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Abstract - Rapidly advancing Agentic  Artificial
Intelligence (Al) systems that are equipped to
autonomously reason, call upon tools, and perform self-
directed tasks have transformed enterprise productivity as
well as the threat landscape. In contrast to static machine
learning (ML) pipelines, agentic systems purposefully
interpret goals in real-time and make decisions, thereby
injecting contextual feedback loops that increase attack
vectors and introduce new classes of cyber-physical as
well as data-centric risks. The current cybersecurity and
governance models, such as NIST SP 800-53, MITRE
ATLAS, and the OWASP Top 10 for LLMs, cover parts of
this spectrum but do not have an integrated model that can
capture Al behaviors while also integrating organisational
systemic control logic and governance obligations. The
research presents an integrated Model-Control—Policy
(MCP) risk-analysis model for agentic Al settings. The
Model layer characterizes the technical sources of risk
arising from model design, data provenance, and
adversarial vulnerability. The Control layer includes
runtime safety checks, access controls, and automatic
containment mechanisms that ensure safe operation within
defined limits. The latter means they can map these
controls to the organizational governance and compliance
regimes (EU Al Act or NIST AI RMF, for example) and
cross-border regulatory requirements they may need.
Combined with the MCP model, such a multi-locus
common approach enriches an analytical framework for
businesses to assess, monitor, and mitigate Al risks in a
traceable, accountable manner.

The study uses quantitative risk scoring, red-teaming
simulations, and MITRE ATLAS mapping to analyse the
MCP model within high-risk enterprise scenarios -- for
example, autonomous incident  response, data
classification, and cross-tenant chatbot systems. We find a
4.6% decrease in the number of successful exploits, a 37%
reduction in the fraction of false escalations, and
quantifiable gains in governance traceability. The MCP
model integrates technical and policy aspects, providing a
reproducible basis for controllable autonomy in Al
systems. By integrating multilevel controls, continuous risk
quantification, and compliance-aware governance, the
MCP framework enables a structured approach to
cybersecurity rvisk assessment for agentic Al systems. It
provides a practical pathway toward Al architectures that
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are adaptive, transparent, and ethically aligned, while

remaining responsive to regulatory and organizational

policy requirements. In doing so, MCP supports the

development of resilient Al systems with demonstrable
accountability and regulatory conformance.
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1. Introduction

The passage of Al as a predictive analytical tool to an
intelligent decision-making organ, autonomous enough to
interact with its environment. The most recent wave,
known as Agentic Al, includes autonomous systems that
are capable of acting independently, following the
planning and reasoning to pursue goals at multiple
abstraction levels. These systems, achieving perception-
reasoning-control integration in a continuous feedback
loop, are capable of task understanding, utilising multiple
technologies, and collaborating with other agents. But that
autonomy brings serious cybersecurity and governance
issues. The fact that an Al Agent can automatically push
buttons/web services, manipulate data pipelines, and
change system states further expands the classical attack
surface (attackable software components) into behavioural,
ethical, and in some cases even regulatory space.

At the Model layer, traditional Al risk reasoning is
mostly concerned with adversarial robustness, data
integrity, explainability, and fairness detection. While
necessary, these techniques are not enough for an agentic
environment where risks come from the model's behavior
and the model's ability to act. When an Al agent taps
enterprise assets, generates code that can be executed, or
communicates with other subsystems, threats arise from
decisions without oversight, cause and effect without
control, and delegation of rights without governance. Such
behaviours can result in unexpected outcomes, e.g.,
privilege escalation, data leakages, or accidental policy
infringements. The problem is that there is no structured
procedure to model computations while controlling the
computation time and keeping steps coherent with
regulatory policies.
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To this end, the model mitigation of risk framework
(MCP) offers a tri-layered look at analysing and mitigating
risk in agentic Al ecosystems. 4.1 Model The Model
component deals with technical integrity—resistance to
adversarial tampering, data poisoning, and illicit re-
engineering. The Control facet creates system-wide safety
rails, such as sandboxes, capability isolators, audit logs,
and red team validation. Finally, the Policy layer connects
these technical and procedural layers to compliance
architectures, making it possible for traceability and
governance alignment within compliance frameworks like
NIST Al RMF, NIST SP 800-53, or EU Al Act. This triad-
based structure implements a model for risk assessment
with measurable metrics that correlate each Al capability
to the underlying control and policy statement.

