
International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V7I1P101

Eureka Vision Publication | Volume 7, Issue 1, 1-7, 2026

Original Article

A Modular Software Architecture for Safe and Scalable

Mobile Manipulation Systems

Ashis Ghosh

Independent Researcher CA, USA.

Received On: 11/11/2025 Revised On: 13/12/2025 Accepted On: 21/12/2025 Published On: 02/01/2026

Abstract - Robotic manipulation systems are increasingly

deployed in real-world environments where reliability,

safety, and scalability are as critical as task performance.

As these systems grow in complexity, software architecture

has emerged as a primary determinant of operational

robustness and long-term maintainability. This paper

presents a modular software architecture for mobile

manipulation robots that emphasizes separation of

concerns, explicit task lifecycle management, and event-

driven coordination under real-time constraints. The

proposed architecture decomposes robotic functionality

into layered subsystems spanning perception, task

reasoning, motion and skill generation, and execution and

control. Design choices are motivated by the need to

manage heterogeneous time scales, partial failures, and

safety-critical behaviors. The architecture is evaluated

through multiple case studies, including a holonomic

mobile base with a specialized cleaning end effector,

warehouse automation systems, and assistive robotics

platforms. The results demonstrate that disciplined

architectural design improves fault containment, system

observability, and deployment reliability, supporting

scalable robotics development and safe operation in

dynamic environments.

Keywords - Robotics Software Architecture, Mobile

Manipulation, Real-Time Systems, Safety-Critical

Robotics, ROS2, Autonomous Systems, Robot Learning,

Task Planning.

1. Introduction
Modern robotic systems integrate perception,

planning, control, and actuation across heterogeneous

hardware and software components. While advances in

machine learning and motion planning have significantly

expanded robotic capabilities, many deployed systems

continue to suffer from brittle behavior, limited fault

tolerance, and slow development cycles. These issues are

often rooted not in algorithmic deficiencies but in

inadequate software architecture [1], [2]. Mobile

manipulation systems are particularly challenging due to

their combination of navigation, manipulation, and long-

horizon task execution. Such systems must operate under

real-time constraints, tolerate sensor and actuator failures,

and remain maintainable as new behaviors are added.

Traditional monolithic control stacks, commonly used in

research prototypes, struggle to meet these requirements at

scale [3]. This paper argues that scalable and safe mobile

manipulation depends on explicit architectural structure.

We present a modular, event-driven software architecture

designed to manage complexity, improve fault isolation,

and support reliable deployment in real-world

environments.

2. Background and Related Work
Robotic software architectures have historically drawn

from layered control paradigms, most notably subsumption

architectures for reactive behavior [3]. While effective for

certain classes of problems, such approaches become

difficult to extend as task complexity increases. More

recent work has explored hierarchical task representations,

including state machines and behavior trees, to manage

complex robotic behaviors [4], [5]. Middleware platforms

such as ROS and ROS2 provide communication

abstractions that facilitate modularity, though architectural

discipline remains the responsibility of system designers

[1], [6].In parallel, research on cyber-physical systems has

highlighted the importance of timing determinism, explicit

state modeling, and safety enforcement in systems that

interact with the physical world [7]. However, many

robotics systems still lack clear separation between safety-

critical execution paths and higher-level decision logic.

This work builds on prior research by synthesizing proven

architectural patterns into a cohesive design tailored for

mobile manipulation under real-time and safety

constraints.

