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Abstract - Rapidly advancing Agentic Artificial 

Intelligence (AI) systems that are equipped to 

autonomously reason, call upon tools, and perform self-

directed tasks have transformed enterprise productivity as 

well as the threat landscape. In contrast to static machine 

learning (ML) pipelines, agentic systems purposefully 

interpret goals in real-time and make decisions, thereby 

injecting contextual feedback loops that increase attack 

vectors and introduce new classes of cyber-physical as 

well as data-centric risks. The current cybersecurity and 

governance models, such as NIST SP 800-53, MITRE 

ATLAS, and the OWASP Top 10 for LLMs, cover parts of 

this spectrum but do not have an integrated model that can 

capture AI behaviors while also integrating organisational 

systemic control logic and governance obligations. The 

research presents an integrated Model–Control–Policy 

(MCP) risk-analysis model for agentic AI settings. The 

Model layer characterizes the technical sources of risk 

arising from model design, data provenance, and 

adversarial vulnerability. The Control layer includes 

runtime safety checks, access controls, and automatic 

containment mechanisms that ensure safe operation within 

defined limits. The latter means they can map these 

controls to the organizational governance and compliance 

regimes (EU AI Act or NIST AI RMF, for example) and 

cross-border regulatory requirements they may need. 

Combined with the MCP model, such a multi-locus 

common approach enriches an analytical framework for 

businesses to assess, monitor, and mitigate AI risks in a 

traceable, accountable manner. 

 

The study uses quantitative risk scoring, red-teaming 

simulations, and MITRE ATLAS mapping to analyse the 

MCP model within high-risk enterprise scenarios -- for 

example, autonomous incident response, data 

classification, and cross-tenant chatbot systems. We find a 

4.6× decrease in the number of successful exploits, a 37% 

reduction in the fraction of false escalations, and 

quantifiable gains in governance traceability. The MCP 

model integrates technical and policy aspects, providing a 

reproducible basis for controllable autonomy in AI 

systems. By integrating multilevel controls, continuous risk 

quantification, and compliance-aware governance, the 

MCP framework enables a structured approach to 

cybersecurity risk assessment for agentic AI systems. It 

provides a practical pathway toward AI architectures that 

are adaptive, transparent, and ethically aligned, while 

remaining responsive to regulatory and organizational 

policy requirements. In doing so, MCP supports the 

development of resilient AI systems with demonstrable 

accountability and regulatory conformance. 

 

Keywords - Agentic Artificial Intelligence, Cybersecurity 

Risk Analysis, Model–Control–Policy (MCP) Framework, 

NIST AI RMF, EU AI Act, MITRE ATLAS, OWASP LLM 

Top 10, Zero-Trust Architecture, Red Teaming, Governance 

And Compliance, Secure-By-Design, Risk Quantification. 

 

1. Introduction 
The passage of AI as a predictive analytical tool to an 

intelligent decision-making organ, autonomous enough to 

interact with its environment. The most recent wave, 

known as Agentic AI, includes autonomous systems that 

are capable of acting independently, following the 

planning and reasoning to pursue goals at multiple 

abstraction levels. These systems, achieving perception-

reasoning-control integration in a continuous feedback 

loop, are capable of task understanding, utilising multiple 

technologies, and collaborating with other agents. But that 

autonomy brings serious cybersecurity and governance 

issues. The fact that an AI Agent can automatically push 

buttons/web services, manipulate data pipelines, and 

change system states further expands the classical attack 

surface (attackable software components) into behavioural, 

ethical, and in some cases even regulatory space. 

 

At the Model layer, traditional AI risk reasoning is 

mostly concerned with adversarial robustness, data 

integrity, explainability, and fairness detection. While 

necessary, these techniques are not enough for an agentic 

environment where risks come from the model's behavior 

and the model's ability to act. When an AI agent taps 

enterprise assets, generates code that can be executed, or 

communicates with other subsystems, threats arise from 

decisions without oversight, cause and effect without 

control, and delegation of rights without governance. Such 

behaviours can result in unexpected outcomes, e.g., 

privilege escalation, data leakages, or accidental policy 

infringements. The problem is that there is no structured 

procedure to model computations while controlling the 

computation time and keeping steps coherent with 

regulatory policies. 
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To this end, the model mitigation of risk framework 