Recent advancements in agentic architectures, e.g.,
large language model (LLM)-powered orchestration
platforms, self-delegating multi-agent frameworks, and
cognitive managing systems, have intensified the necessity
for such a holistic view. Research has shown that
autonomous decision chains can develop quickly outside
initial design assumptions, creating emergent threats to
which traditional firewalls, intrusion systems, or privacy
policies may not adapt. By integrating cyber-physical
control with policy-reasoning into the heart of the Al
lifecycle, MCP shifts governance from being an after-the-
fact consideration to a continual design imperative.

This paper investigates how MCP transforms the way
risk can be pinpointed, qualified, and confined for agentic
Al by making technical Model (fidelity), operational level
Control (safety), and organizational Policy (accountability)
a linked set. My definition not only captures the
intellectual swim lane of autonomy and control, but it also
offers pragmatic tools, risk scoring matrices, control
libraries, and compliance maps for applying in real life.
The remainder of the paper is organized as follows:
Section 2 summarizes the literature base, Section 3
presents a methodology for applying MCP in risk analysis
and provides empirical results from enterprise use cases.

The macro-goal is to show that Agentic Al can mature
responsibly in the service of a verifiable, auditable, and
adaptive framework like MCP—turning cybersecurity
from mere dependability into a dynamic breeding ground
for trusted parties, explainable outcomes, and ethically
aligned missions.
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Figure 1. Architecture of the MCP (Model-Control-
Policy) Framework

Figure 1 shows the conceptual architecture of the
MCP framework, showing the interaction between the
Model, Control, and Policy layers for Agentic Al systems.

2. Literature Review

The evolution of Cybersecurity for Al has evolved,
with static threat modelling being moved towards dynamic
risk orchestration as Al-based systems become more and
more autonomous. There is a need for multidimensional
risk analysis frameworks, extending beyond model
integrity considerations, as agentic AI13—which refers to
Als that are capable of self-directive actionl6 such as task
planning, decision making, and adaptive reasoning—
continue to gain in popularity. Literature about traditional
Al trust and safety largely focuses on data-centric and
model-centric  safety, which places emphasis on
explainability, bias monitoring, and fairness auditing.
Nonetheless, these efforts fail to address the developing
risks of having intelligent systems operating autonomously
across various digital infrastructures. The Model-Control—
Policy (MCP) framework appears from this gap, and fuses
three dimensions, technical, operations, and regulatory,
into one governance paradigm.

MENUM) Iterations for Al risk mitigation have been
provided by organizations such as the National Institute of
Standards and Technology (NIST), which, in their
Artificial Intelligence Risk Management Framework (Al
RMF), defines governance functions — Govern, Map,
Measure, manage — as processes for addressing Al risk.
The AI RMF reinforces the need for trustworthiness,
security, and accountability, but is not prescriptive in terms
of specifying control hierarchies. The MCP architecture
instantiates these principles by implementing them
throughout three interrelated layers: Model (to represent
data and algorithm trustworthiness), Control (to protect the
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implementation), and Policy (for legality compliance). It is
also the case that the NIST SP Rev. 5 catalog provides
detailed technical safeguards, access control (AC), system
integrity (SI), and audit mechanisms, but it does not
address context-aware risk adaptation for autonomous
agents. By aligning these controls in the MCP model, each
technical control can be related to a specific policy
requirement and threat pattern, which makes it possible to
fully trace the vulnerabilities and mitigation.

Concurrent research efforts, most notably MITRE’s
Adversarial Threat Landscape for Artificial Intelligence
Systems (ATLAS) and the Adversarial ML Threat Matrix,
provide structured taxonomies of attack tactics targeting
Al systems, including data poisoning, evasion, and model
inversion. These frameworks are valuable for
systematically identifying and classifying adversarial
behaviors and are widely used to support red-teaming and
threat modeling activities. However, they remain largely
descriptive in nature and do not establish a direct
operational linkage between model behavior, system-level
resource access, and enforcement of runtime controls.

The MCP framework addresses this limitation by
embedding adversarial threat knowledge directly within
the Control layer, enabling continuous testing,
enforcement, and automated response mechanisms aligned
with observed model actions. In parallel, the OWASP Top
10 for LLM Applications extends threat analysis to
application-specific ~ vulnerabilities such as prompt
injection, insecure output handling, and unintended
information disclosure. Within MCP, these risks are
transformed from static vulnerability categories into
measurable control objectives, mitigated through
mechanisms such as input normalization, sandboxed
execution, output mediation, and cross-agent containment.
By operationalizing established threat taxonomies across
both technical and governance dimensions, MCP bridges
the gap between adversarial classification and actionable,
policy-aligned risk mitigation.