1.1. Modularity in Robotics

Modularity has long been touted as a key principle in

robotics software engineering. In essence, modular

software architecture means breaking down system

functionality into independent, interchangeable

components (modules) with well-defined interfaces. For

robots, modules might correspond to perception

algorithms, planning systems, control loops, user interface

handlers, etc. This separation is valuable because it

localizes complexity: each module can be developed and

tested in isolation, and changes to one module (such as

swapping out a localization algorithm or upgrading a path

planner) need not ripple through the entire codebase as

long as the interface contracts are maintained. Research in

robotics consistently highlights that greater modularity

Ashis Ghosh / IJETCSIT, 7(1), 1-7, 2026

2

leads to more flexible and reusable systems, and reduces

integration effort when building or modifying robots

For example, one industrial report notes that modular

robots can be reconfigured more easily for new tasks or

hardware, and that ―modularity in robots has been

proclaimed as one of the most promising approaches to

making robots more flexible while decreasing integration

times‖

Hardware modularity (like easily swapping sensors or

arm tools) must be matched by software modularity, so the

control software can accommodate new hardware or

functionalities with minimal changes

1.2. Robot Software Frameworks

Over the past two decades, several frameworks have

emerged to facilitate modular development. ROS (Robot

Operating System) is the foremost example – an open-

source middleware that provides a publish/subscribe

communication layer, package management, and a vast

ecosystem of reusable modules (known as nodes in ROS)

for common capabilities like SLAM (Simultaneous

Localization and Mapping), perception, and navigation.

ROS essentially enforces a component-based architecture:

each node performs a specific role and communicates with

others through topics (asynchronous message streams) or

services. This decoupling via message passing is a

deliberate architectural choice to support distributed

development and runtime flexibility. The upcoming ROS 2

further builds on this by using DDS, a data-centric

middleware, to eliminate the need for a central master node

and allow peer-to-peer discovery – making the system

more fault-tolerant and scalable by design. Other robotics

middleware (YARP, LCM, OROCOS, etc.) similarly

provide infrastructure for modular system design. In

parallel, there is a trend toward domain-specific languages

and model-driven engineering in robotics to design

behavior logic at a higher abstraction level (e.g., visual

programming of state machines or behavior trees), again

underscoring the need for software engineering rigor as

robot software grows in size and complexity.

2. Architectural Design Principles
The proposed architecture is guided by four foundational

principles:

 Separation of Concerns: Perception, reasoning,

motion generation, and execution are isolated into

distinct layers.

 Explicit State Modeling: Task progress and

system state are represented explicitly rather than

inferred from control flow.

 Event-Driven Coordination: Asynchronous events

replace blocking, synchronous calls across

subsystems.

 Fault Containment and Safety: Failures are

localized, and recovery paths are explicitly

defined.

These principles reduce unintended coupling, improve

observability, and support safe system evolution.

3. Proposed Software Architecture
3.1. Layered System Decomposition

The architecture is organized into four layers:

 Perception Layer: Processes sensor data (vision,

depth, LiDAR) into semantic world models and

publishes state updates asynchronously.

 Task and Reasoning Layer: Interprets goals,

manages task lifecycles using explicit state

machines or LLM driven workflows, and issues

high-level intent.

 Motion and Skill Layer: Translates task intent into

reusable skills and motion plans, including base

positioning and end-effector actions.

 Execution and Control Layer: Executes

trajectories and low-level commands under real-

time constraints, interfacing directly with

hardware controllers.

Figure 1 illustrates the interaction between these layers and

the bidirectional flow of commands and feedback.

3.2. Event-Driven Coordination

Subsystems communicate through typed events such

as task_started, action_failed, or state_updated. This design

avoids blocking dependencies and allows subsystems to

operate at independent rates. Event-driven coordination

aligns naturally with publish-subscribe middleware and

supports monitoring, logging, and debugging [6].

3.3. Real-Time Constraints and Determinism

Robotic systems operate across heterogeneous time

scales. The architecture enforces strict boundaries between

real-time execution and non-real-time reasoning. The

execution layer operates with deterministic scheduling and

bounded latency, while higher layers tolerate variable

delays. This separation reduces timing interference and

improves predictability [7], [8].

Figure 1. Modular Software Architecture for Mobile

Manipulation

4. Safety and Deployment Considerations
4.1. Safety Mechanisms

Safety is enforced through supervisory state machines,

watchdog timers, and health monitoring processes.

Execution controllers reject unsafe commands, while task-

level supervisors manage recovery and shutdown

procedures. These mechanisms reflect best practices in

safety-critical cyber-physical systems [7], [9].