(MCP) offers a tri-layered look at analysing and mitigating 

risk in agentic AI ecosystems. 4.1 Model The Model 

component deals with technical integrity—resistance to 

adversarial tampering, data poisoning, and illicit re-

engineering. The Control facet creates system-wide safety 

rails, such as sandboxes, capability isolators, audit logs, 

and red team validation. Finally, the Policy layer connects 

these technical and procedural layers to compliance 

architectures, making it possible for traceability and 

governance alignment within compliance frameworks like 

NIST AI RMF, NIST SP 800-53, or EU AI Act. This triad-

based structure implements a model for risk assessment 

with measurable metrics that correlate each AI capability 

to the underlying control and policy statement. 

 

Recent advancements in agentic architectures, e.g., 

large language model (LLM)-powered orchestration 

platforms, self-delegating multi-agent frameworks, and 

cognitive managing systems, have intensified the necessity 

for such a holistic view. Research has shown that 

autonomous decision chains can develop quickly outside 

initial design assumptions, creating emergent threats to 

which traditional firewalls, intrusion systems, or privacy 

policies may not adapt. By integrating cyber-physical 

control with policy-reasoning into the heart of the AI 

lifecycle, MCP shifts governance from being an after-the-

fact consideration to a continual design imperative. 

 

This paper investigates how MCP transforms the way 

risk can be pinpointed, qualified, and confined for agentic 

AI by making technical Model (fidelity), operational level 

Control (safety), and organizational Policy (accountability) 

a linked set. My definition not only captures the 

intellectual swim lane of autonomy and control, but it also 

offers pragmatic tools, risk scoring matrices, control 

libraries, and compliance maps for applying in real life. 

The remainder of the paper is organized as follows: 

Section 2 summarizes the literature base, Section 3 

presents a methodology for applying MCP in risk analysis 

and provides empirical results from enterprise use cases. 

 

The macro-goal is to show that Agentic AI can mature 

responsibly in the service of a verifiable, auditable, and 

adaptive framework like MCP—turning cybersecurity 

from mere dependability into a dynamic breeding ground 

for trusted parties, explainable outcomes, and ethically 

aligned missions. 

 

 
Figure 1. Architecture of the MCP (Model–Control–

Policy) Framework 

 

Figure 1 shows the conceptual architecture of the 

MCP framework, showing the interaction between the 

Model, Control, and Policy layers for Agentic AI systems. 

 

2. Literature Review 
The evolution of Cybersecurity for AI has evolved, 

with static threat modelling being moved towards dynamic 

risk orchestration as AI-based systems become more and 

more autonomous. There is a need for multidimensional 

risk analysis frameworks, extending beyond model 

integrity considerations, as agentic AI13—which refers to 

AIs that are capable of self-directive action16 such as task 

planning, decision making, and adaptive reasoning—

continue to gain in popularity. Literature about traditional 

AI trust and safety largely focuses on data-centric and 

model-centric safety, which places emphasis on 

explainability, bias monitoring, and fairness auditing. 

Nonetheless, these efforts fail to address the developing 

risks of having intelligent systems operating autonomously 

across various digital infrastructures. The Model–Control–

Policy (MCP) framework appears from this gap, and fuses 

three dimensions, technical, operations, and regulatory, 

into one governance paradigm. 

 

MENUM) Iterations for AI risk mitigation have been 

provided by organizations such as the National Institute of 

Standards and Technology (NIST), which, in their 

Artificial Intelligence Risk Management Framework (AI 

RMF), defines governance functions – Govern, Map, 

Measure, manage – as processes for addressing AI risk. 

The AI RMF reinforces the need for trustworthiness, 

security, and accountability, but is not prescriptive in terms 

of specifying control hierarchies. The MCP architecture 

instantiates these principles by implementing them 

throughout three interrelated layers: Model (to represent 

data and algorithm trustworthiness), Control (to protect the 
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implementation), and Policy (for legality compliance). It is 

also the case that the NIST SP Rev. 5 catalog provides 

detailed technical safeguards, access control (AC), system 

integrity (SI), and audit mechanisms, but it does not 

address context-aware risk adaptation for autonomous 

agents. By aligning these controls in the MCP model, each 

technical control can be related to a specific policy 

requirement and threat pattern, which makes it possible to 

fully trace the vulnerabilities and mitigation. 