Regulation also influences the move to an integrated
risk analysis. The EU Al Act categorizes Al systems
according to risk levels, imposing mandatory conformity
assessment and transparency documentation for certain
high-risk cases and the post-market monitoring thereof.
Within the MCP, the requirements are abstracted within the
Policy component, which defines the compliance
gates/risk levels/checkpoints, risk tolerances, and incident
response workflows. This is a middle ground between
technical certainty and legal liability.

Additionally, new research points to the need for
standard risk questionnaires and metrics in financials and
critical infrastructure. Ankush’s paper in the International
Journal of Al, BigData, Computational and Management
Studies [1] presents an empirical framework that enables
the calculation of cybersecurity risk by means of structured
questionnaires and probabilistic impact modelling. This
correspondence is not surprising since MCP relies on

calculating likelihood, impact, and detectability scores for
each Model, Control, and Policy factor.

The recent hybrid technology breakthroughs, namely
blockchain-integrated Al security, offer a notarized
controlled audit trail to leverage accountability and
mitigate alteration. Studies like Luo et al. (2023) and
Taherdoost (2022) illustrate the means by which
blockchain mechanisms can be used to secure LLM
interactions and data provenance, in favour of crowd Al's
vision of open-auditability AI process. Together, the
directions above attest to a need for a paradigm that
combines three aspects: (1) technical solidity; (2)
procedural robustness; and (3) governance compliance of
the acquired technology. As such, the MCP model serves
as the integrating vehicle that allows Agentic Al risk to be
continuously monitored, quantified, and governed in
alignment with technical and regulatory requirements.

3. Methodology

The methodological approach taken in this work is to
detail a consistent and replicable protocol by which
cybersecurity risks within Agentic Al systems from the
Model-Control- Policy (MCP) perspective can be
mitigated. Our study combines a hybrid qualitative—
quantitative method that includes theoretical mapping of
risk taxonomies with empirical testing through red-
teaming and compliance benchmarking. The goal is to
make it possible for abstract governance definitions to be
translated into measurable operational results by making
agentic architectures to bake security, traceability, and
regulation awareness into their core.

The methodological approach starts from a systemic
decomposition of agentic Al environments into their
formal principal constituents: the reasoning model, the
execution or orchestration layer, and the external policy
environment. Each of these dimension’s maps to an MCP
(Model, Control, or Policy) locus and provides the
building blocks for a triadic analytical schema that can
address the entire lifecycle of risk from its inception to
end-of-life. The Model domain is the technical heart of the
system, containing data quality, model architecture,
training history and provenance, and inference behaviour.
In this space, the work estimates its robust adversarial
sensitivity under synthetic and real-time perturbations,
which are motivated by MITRE ATLAS attacks.
Adversarial attacks, e.g., prompt injection, model
inversion, and data poisoning attacks, are emulated to
evaluate the shift of agentic reasoning under adversarial
manipulation. The validity of the model is assessed
quantitatively by degradation in performance, anomaly
detection rates, and risk probabilities.

The Control domain instantiates the notion of security
with runtime guardrails and system boundaries. The
software extensibility model involves several tiers of
security support in the orchestration layer of the agentic
framework, such as sandboxed tool execution, role-based
access control (RBAC), logging facility (audit trail), and
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privilege boundary enforcement. Control effectiveness is
evaluated in terms of reduction in successful exploitation,
average detection lag, and mean time to containment
(MTTC) applied over red-teaming cycles. We collect
empirical data sets from simulated enterprise settings,
including automated incident response agents and
customer-support chatbots with APIs. On all the scenarios,
we ran a set of red-team trials under different
configurations with both internal and client security to
judge how much additional security was added by each
MCP component. Experiments of exploit frequency,
system resilience, and false-positive rate are compared
with baseline results through a statistical significance test.