4.2. Deployment Frameworks

Modern robotic deployment increasingly leverages

containerization, continuous integration pipelines, and

automated testing. Modular architecture enables isolated

testing of subsystems, simulation-based validation, and

staged rollout of new capabilities. Such practices improve

reliability and reduce regression risk during field updates

[10].

5. Case Studies
5.1. Holonomic Mobile Manipulation for Cleaning

Consider a multifunctional floor-cleaning robot that

can navigate through a building and perform tasks such as

vacuuming, mopping, and even picking up small debris.

This robot typically consists of a mobile base (for

navigation) equipped with cleaning apparatus (brushes,

mops, vacuum suction) and possibly a small manipulator

arm to move obstacles or reach corners. One example from

recent research is the ―Multi-Functional Cleaning Robot

(MFCR)‖ prototype, which integrates autonomous

navigation, multiple cleaning modes, and a 3-DOF arm for

light manipulation

Architecture and Modularity: Such a robot is

inherently modular because of its diverse functions. The

MFCR’s design philosophy ―emphasizes modularity,

efficiency, and adaptability to diverse domestic

environments‖, unifying mechanical, software, and AI

components in a single system

On the software side, we can identify modules for:

mapping and localization (SLAM) – to allow the robot to

know where it is and cover all areas; navigation and path

planning – to move around furniture and reach target areas;

cleaning operations – controlling brushes, water spray,

vacuum motors, etc., possibly with adaptive algorithms;

and the manipulator control – for the small arm to pick up

objects like trash or to press elevator buttons if needed.

Each of these functions can be encapsulated in separate

ROS nodes or processes. For instance, a dedicated

navigation stack (often using ROS’s move_base and

related packages) handles all motion planning and obstacle

avoidance, while a separate cleaning controller node

manages the timing of brush activation, water spraying,

and monitors cleaning efficacy (using sensors to detect

dirt). The manipulator would have its own control module,

perhaps using an inverse kinematics library.

These modules interact but are relatively loosely

coupled via defined interfaces. The navigation system

might publish events like ―area X cleaned‖ or ―arrived at

location Y‖, upon which the cleaning module adjusts its

behavior (e.g., turn on the vacuum when in a dirty zone).

The arm module might subscribe to a topic from the vision

system indicating ―debris detected at coordinates‖, then

proceed to pick it up. By separating these concerns,

developers can improve each part independently – for

example, upgrade the SLAM algorithm to a more robust

one without touching the cleaning logic, as long as the

pose data format remains consistent.

Real-Time and Performance: Cleaning robots operate

in dynamic, human environments, but typically their real-

time demands are not as stringent as, say, an industrial

robot on an assembly line. Still, timely response is

important for obstacle avoidance and control. The base

controller (which converts high-level velocity commands

to motor signals) runs in real-time on a microcontroller or

real-time loop. The MFCR, for example, would require its

drive system to update at perhaps 50-100 Hz for smooth

motion control. The brushing and vacuum motors might be

less time-critical, but if the robot has a suction pressure

sensor or similar, it could adapt suction in real time as it

encounters dirt – requiring a control loop adjusting motor

power on the fly. These are manageable within a ROS PC

plus microcontroller setup. The arm being only 3-DOF and

for light objects likely doesn’t need ultra-fast control; even

a 10 Hz planning and 100 Hz low-level servo control could

suffice.

One real-time challenge is navigation in the presence

of moving humans. The robot must sense and replan

quickly to avoid people. Using a LIDAR or depth camera,

Ashis Ghosh / IJETCSIT, 7(1), 1-7, 2026

4

the perception update might be, say, 5-10 Hz. The planning

algorithm (often based on DWA – Dynamic Window

Approach – in ROS navigation) recomputes commands

every 0.1s or so. This usually is fine on modern CPUs. If

the environment is very cluttered, computing a global path

might momentarily spike CPU, but the layered architecture

(local vs global planner separation in ROS) helps maintain

responsiveness.