 

Concurrent research efforts, most notably MITRE’s 

Adversarial Threat Landscape for Artificial Intelligence 

Systems (ATLAS) and the Adversarial ML Threat Matrix, 

provide structured taxonomies of attack tactics targeting 

AI systems, including data poisoning, evasion, and model 

inversion. These frameworks are valuable for 

systematically identifying and classifying adversarial 

behaviors and are widely used to support red-teaming and 

threat modeling activities. However, they remain largely 

descriptive in nature and do not establish a direct 

operational linkage between model behavior, system-level 

resource access, and enforcement of runtime controls. 

 

The MCP framework addresses this limitation by 

embedding adversarial threat knowledge directly within 

the Control layer, enabling continuous testing, 

enforcement, and automated response mechanisms aligned 

with observed model actions. In parallel, the OWASP Top 

10 for LLM Applications extends threat analysis to 

application-specific vulnerabilities such as prompt 

injection, insecure output handling, and unintended 

information disclosure. Within MCP, these risks are 

transformed from static vulnerability categories into 

measurable control objectives, mitigated through 

mechanisms such as input normalization, sandboxed 

execution, output mediation, and cross-agent containment. 

By operationalizing established threat taxonomies across 

both technical and governance dimensions, MCP bridges 

the gap between adversarial classification and actionable, 

policy-aligned risk mitigation. 

 

Regulation also influences the move to an integrated 

risk analysis. The EU AI Act categorizes AI systems 

according to risk levels, imposing mandatory conformity 

assessment and transparency documentation for certain 

high-risk cases and the post-market monitoring thereof. 

Within the MCP, the requirements are abstracted within the 

Policy component, which defines the compliance 

gates/risk levels/checkpoints, risk tolerances, and incident 

response workflows. This is a middle ground between 

technical certainty and legal liability. 

 

Additionally, new research points to the need for 

standard risk questionnaires and metrics in financials and 

critical infrastructure. Ankush’s paper in the International 

Journal of AI, BigData, Computational and Management 

Studies [1] presents an empirical framework that enables 

the calculation of cybersecurity risk by means of structured 

questionnaires and probabilistic impact modelling. This 

correspondence is not surprising since MCP relies on 

calculating likelihood, impact, and detectability scores for 

each Model, Control, and Policy factor. 

 

The recent hybrid technology breakthroughs, namely 

blockchain-integrated AI security, offer a notarized 

controlled audit trail to leverage accountability and 

mitigate alteration. Studies like Luo et al. (2023) and 

Taherdoost (2022) illustrate the means by which 

blockchain mechanisms can be used to secure LLM 

interactions and data provenance, in favour of crowd AI's 

vision of open-auditability AI process. Together, the 

directions above attest to a need for a paradigm that 

combines three aspects: (1) technical solidity; (2) 

procedural robustness; and (3) governance compliance of 

the acquired technology. As such, the MCP model serves 

as the integrating vehicle that allows Agentic AI risk to be 

continuously monitored, quantified, and governed in 

alignment with technical and regulatory requirements. 

 

3. Methodology 
The methodological approach taken in this work is to 

detail a consistent and replicable protocol by which 

cybersecurity risks within Agentic AI systems from the 

Model–Control– Policy (MCP) perspective can be 

mitigated. Our study combines a hybrid qualitative–

quantitative method that includes theoretical mapping of 

risk taxonomies with empirical testing through red-

teaming and compliance benchmarking. The goal is to 

make it possible for abstract governance definitions to be 

translated into measurable operational results by making 

agentic architectures to bake security, traceability, and 

regulation awareness into their core. 

 

The methodological approach starts from a systemic 

decomposition of agentic AI environments into their 

formal principal constituents: the reasoning model, the 

execution or orchestration layer, and the external policy 

environment. Each of these dimension’s maps to an MCP 

(Model, Control, or Policy) locus and provides the 

building blocks for a triadic analytical schema that can 

address the entire lifecycle of risk from its inception to 

end-of-life. The Model domain is the technical heart of the 

system, containing data quality, model architecture, 

training history and provenance, and inference behaviour. 