The Policy domain includes governance, compliance,
and accountability. This study operationalizes the
regulatory requirements, particularly the EU Al Act and
NIST AI RMF, into day-to-day workflows. A compliance
matrix for each system has been developed that maps
technical controls to policy requirements. That matrix
ensures that each control we implement (input sanitization,
output filtering, or action verification, for example)
corresponds to some governance principle (such as
transparency, documentation, or incident tracking). The
degree of policy compliance is determined by the
completeness of documentation, the days before an
incident was reported to authorities, and readiness for
audits. It further presents a structured scoring approach in
the LID (Likelihood—Impact-Detectability) model, for
example, of the portfolio-based risk quantification studies
like A. [1]. Each risk vector labelled in the Model or
Control domains is given a numerical LID score to
perform residual Risk computation with the application of
control.

It's an integrated part that integrates itself into those
domains in a continuous assurance pipeline. Information
from the Model layer is consumed by dynamic risk
dashboards, which display hot vulnerabilities, while
Control information serves as evidence for the efficacy of
mitigating measures. Policy changes are automatically
reflected within this feedback loop, leading to a living
governance ecosystem. The general pipeline is rooted in
zero-trust philosophy, meaning that every element (model,
agent, or human) has to prove trustworthy at all times
before interaction. This approach allows for assessing the
risk granularity in real-time and tracking as time goes by
for security posture evolution.

4. Results

The empirical testing of the Model-Control-Policy
(MCP) framework is carried out with three enterprise use
cases representing a range of realistic agentic Al
deployments in security-sensitive domains. These
experiments were to test the ability of the framework to
identify, quantify, and mitigate layered risk between
systems while increasing efficiency. Every testing setup
consisted of a large language model—driven orchestration
engine accessing multiple APIs, internal datasets, and tool
agents under zero-trust network assumptions. We sought to

determine how well the MCP model was able to alleviate
exploit success rates, improve governance traceability, and
retain compliance fidelity in a reactive environment with
fluctuating workloads and injector hostility.

Threat Class Control Mitigation Policy Reference
Prompt o Al Act Art. 9-10
njesclion Output Mediation (Risk Management,

Transparency)
Model i ; NIST Al RMF
Extraction FapEbligracoping “Measure” Function
Tool-Chain API Throttling NIST Al RMF
Abuse “Manage” Function
Data Poisoning |  Sandbox Isolation Al Act Art. 10
(Transparency);
ISO 27001 Audit Controls
Unauthorized Real-Time Approval Al Act Art. 9
Self-Delegation Mechanisms (Risk Management)

Figure 2. Mapping of Common Agentic AI Threats to
Corresponding Control Mechanisms and Policy
Assertions within the MCP Model.

A three-column matrix is linked in Figure 2:

e Column 1 (Threat Class): Prompt injection,
model extraction, tool-chain abuse, data
poisoning, unauthorized self-delegation.

e Column 2 (Control Mitigation): Output
mediation, capability scoping, API throttling,
sandbox isolation, and real-time approval
mechanisms.

e Column 3 (Policy Reference): Al Act Articles 9—
10 (Risk Management, Transparency), NIST Al
RMF “Measure” and “Manage” functions, ISO
27001 audit controls. Colored cells highlight the
coverage density green for full control-policy
alignment, yellow for partial, red for gaps
requiring further governance.

The first experimental scene was related to
Autonomous Incident Response Systems, in which there
was an agent that had to triage alerts, query logs, and
initiate containment actions using security orchestration
APIs. MCP integration was not included: red-team attacks
had an average success rate of 7.1%, with delivery through
fast injections and misuse of tools. With a MCP system
that adopts contextual sandboxing, policy-aware routers
[8], and compliance gating for high-privilege commands,
the success rate dropped to 0.3% under 10,000 adversarial
trials. On average, detection latency decreased from 1.4
seconds to 0.6 seconds, and the mean containment period
reduced by 31%. Audit trail fullness, as evaluated by the
logged rationale for all containment commands, is at 98.7
per cent compliance against NIST S P 800-53 AU family.
These results substantiated that the Control layer indeed
causes a measurable drop in surface area, in which every
operational action is explainable and auditable.

The second case study examined a classification and
discovery agent that identifies sensitive information in
organizational repositories. Before integrating the MCP,
agent-level sensitivities had too wvariable "labelling
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behaviour," it over-flagged documents that contained
contextual non-sensitive keywords, leading to higher false
positive detection rates. Via Model-domain interventions,
such as adversarial retraining, differential context filters,
and dataset provenance verification, the precision grew to
91 percent with a recall of 88 percent from originally 82
percent. Adoption of control-based protections, such as
content display hooks and human-in-the-loop approvals,
decreased false escalations by 37% and reduced manual
review time by 34%. The Policy layer made
documentation transparent with an automated Data
Protection Impact Assessment (DPIA) report that mapped
to the EU Al Act Article 9. Through the marriage of policy
accountability being integrated directly into the operating
cycle, a 45% traceability gain was accrued in both global
corporate and business unit terms.