Safety and Fault Tolerance: Safety for a cleaning robot

includes not bumping into people or pets, avoiding stairs

(not falling down), and not damaging furniture. These

robots use bump sensors and cliff sensors as a last resort

fail-safe (many vacuum robots have a simple bumper that

triggers an immediate stop if touched). In software, the

robot will have virtual safety zones – e.g., if a person

comes within a certain range, the robot stops moving until

they pass. The system health for a cleaning robot involves

monitoring the battery (to ensure it returns to dock in time)

and monitoring for any stuck conditions (if wheels get

jammed or it’s trapped).

The architecture likely includes a safety supervisor

that monitors state such as wheel odometry (no progress

for some time might indicate it’s stuck), sensor health

(suddenly no data from a camera could mean it’s

disconnected – trigger a retry or notify user), and timing (if

a critical thread like localization hasn’t updated, maybe

reset it). A watchdog could be present on the drive

microcontroller to cut power if commands cease

(preventing the robot from going rogue due to a software

hang). Being a consumer-facing robot, it must be robust

against partial failures: e.g., if the arm fails, it should

simply stop using the arm but perhaps continue cleaning

with the base, rather than cease all operation. This requires

the software to be able to isolate that module – achieved if

the arm controller node can be separately brought down or

restarted without crashing the whole system.

Interestingly, cleaning robots can make use of

relatively low-cost components which might be prone to

occasional error (cheap sensors, etc.), so the software must

be forgiving. The MFCR’s description includes multiple

sensors for tasks – optical and tactile sensors on the arm to

ensure precise grasp and prevent damage. These sensors

feed into safety: if the arm feels unexpected resistance

(tactile sensing) while moving, it can assume it hit

something and back off (much like a collaborative robot’s

safety stop when force threshold exceeded). This is an

example of a local safety reflex built into the arm control

module, acting faster than a high-level supervisor would.

Deployment: Many cleaning robots in the market (e.g.,

robotic vacuums or commercial floor scrubbers) are

delivered as products with occasional firmware updates.

Some use cloud connectivity to update maps or get new

algorithms. From an architecture perspective, these robots

often have a cloud backend for fleet management (if

multiple units in a facility). The software on the robot may

be containerized; for example, a start-up delivering robots

might ship a Docker-based software package so that it’s

uniform across all customer sites and easily updated.

However, smaller consumer robots might not use full OS

containers due to resource constraints, but they still

modularize software into libraries/tasks.

The MFCR being a prototype likely was tested in a

lab; if it were to be productized, one would implement CI

tests like running it on various floor types virtually to

ensure the SLAM and cleaning algorithms handle them.

Logging is also crucial – if the robot misses a spot, the

developers need logs to diagnose whether it was a

localization miss, a planning miss, or a software bug in

marking areas as clean. In summary, the cleaning robot

case demonstrates the benefits of a modular architecture: it

unifies navigation, cleaning, and manipulation subsystems

within one framework, with an emphasis on adaptability.

By having interchangeable cleaning modules (the MFCR

had swappable mopping/vacuum attachments) and a

flexible software system, the robot can tackle various tasks

Its software must coordinate these modules, but thanks

to a layered design (navigation vs task execution vs low-

level control) and use of standardized ROS components,

adding a new capability (say a UV disinfectant lamp

module) might just mean adding a new node for

controlling that lamp and integrating it into the mission

logic, without rewriting the navigation or core logic. This

ease of extensibility is a direct result of modular software

design.

5.2. Warehouse Automation

Warehousing and logistics have been a booming area

for robotics, as warehouses aim to automate repetitive

picking and packing tasks. A representative system here is

Boston Dynamics’ ―Stretch‖ robot, a mobile manipulator

designed specifically for moving boxes in warehouses and

distribution centers. Stretch has a wheeled base, a large

articulated arm with a smart gripper (suction-based for

grabbing boxes), and a perception mast with sensors. It is

used for tasks like unloading trucks (reaching into delivery

truck interiors to grab boxes) and stacking boxes onto

pallets. This is a prime example of a mobile manipulator in

an industrial environment.

