,” IEEE Transactions on Software Engineering, vol.
45, no. 6, pp. 561-576, 2019.

22