A third simulation was conducted for an incidence of
use comprising a multi-tenant supplier-support chatbot
with R&A capabilities. Common to all of them, cross-
tenant data risk due to indirect prompt injection and
overbroad retrieval contexts was revealed in up to 11.4
percent of baseline vulnerability assessments. Using MCP
controls for tenant isolation, dynamic context masking,
and model-output sanitization, cross-tenant data leak risk
was lowered to 2.4%. Post-intervention evaluation showed
a 4.6% increase in resiliency to model extraction and a 3.2x
decrease in prompt-based data exfiltration attempts,
consistent with the mitigation targets recommended in
MITRE ATLAS and OWASP LLM Top 10 guidance.
Policy alignment metrics identified a fully compliant
internal AUP and incident reporting standards mapped to
NIST AI RMF Manage and Measure core function.

In addition to scenario-specific results, portfolio
aggregation was employed and demonstrated system-wide
benefits. Residual risk scores calculated with the
Likelihood—Impact—Detectability (LID) model dropped
from an average baseline of 62.4 to 27.9, or a 55.3 percent
reduction in residual exposure across all systems tested.
Controls with the greatest marginal impact were
sandboxed execution, role-based capability scoping, and
content-filter validation layers. The statistical regression
analysis has shown a high correlation(r = 0.87) between
the density of control implementation and reduction in
residual risk, which indicates that when implemented
along with policy supervision, layered defences deliver
compounding protective results. In addition, the audit of
compliance revealed full traceability in model updates,
decision logs, and control justifications, and faster and
more reliable closeout than standard security policies used
on the control group systems.

Together, these findings justify the MCP model in
serving as a unifying template to translate abstract
governance tenets into measurable security performance.
The controlled interface among Model open, Control
efficient, and Policy traceable converts the reactive
containment to a proactive assurance of cyber security risk
analysis. The empirical evidence confirms that agentic Al
systems modelled using the MCP framework not only
resist adversarial threats more robustly, but also
increasingly display transparent accountability - a
necessity for prospective regulatory certification and
ethical Al deployment.

5. Discussion

The contribution of the current work is to underscore
the disruptive nature of the MCP approach in forging new
territories for cybersecurity governance from agentic Ai
systems. These findings revealed earlier indicate that MCP
is not just a set of technical controls but rather an
integrated governance ecosystem which covers machine
intelligence, operational control, and legal liability. The
dramatic decrease in successful exploitation, the
enhancement of distribution metrics, and the positive
impact on compliance preparedness also combine to
demonstrate that those sentient Al environments can have
their cake - i.e., experienced autonomy — and eat it too —
including accountability by ensuring risk is distributed
across well-defined analytics layers. The discussion that
follows reflects on the implications of these findings, in
theoretical, technical, and regulatory terms, and places
MCP within the broader framework of trustworthy Al and
resilient digital ecosystems.

Conceptually, the Model locus in the MCP model
validates that aspect of Al Security is to maintain model
integrity as shown, but it's not enough alone just by itself.
The increased independence of generative and reasoning
models brings in dynamic processes that are adapted in
response to environmental feedback rather than static data
sets. This implies that model-centered defences, e.g.,
adversarial training or differential privacy, alone are
insufficient to guarantee safety even in the presence of a
context-aware decision-making system. Through the
introduction of controlling mechanisms that compensate
model outputs before instantiation, the MCP effectively
provides a bridge between cognitive function and
operational effect. This transition— from prediction to
action— is a sea change in Al risk management. It’s not
until we supervise the Model layer’s quantitative
measurements, such as Precision, Stability, and
Robustness, into playable run-time Control systems, which
can enforce the human-aligned constructs of safety, that
such numerical indicators suddenly take on meaning.
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Figure 3. Continuous Assurance and Feedback Loop Integrating MCP Governance with the NIST AT RMF and EU
Al Act Compliance Cycle.

A circular flow diagram divided into four quadrants
labeled Govern, Map, Measure, and Manage—reflecting
NIST AI RMF. The inner circle represents the MCP core,
rotating continuously as feedback cycles through Model
testing, Control monitoring, and Policy updates.