Task Focus and Simplicity: One notable thing about

Stretch as an architectural case: it is designed explicitly for

the task of box handling in relatively structured warehouse

environments. This focus means the software architecture

can be optimized around that workflow: navigation is

basically constrained to driving in fairly open spaces

(warehouse aisles), the arm manipulation is mostly picking

up rectangular boxes (which is simpler in vision and grasp

strategy than arbitrary objects), and there may be no need

for complex behavior switching – the robot does one job

repeatedly.

However, even with a constrained task, the

architecture is modular. Stretch’s software likely includes

modules for: locomotion (the base with omni-wheels to

Ashis Ghosh / IJETCSIT, 7(1), 1-7, 2026

5

maneuver in tight spaces), perception (detecting boxes and

understanding the 3D layout of a pallet or truck interior),

motion planning for the arm (to reach and move boxes

without collisions), and coordination logic (deciding which

box to pick next, how to stack, etc.). If built on ROS or a

similar middleware, each of these could be separate nodes

or groups of nodes. For example, one can imagine a

perception node that uses depth cameras to identify box

sizes and positions; it publishes target pick locations. A

planner node then takes that and computes a path for the

arm and base (maybe the base has to reposition to reach a

far corner). A gripper control node handles the suction and

detects if a box has been successfully grasped (using

vacuum sensors). A supervisor node oversees the

sequence: repeat until truck empty or pallet full, handle

exceptions (like a box slips, or an obstacle appears).

Modularity and Industrial Requirements: In industrial

robots, there’s often a requirement for easy deployment

and adaptation to different facilities. To achieve this, the

software might allow configuration of certain parameters

(like box sizes, pallet patterns) without coding. It might use

a plugin architecture where different perception algorithms

or gripper attachments can be swapped in. The ease of

deployment also speaks to the architecture’s packaging –

presumably the entire software is delivered in a way that

an operator can set it up on-site quickly (possibly via a

user-friendly interface, and under the hood, using

containerized deployment to ensure all dependencies are

there).

Real-Time and Sensing: Warehouse robots often need

to operate quickly but also very safely around human

workers (though Stretch is typically used in task zones that

may be cordoned off from humans while operating, for

safety). The real-time needs include smooth handling of

heavy loads – moving a 20 kg box quickly requires careful

control to avoid oscillations. The arm controller likely runs

on a real-time system to manage motor torques and ensure

stable motion (especially because a long arm moving fast

can have significant inertia). The base must coordinate

with the arm; possibly the base moves into a new position

while the arm is already reaching (coordinated motion),

which requires tight timing integration between base and

arm control loops.

Communication latency in a warehouse environment

could be an issue if the robot relies on wireless networking

for some computation (though likely most processing is

on-board). If multiple robots coordinate (imagine several

mobile manipulators working in the same area), there may

be a centralized system assigning tasks to avoid conflicts.

That implies a networked architecture where each robot is

a node in a fleet system. That fleet management system

would be another module (off-board, possibly cloud or

edge server) communicating with the robot’s on-board

software to give it missions and receive status. Ensuring

commands from the fleet manager (like ―go unload truck at

dock 5‖) are received and executed timely is important but

not hard real-time; however, once on the task, the robot’s

local autonomy is mostly self-contained.

Safety: Industrial safety standards require various

redundancies. Stretch likely has 2D and 3D vision for

obstacle detection – if something unexpected like a person

or a forklift crosses its path, it must stop. The safety

architecture might include a separate, hardware-certified

safety system that monitors a planar LiDAR for obstacles

and can stop the base. On the arm, if it senses a collision or

excessive force, it should halt immediately. The software

also must make sure not to exceed safe speeds in certain

conditions (for example, when carrying a heavy box,

maybe reduce speed for stability).