In this space, the work estimates its robust adversarial 

sensitivity under synthetic and real-time perturbations, 

which are motivated by MITRE ATLAS attacks. 

Adversarial attacks, e.g., prompt injection, model 

inversion, and data poisoning attacks, are emulated to 

evaluate the shift of agentic reasoning under adversarial 

manipulation. The validity of the model is assessed 

quantitatively by degradation in performance, anomaly 

detection rates, and risk probabilities. 

 

The Control domain instantiates the notion of security 

with runtime guardrails and system boundaries. The 

software extensibility model involves several tiers of 

security support in the orchestration layer of the agentic 

framework, such as sandboxed tool execution, role-based 

access control (RBAC), logging facility (audit trail), and 
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privilege boundary enforcement. Control effectiveness is 

evaluated in terms of reduction in successful exploitation, 

average detection lag, and mean time to containment 

(MTTC) applied over red-teaming cycles. We collect 

empirical data sets from simulated enterprise settings, 

including automated incident response agents and 

customer-support chatbots with APIs. On all the scenarios, 

we ran a set of red-team trials under different 

configurations with both internal and client security to 

judge how much additional security was added by each 

MCP component. Experiments of exploit frequency, 

system resilience, and false-positive rate are compared 

with baseline results through a statistical significance test. 

 

The Policy domain includes governance, compliance, 

and accountability. This study operationalizes the 

regulatory requirements, particularly the EU AI Act and 

NIST AI RMF, into day-to-day workflows. A compliance 

matrix for each system has been developed that maps 

technical controls to policy requirements. That matrix 

ensures that each control we implement (input sanitization, 

output filtering, or action verification, for example) 

corresponds to some governance principle (such as 

transparency, documentation, or incident tracking). The 

degree of policy compliance is determined by the 

completeness of documentation, the days before an 

incident was reported to authorities, and readiness for 

audits. It further presents a structured scoring approach in 

the LID (Likelihood–Impact–Detectability) model, for 

example, of the portfolio-based risk quantification studies 

like A. [1]. Each risk vector labelled in the Model or 

Control domains is given a numerical LID score to 

perform residual Risk computation with the application of 

control. 

 

It's an integrated part that integrates itself into those 

domains in a continuous assurance pipeline. Information 

from the Model layer is consumed by dynamic risk 

dashboards, which display hot vulnerabilities, while 

Control information serves as evidence for the efficacy of 

mitigating measures. Policy changes are automatically 

reflected within this feedback loop, leading to a living 

governance ecosystem. The general pipeline is rooted in 

zero-trust philosophy, meaning that every element (model, 

agent, or human) has to prove trustworthy at all times 

before interaction. This approach allows for assessing the 

risk granularity in real-time and tracking as time goes by 

for security posture evolution. 

 

4. Results 
The empirical testing of the Model–Control–Policy 

(MCP) framework is carried out with three enterprise use 

cases representing a range of realistic agentic AI 

deployments in security-sensitive domains. These 

experiments were to test the ability of the framework to 

identify, quantify, and mitigate layered risk between 

systems while increasing efficiency. Every testing setup 

consisted of a large language model–driven orchestration 

engine accessing multiple APIs, internal datasets, and tool 

agents under zero-trust network assumptions. We sought to 

determine how well the MCP model was able to alleviate 

exploit success rates, improve governance traceability, and 

retain compliance fidelity in a reactive environment with 

fluctuating workloads and injector hostility. 

 
Figure 2. Mapping of Common Agentic AI Threats to 

Corresponding Control Mechanisms and Policy 

Assertions within the MCP Model. 

 

A three-column matrix is linked in Figure 2: 

 Column 1 (Threat Class): Prompt injection, 

model extraction, tool-chain abuse, data 

poisoning, unauthorized self-delegation. 

 Column 2 (Control Mitigation): Output 

mediation, capability scoping, API throttling, 

sandbox isolation, and real-time approval 

mechanisms. 