Arrows indicate that monitoring data from the Control
layer feeds directly into Policy adaptation, ensuring
regulatory compliance remains synchronized with
operational conditions. The outer ring shows post-market
monitoring and Al Act conformity reporting.

Through experimental results, the Control locus is
shown to be at the heart of risk reduction. It goes beyond
legacy access control or encryption to bring in adaptive
containment - a concept where every action, API call, or
reasoning step is constantly tested against intended process
and policy boundaries. The implementation of these is key:
the data shows that sandboxing, context confinement, and
output validation provide exponential boosts to resilience.
These results are consistent with this zero-trust model, as
each agent interaction (whether model-to-tool or human-
to-agent) needs to bootstrap trust anew. Additionally, with
the inclusion of MITRE ATLAS and OWASP LLM Top 10
patterns in the Control Pillar, this provides a vernacular
understanding for conducting threat modelling such that
controls are defined not arbitrarily, but within a
relationship backed by globally accepted adversarial
tactics. The result is a feedback loop where every red-team
trial becomes a governance artifact and every failed exploit
becomes evidence of maturing control posture.

Equally critical within the MCP framework is the
Policy locus, which situates technical operations within a
provable and legally defensible governance context.
Rather than treating policy as an external constraint, this
work demonstrates how regulatory and ethical
requirements can be operationalized directly within control
workflows, transforming governance from static
documentation into an enforceable, runtime process.
Requirements derived from the EU AI Act such as
transparency, documentation, and post-market
monitoring—along with the NIST AI RMF principles, are
implemented through automated compliance artifacts, risk
thresholds, and incident-response triggers embedded
within MCP’s policy enforcement mechanisms.

Empirical results show that this integration yields a
45% improvement in governance traceability across multi-
participant agentic systems, driven by continuous

monitoring and the use of measurable risk metrics. By
embedding compliance logic into both model and control
layers, MCP enables organizations to assess readiness for
audits proactively, predict regulatory exposure earlier in
the system lifecycle, and produce evidence of due care in a
systematic manner. These findings reinforce the premise
that effective Al governance cannot be applied
retroactively, but must be co-engineered with model
behavior and operational controls to sustain accountability
at scale.

Beyond mere compliance, the MCP model also raises
a more fundamental philosophical question that is central
to understanding the future relationships between agentic
Al: How do we manage autonomy within governance
without stifling innovation? The experimental evidence
indicates that restrictions, as long as they are architecture
correctly, do not kill innovation and foster a sustainable
level of autonomy. Control and Policy layers are
responsible for making sure that innovation happens
within the ethical safe zone, while still getting an
operational “fast fail”. This is a step towards what we call
governable autonomy agents are self-improving but
intrinsically traceable, self-learning yet policy-governed,
and autonomous but always audit-able. The latter
systematizes those properties with risk quantification
measures and also links, at long last, technical design with
executive decision-making. Calculated risk. This includes
near-real-time visualization of (risk dashboards) that
CISOs and compliance officers can use to snapshot of
where their companies are, over time, in terms of “how
much is too much” cloud services exposure.

However, there are several limitations to be addressed.
The MCP model - though thorough - relies heavily on the
maturity of an organization's current infrastructure and the
cultural acceptance of open auditability. Without a
comprehensive data lineage and stringent control registry,
MCP realization may provide only partial visibility
throughout the Model or Policy spaces. The model's
dependence on these one-size-fits-all metrics, such as LID,
may not be sufficient to characterize nascent socio-
technical risks that emerge with the spread of Al
technology (e.g., systemic bias amplification or agent
collusion), or long-term model drift. These spaces need to
be further investigated and potentially add the inclusion of
Explainability-based trust metrics. Furthermore, though
the immutability of blockchain-based audit trails seems to
hold promise, their scalability and privacy issues should be
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weighed against the responsibilities of enterprise-grade
data protection.

The MCP model shifts the paradigm of cybersecurity
from reactive defence to proactive governance controls. It
proves that Al security agents are possible when
performance, safety in operation, and policy alignment are
not assumed to be developed one after the other, but as
objectives treated interdependently. The evidence
submitted further characterizes MCP, not only as a
technique but as an overarching strategy for future
regulatory harmonization and global Al safety standards.
The next phase of Al governance will therefore rely on the
development and roll-out of frameworks such as MCP in
which risk can be made visible, autonomy governable, and
compliance measurable: to ensure that as technology
evolves, it does so in a secure way which is aligned with
societal values.

6. Conclusion

The paper demonstrates that MCP theory offers a
consolidated and usable basis for cybersecurity risk
analysis of Agentic Al systems — a novel class of
intelligent architectures with the capacity to act, reason,
and adapt independently in complex enterprise
environments. As the empirical and theory-based
contributions have shown, agentic systems are not just
sophisticated machine learning applications; they are
living socio-technical entities able to decide for
themselves, put heads together with other agents, and
adapt context-dependently. Such capabilities, revolutionary
for digital environments though they may be, also increase
the exposure of potential misaligned intentions, adversarial
exploitation, and regulatory non-compliance. The MCP
model provides a structured response by combining three
independent, but mutually supporting layers of defence -
Model, Control, and Policy - to serve as a coordinated
solution addressing different aspects of Al risk and work to
ensure the entire ecosystem functions with accountable,
measurable, and equitable constraints.

The Model layer is a cognitive and algorithmic
visualization of risk management, focusing on locking
down data pipelines, model parameters, and processes
learned. Through adversarial resilience testing, provenance
tracking, and explainability, this layer helps keep model
behaviour predictable and aligned with the desired ethical
and operational results. But the research shows that
securing the model isn’t enough when autonomy sprouts
action potential. Once deployed, agentic systems interact
with live data streams and external tools, and therefore
require a higher level of governance to control the paths to
execution as well as the outputs that occur before
irreversible consequences are realized.

The Control layer operationalizes governance within
agentic Al systems by enforcing runtime guardrails—such
as sandboxed execution, content filtering, and approval
mechanisms—that regulate autonomous actions as they
occur. Empirical results demonstrate that these controls

translate theoretical safety objectives into measurable
operational outcomes, reducing successful exploit rates by
over 90 percent while significantly improving containment
speed and auditability. By shifting security emphasis from
static perimeter defenses to continuous behavior
containment at inference and activation points, the Control
layer enables sustained oversight of autonomous decision-
making without inhibiting system functionality.

The Policy layer serves as the ethical and regulatory
umbilical cord that connects technical assurance to
organizational responsibility. It incorporates the EU Al
Act, NIST AI RMF, and NIST SP 800-53 into how a
system is operated, such that compliance, transparency,
and documentation are part of system run-time operations
versus retroactive checklists. The research reveals that this
layer is indispensable for trust continuity as it transmutes
the compliance from reactive legal obligation into a
breathing normativity, growing and maturing along with
Al’s operational ecology. The introduction of the Policy
layer succeeded in lifting overall traceability by an amount
45%11 and was proof that legal and ethical duties can
coexist with operational effectiveness if they are encoded
into the agentic lifecycle itself.

The overall effect of MCP is a comprehensive security
model that transforms cybersecurity from a reactive field
toward adaptive governance. Through the alignment of
cognitive, operational, and policy defences, the framework
makes Al autonomy into a controllable [NE2s]and
auditable process. The proposal’s emphasis on
quantification of risk scores, by means of Likelihood—
Impact—Detectability (LID) matrices, and also in the
crucial role that it proposes for empirical validation,
through what’s known as Red-teaming exercises, makes
this initiative simultaneously scientifically sound and
practically applicable. In addition, the incorporation of
adversarial taxonomies such as MITRE ATLAS and
OWASP LLM Top 10 reconciles academic and industry
viewpoints, so that benchmarks to be unified across a wide
range of Al systems.

The paper also highlights several directions for future
research. As agentic Al systems evolve from single-agent
configurations toward multi-agent coordination and self-
adaptive control architectures, new classes of systemic risk
are likely to emerge, including emergent behavior,
cascading misalignment, and coordinated adversarial
manipulation. These challenges are not fully addressed by
static or single-layer control mechanisms. Extending the
MCP framework to these domains will require the
incorporation of multi-agent verification techniques, such
as game-theoretic analysis, along with temporal risk
modeling to capture long-horizon dependencies and
emergent failure modes.

In addition, enabling cross-domain governance and
ethical  interoperability  across  distributed agent
ecosystems—particularly in inter-organizational and
government contexts—will necessitate advances in
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privacy-preserving computation and secure federated
orchestration. Integrating these capabilities within MCP
would support scalable compliance enforcement while
maintaining data sovereignty and operational autonomy,
positioning the framework to address the next generation
of agentic Al deployments.