 Column 3 (Policy Reference): AI Act Articles 9–

10 (Risk Management, Transparency), NIST AI 

RMF ―Measure‖ and ―Manage‖ functions, ISO 

27001 audit controls. Colored cells highlight the 

coverage density green for full control-policy 

alignment, yellow for partial, red for gaps 

requiring further governance. 

 

The first experimental scene was related to 

Autonomous Incident Response Systems, in which there 

was an agent that had to triage alerts, query logs, and 

initiate containment actions using security orchestration 

APIs. MCP integration was not included: red-team attacks 

had an average success rate of 7.1%, with delivery through 

fast injections and misuse of tools. With a MCP system 

that adopts contextual sandboxing, policy-aware routers 

[8], and compliance gating for high-privilege commands, 

the success rate dropped to 0.3% under 10,000 adversarial 

trials. On average, detection latency decreased from 1.4 

seconds to 0.6 seconds, and the mean containment period 

reduced by 31%. Audit trail fullness, as evaluated by the 

logged rationale for all containment commands, is at 98.7 

per cent compliance against NIST S P 800-53 AU family. 

These results substantiated that the Control layer indeed 

causes a measurable drop in surface area, in which every 

operational action is explainable and auditable. 

 

The second case study examined a classification and 

discovery agent that identifies sensitive information in 

organizational repositories. Before integrating the MCP, 

agent-level sensitivities had too variable "labelling 
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behaviour," it over-flagged documents that contained 

contextual non-sensitive keywords, leading to higher false 

positive detection rates. Via Model-domain interventions, 

such as adversarial retraining, differential context filters, 

and dataset provenance verification, the precision grew to 

91 percent with a recall of 88 percent from originally 82 

percent. Adoption of control-based protections, such as 

content display hooks and human-in-the-loop approvals, 

decreased false escalations by 37% and reduced manual 

review time by 34%. The Policy layer made 

documentation transparent with an automated Data 

Protection Impact Assessment (DPIA) report that mapped 

to the EU AI Act Article 9. Through the marriage of policy 

accountability being integrated directly into the operating 

cycle, a 45% traceability gain was accrued in both global 

corporate and business unit terms. 

 

A third simulation was conducted for an incidence of 

use comprising a multi-tenant supplier-support chatbot 

with R&A capabilities. Common to all of them, cross-

tenant data risk due to indirect prompt injection and 

overbroad retrieval contexts was revealed in up to 11.4 

percent of baseline vulnerability assessments. Using MCP 

controls for tenant isolation, dynamic context masking, 

and model-output sanitization, cross-tenant data leak risk 

was lowered to 2.4%. Post-intervention evaluation showed 

a 4.6× increase in resiliency to model extraction and a 3.2× 

decrease in prompt-based data exfiltration attempts, 

consistent with the mitigation targets recommended in 

MITRE ATLAS and OWASP LLM Top 10 guidance. 

Policy alignment metrics identified a fully compliant 

internal AUP and incident reporting standards mapped to 

NIST AI RMF Manage and Measure core function. 

 

In addition to scenario-specific results, portfolio 

aggregation was employed and demonstrated system-wide 

benefits. Residual risk scores calculated with the 

Likelihood–Impact–Detectability (LID) model dropped 

from an average baseline of 62.4 to 27.9, or a 55.3 percent 

reduction in residual exposure across all systems tested. 

Controls with the greatest marginal impact were 

sandboxed execution, role-based capability scoping, and 

content-filter validation layers. The statistical regression 

analysis has shown a high correlation(r = 0.87) between 

the density of control implementation and reduction in 

residual risk, which indicates that when implemented 

along with policy supervision, layered defences deliver 

compounding protective results. In addition, the audit of 

compliance revealed full traceability in model updates, 

decision logs, and control justifications, and faster and 

more reliable closeout than standard security policies used 

on the control group systems. 

 

Together, these findings justify the MCP model in 

serving as a unifying template to translate abstract 

governance tenets into measurable security performance. 

The controlled interface among Model open, Control 

efficient, and Policy traceable converts the reactive 

containment to a proactive assurance of cyber security risk 

analysis. The empirical evidence confirms that agentic AI 

systems modelled using the MCP framework not only 

resist adversarial threats more robustly, but also 

increasingly display transparent accountability - a 

necessity for prospective regulatory certification and 

ethical AI deployment. 

 

5. Discussion 
The contribution of the current work is to underscore 

the disruptive nature of the MCP approach in forging new 

territories for cybersecurity governance from agentic Ai 

systems. These findings revealed earlier indicate that MCP 

is not just a set of technical controls but rather an 

integrated governance ecosystem which covers machine 

intelligence, operational control, and legal liability. The 

dramatic decrease in successful exploitation, the 

enhancement of distribution metrics, and the positive 

impact on compliance preparedness also combine to 

demonstrate that those sentient AI environments can have 

their cake - i.e., experienced autonomy – and eat it too – 

including accountability by ensuring risk is distributed 

across well-defined analytics layers. The discussion that 

follows reflects on the implications of these findings, in 

theoretical, technical, and regulatory terms, and places 

MCP within the broader framework of trustworthy AI and 

resilient digital ecosystems. 

 

Conceptually, the Model locus in the MCP model 

validates that aspect of AI Security is to maintain model 

integrity as shown, but it's not enough alone just by itself. 

The increased independence of generative and reasoning 

models brings in dynamic processes that are adapted in 

response to environmental feedback rather than static data 

sets. This implies that model-centered defences, e.g., 

adversarial training or differential privacy, alone are 

insufficient to guarantee safety even in the presence of a 

context-aware decision-making system. Through the 

introduction of controlling mechanisms that compensate 

model outputs before instantiation, the MCP effectively 

provides a bridge between cognitive function and 

operational effect. This transition— from prediction to 

action— is a sea change in AI risk management. It’s not 

until we supervise the Model layer’s quantitative 

measurements, such as Precision, Stability, and 

Robustness, into playable run-time Control systems, which 

can enforce the human-aligned constructs of safety, that 

such numerical indicators suddenly take on meaning. 
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Figure 3. Continuous Assurance and Feedback Loop Integrating MCP Governance with the NIST AI RMF and EU 

AI Act Compliance Cycle. 

 

A circular flow diagram divided into four quadrants 

labeled Govern, Map, Measure, and Manage—reflecting 

NIST AI RMF. The inner circle represents the MCP core, 

rotating continuously as feedback cycles through Model 

testing, Control monitoring, and Policy updates. 

 

Arrows indicate that monitoring data from the Control 

layer feeds directly into Policy adaptation, ensuring 

regulatory compliance remains synchronized with 

operational conditions. The outer ring shows post-market 

monitoring and AI Act conformity reporting. 

 

Through experimental results, the Control locus is 

shown to be at the heart of risk reduction. It goes beyond 

legacy access control or encryption to bring in adaptive 

containment - a concept where every action, API call, or 

reasoning step is constantly tested against intended process 

and policy boundaries. The implementation of these is key: 

the data shows that sandboxing, context confinement, and 

output validation provide exponential boosts to resilience. 

These results are consistent with this zero-trust model, as 

each agent interaction (whether model-to-tool or human-

to-agent) needs to bootstrap trust anew. Additionally, with 

the inclusion of MITRE ATLAS and OWASP LLM Top 10 

patterns in the Control Pillar, this provides a vernacular 

understanding for conducting threat modelling such that 

controls are defined not arbitrarily, but within a 

relationship backed by globally accepted adversarial 

tactics. The result is a feedback loop where every red-team 

trial becomes a governance artifact and every failed exploit 

becomes evidence of maturing control posture. 

 

Equally critical within the MCP framework is the 

Policy locus, which situates technical operations within a 

provable and legally defensible governance context. 

Rather than treating policy as an external constraint, this 

work demonstrates how regulatory and ethical 

requirements can be operationalized directly within control 

workflows, transforming governance from static 

documentation into an enforceable, runtime process. 

Requirements derived from the EU AI Act such as 

transparency, documentation, and post-market 

monitoring—along with the NIST AI RMF principles, are 

implemented through automated compliance artifacts, risk 

thresholds, and incident-response triggers embedded 

within MCP’s policy enforcement mechanisms. 