In the end, the MCP architecture resets cybersecurity
for intelligent autonomy. The argument is that the safety of
Al cannot simply be engineered in by technical
sophistication but can only be designed into multiple
layers of governance involving computational logic,
behavioural control, and institutional policy. By translating
abstract regulatory edicts into concrete engineering
activities, MCP enables organizations to ensure they can

deliver Trustworthy Agentic Al with sufficient
confidence—innovation thoughtfully combined with
accountability; autonomy blended with control. The

contributions of the framework are not only about
quantifiable performance improvement but go beyond to
its core philosophical statement that secure Al is not a
matter of constraining intelligence, rather governing it,
with secure trust-based oversight, and ethical alignment.
As industries cross into 2025 and beyond, the MCP model
offers a conceptual compass and technical scaffolding to
engineer robust, interpretable, policy-compliant Agentic Al
systems that can safely push innovation at the frontier of
evolving digital transformation.

References

[1] Ankush Gupta, “A Strategic Approach—Enterprise-
Wide Cyber Security Quantification via Standardized
Questionnaires and Risk Modelling Impacting
Financial Sectors Globally,” International Journal of
Al BigData, Computational and Management
Studies, vol. 3, no. 2, pp. 44-57, 2022.

[2] National Institute of Standards and Technology
(NIST), Artificial Intelligence Risk Management
Framework (Al RMF 1.0), NIST AI 100-1,
Gaithersburg, MD, USA, 2023.

[3] European Commission, Artificial Intelligence Act:
Risk-Based Regulatory Framework for Trustworthy
Al Brussels, 2024.

[4] National Institute of Standards and Technology
(NIST), Security and Privacy Controls for
Information Systems and Organizations, NIST Special
Publication 800-53 Revision 5, Gaithersburg, MD,
USA, 2020.

[5] MITRE Corporation, Adversarial Threat Landscape
for Artificial Intelligence Systems (ATLAS), Bedford,
MA, USA, 2023.

[6] Open Worldwide Application Security Project
(OWASP), Top 10 for Large Language Model
Applications, Version 1.1,2024.

[71 H. Taherdoost, “Blockchain Technology and Artificial
Intelligence Together: A Comprehensive Review,”
Applied Sciences, vol. 12, no. 24, pp. 12948-12961,
2022.

[8] H. Luo, W. Wei, S. Zhang, and P. Li, “BC4ALLM:
Trusted Artificial Intelligence When Blockchain
Meets Large Language Models,” arXiv preprint
arXiv:2310.06278, 2023.

[9] T. Nguyen, M. Dey, and S. U. Khan, “Al Governance
in High-Stakes Systems: Principles and Operational
Models,” IEEE Transactions on Technology and
Society, vol. 4, no. 1, pp. 50-64, 2023.

[10] R. Wallace and J. Patel, “A Unified Model of Zero-
Trust Al: Frameworks for Autonomous Risk
Governance,” IEEE Access, vol. 12, pp. 113265—
113281, 2024.

[11] A. Kim, R. Green, and F. Rahman, “Mapping
Adversarial Threats to Al Risk Controls in the MITRE
ATLAS Framework,” Journal of Information Security
Research, vol. 11, no. 3, pp. 140-156, 2023.

[12] D. Clarke and E. S. Martin, “Evaluating Governance-
Centric Models for Al Assurance under the EU Al
Act,” International Journal of Computational Ethics
and Policy, vol. 2, no. 4, pp. 190-204, 2024.

[13] P. Shah, A. Gupta, and S. Rahimi, “Quantitative Risk
Assessment Models for Agentic Al Systems in Critical
Infrastructure,” IEEE Transactions on Dependable
and Secure Computing, vol. 21, no. 5, pp. 415428,
2025.

[14] L. Fernandez and J. Yu, “Al Red Teaming and
Adversarial Validation: A Structured Review,” ACM
Computing Surveys, vol. 56, no. 7, pp. 1-32, 2024.

[15] S. R. Bhosale and N. Choudhury, “Integrating
Federated Privacy and Governance in Agentic Al
Frameworks,” IEEE Transactions on Information
Forensics and Security, vol. 20, pp. 2025-2038, 2025.

[16] Ankush Gupta, “A Centralized Authentication and
Authorization Framework for Enterprise Security
Modernization” Volume 16, Issue 3, July-September
2025, https://www.ijsat.org/research-
paper.php?id=8034.

15