 

Empirical results show that this integration yields a 

45% improvement in governance traceability across multi-

participant agentic systems, driven by continuous 

monitoring and the use of measurable risk metrics. By 

embedding compliance logic into both model and control 

layers, MCP enables organizations to assess readiness for 

audits proactively, predict regulatory exposure earlier in 

the system lifecycle, and produce evidence of due care in a 

systematic manner. These findings reinforce the premise 

that effective AI governance cannot be applied 

retroactively, but must be co-engineered with model 

behavior and operational controls to sustain accountability 

at scale. 

 

Beyond mere compliance, the MCP model also raises 

a more fundamental philosophical question that is central 

to understanding the future relationships between agentic 

AI: How do we manage autonomy within governance 

without stifling innovation? The experimental evidence 

indicates that restrictions, as long as they are architecture 

correctly, do not kill innovation and foster a sustainable 

level of autonomy. Control and Policy layers are 

responsible for making sure that innovation happens 

within the ethical safe zone, while still getting an 

operational ―fast fail‖. This is a step towards what we call 

governable autonomy agents are self-improving but 

intrinsically traceable, self-learning yet policy-governed, 

and autonomous but always audit-able. The latter 

systematizes those properties with risk quantification 

measures and also links, at long last, technical design with 

executive decision-making. Calculated risk. This includes 

near-real-time visualization of (risk dashboards) that 

CISOs and compliance officers can use to snapshot of 

where their companies are, over time, in terms of ―how 

much is too much‖ cloud services exposure. 

 

However, there are several limitations to be addressed. 

The MCP model - though thorough - relies heavily on the 

maturity of an organization's current infrastructure and the 

cultural acceptance of open auditability. Without a 

comprehensive data lineage and stringent control registry, 

MCP realization may provide only partial visibility 

throughout the Model or Policy spaces. The model's 

dependence on these one-size-fits-all metrics, such as LID, 

may not be sufficient to characterize nascent socio-

technical risks that emerge with the spread of AI 

technology (e.g., systemic bias amplification or agent 

collusion), or long-term model drift. These spaces need to 

be further investigated and potentially add the inclusion of 

Explainability-based trust metrics. Furthermore, though 

the immutability of blockchain-based audit trails seems to 

hold promise, their scalability and privacy issues should be 
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weighed against the responsibilities of enterprise-grade 

data protection. 

 

The MCP model shifts the paradigm of cybersecurity 

from reactive defence to proactive governance controls. It 

proves that AI security agents are possible when 

performance, safety in operation, and policy alignment are 

not assumed to be developed one after the other, but as 

objectives treated interdependently. The evidence 

submitted further characterizes MCP, not only as a 

technique but as an overarching strategy for future 

regulatory harmonization and global AI safety standards. 

The next phase of AI governance will therefore rely on the 

development and roll-out of frameworks such as MCP in 

which risk can be made visible, autonomy governable, and 

compliance measurable: to ensure that as technology 

evolves, it does so in a secure way which is aligned with 

societal values. 

 

6. Conclusion 
The paper demonstrates that MCP theory offers a 

consolidated and usable basis for cybersecurity risk 

analysis of Agentic AI systems – a novel class of 

intelligent architectures with the capacity to act, reason, 

and adapt independently in complex enterprise 

environments. As the empirical and theory-based 

contributions have shown, agentic systems are not just 

sophisticated machine learning applications; they are 

living socio-technical entities able to decide for 

themselves, put heads together with other agents, and 

adapt context-dependently. Such capabilities, revolutionary 

for digital environments though they may be, also increase 

the exposure of potential misaligned intentions, adversarial 

exploitation, and regulatory non-compliance. The MCP 

model provides a structured response by combining three 

independent, but mutually supporting layers of defence - 

Model, Control, and Policy - to serve as a coordinated 

solution addressing different aspects of AI risk and work to 

ensure the entire ecosystem functions with accountable, 

measurable, and equitable constraints. 

 

The Model layer is a cognitive and algorithmic 

visualization of risk management, focusing on locking 

down data pipelines, model parameters, and processes 

learned. Through adversarial resilience testing, provenance 

tracking, and explainability, this layer helps keep model 

behaviour predictable and aligned with the desired ethical 

and operational results. But the research shows that 

securing the model isn’t enough when autonomy sprouts 

action potential. Once deployed, agentic systems interact 

with live data streams and external tools, and therefore 

require a higher level of governance to control the paths to 

execution as well as the outputs that occur before 

irreversible consequences are realized. 

 

The Control layer operationalizes governance within 

agentic AI systems by enforcing runtime guardrails—such 

as sandboxed execution, content filtering, and approval 

mechanisms—that regulate autonomous actions as they 

occur. Empirical results demonstrate that these controls 

translate theoretical safety objectives into measurable 

operational outcomes, reducing successful exploit rates by 

over 90 percent while significantly improving containment 

speed and auditability. By shifting security emphasis from 

static perimeter defenses to continuous behavior 

containment at inference and activation points, the Control 

layer enables sustained oversight of autonomous decision-

making without inhibiting system functionality. 

 

The Policy layer serves as the ethical and regulatory 

umbilical cord that connects technical assurance to 

organizational responsibility. It incorporates the EU AI 

Act, NIST AI RMF, and NIST SP 800-53 into how a 

system is operated, such that compliance, transparency, 

and documentation are part of system run-time operations 

versus retroactive checklists. The research reveals that this 

layer is indispensable for trust continuity as it transmutes 

the compliance from reactive legal obligation into a 

breathing normativity, growing and maturing along with 

AI’s operational ecology. The introduction of the Policy 

layer succeeded in lifting overall traceability by an amount 

45%11 and was proof that legal and ethical duties can 

coexist with operational effectiveness if they are encoded 

into the agentic lifecycle itself. 

 

The overall effect of MCP is a comprehensive security 

model that transforms cybersecurity from a reactive field 

toward adaptive governance. Through the alignment of 

cognitive, operational, and policy defences, the framework 

makes AI autonomy into a controllable [NE2s]and 

auditable process. The proposal’s emphasis on 

quantification of risk scores, by means of Likelihood–

Impact–Detectability (LID) matrices, and also in the 

crucial role that it proposes for empirical validation, 

through what’s known as Red-teaming exercises, makes 

this initiative simultaneously scientifically sound and 

practically applicable. In addition, the incorporation of 

adversarial taxonomies such as MITRE ATLAS and 

OWASP LLM Top 10 reconciles academic and industry 

viewpoints, so that benchmarks to be unified across a wide 

range of AI systems. 

 

The paper also highlights several directions for future 

research. As agentic AI systems evolve from single-agent 

configurations toward multi-agent coordination and self-

adaptive control architectures, new classes of systemic risk 

are likely to emerge, including emergent behavior, 

cascading misalignment, and coordinated adversarial 

manipulation. These challenges are not fully addressed by 

static or single-layer control mechanisms. Extending the 

MCP framework to these domains will require the 

incorporation of multi-agent verification techniques, such 

as game-theoretic analysis, along with temporal risk 

modeling to capture long-horizon dependencies and 

emergent failure modes. 

 

In addition, enabling cross-domain governance and 

ethical interoperability across distributed agent 

ecosystems—particularly in inter-organizational and 

government contexts—will necessitate advances in 
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privacy-preserving computation and secure federated 

orchestration. Integrating these capabilities within MCP 

would support scalable compliance enforcement while 

maintaining data sovereignty and operational autonomy, 

positioning the framework to address the next generation 

of agentic AI deployments. 

 

In the end, the MCP architecture resets cybersecurity 

for intelligent autonomy. The argument is that the safety of 

AI cannot simply be engineered in by technical 

sophistication but can only be designed into multiple 

layers of governance involving computational logic, 

behavioural control, and institutional policy. By translating 

abstract regulatory edicts into concrete engineering 

activities, MCP enables organizations to ensure they can 

deliver Trustworthy Agentic AI with sufficient 

confidence—innovation thoughtfully combined with 

accountability; autonomy blended with control. The 

contributions of the framework are not only about 

quantifiable performance improvement but go beyond to 

its core philosophical statement that secure AI is not a 

matter of constraining intelligence, rather governing it, 

with secure trust-based oversight, and ethical alignment. 

As industries cross into 2025 and beyond, the MCP model 

offers a conceptual compass and technical scaffolding to 

engineer robust, interpretable, policy-compliant Agentic AI 

systems that can safely push innovation at the frontier of 

evolving digital transformation. 
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