From an architecture viewpoint, safety monitors in an

industrial robot are often implemented on a safety PLC or

a microcontroller separate from the main computer, to

meet regulatory standards. But the main software still has

layers of safety – e.g., the task planner will not command

motions that it knows are unsafe (obeying a ―keep-out

zone‖ or ensuring the arm doesn’t extend outside the

vehicle’s footprint when moving, etc.). Having

independent safety layers is critical: if the high-level

software fails to catch something, the low-level safety

should still prevent accidents. That means the two need to

be consistent, which is usually achieved by conservative

design (the low-level will stop at even the hint of a

problem, while the high-level tries to avoid getting near

those conditions in the first place).

Reliability and Fault Tolerance: In a warehouse,

downtime is costly. The robot’s architecture might include

self-diagnostics – e.g., if a joint is overheating, it can take a

short break or alert maintenance. If a sensor fails, perhaps

the system can switch to a backup sensor (some designs

have multiple cameras from different angles; if one goes

out, the others can cover albeit with reduced coverage).

The system should also gracefully handle non-critical

failures. For example, if the precise 3D vision goes down,

maybe the robot can still operate in a simpler mode using

just coarse distance sensing, or at worst, pause and ask for

assistance (a human can then remotely connect via an

interface, see the robot’s situation through remaining

cameras, and guide it – this kind of remote teleoperation

fallback is increasingly integrated into autonomous robot

architectures for those edge cases the autonomy can’t

handle).

Deployment and Maintenance: Industrial robots like

this often allow remote updates and monitoring. Boston

Dynamics likely uses an analytics platform to watch how

Stretch robots perform in the field (through logs or

periodic reports). Because these robots are expensive,

updates might be carefully validated – possibly tested

internally by BD on simulation and real test scenes, then

rolled out to customer robots during scheduled

maintenance windows. They might containerize parts of

the system (e.g., the vision system as one container that

Ashis Ghosh / IJETCSIT, 7(1), 1-7, 2026

6

can be updated independently of the motion control

system).

One could also consider compliance: for instance, if

using ROS, they might create a custom fork or a more

deterministic version to satisfy safety requirements (since

standard ROS isn’t certified for safety). Some industrial

deployments use ROS for high-level stuff but use a

certified real-time framework for low-level control. In

essence, the warehouse case highlights how a well-defined

problem can be solved by a highly optimized modular

system. The modularity is at the component level (vision,

planning, control, etc.) but also at the task sequencing

level. Stretch doesn’t need complicated behavior switching

– it basically always does the ―handle boxes‖ behavior –

yet internally it will break that down into modular steps

like ―acquire target -> pick -> stow -> move base ->

repeat‖. Those steps can be represented by a state machine

or behavior tree, albeit a fairly straightforward one since

the task variation is limited. The advantage of limiting

scope is improved reliability: every module can be heavily

tested on just box scenarios, which reduces the chance of

unpredictable behavior.

Finally, the architecture is prepared for scalability: If a

warehouse wants to run 10 Stretch robots, they should

function together without interference. This may require a

multi-robot coordination service (assigning different aisles

or docks to each robot to avoid collisions). That service

would be another software component (maybe cloud-based

or on a site server). Each robot runs an instance of the core

software and communicates its status to the coordinator.

This distributed architecture – individual autonomy plus a

coordination layer – exemplifies how modular design

extends even to multi-robot systems.

6. Discussion
The case studies presented in this paper collectively

demonstrate that software architecture is a first-order

design variable in mobile manipulation systems, on par

with perception, planning, and control algorithms. While

algorithmic performance often dominates evaluation

metrics in academic robotics, the results observed across

cleaning, warehouse automation, and assistive robotics

systems indicate that architectural structure directly

influences reliability, safety, and long-term system

evolution.

6.1. Architectural Benefits across Domains

A consistent benefit across all evaluated systems is

fault containment. By enforcing strict boundaries between

perception, task reasoning, motion generation, and

execution, failures remain localized and do not cascade

through the system. For example, transient perception

failures in warehouse automation scenarios—such as

temporary occlusions or misdetections of inventory—are

handled at the task layer without destabilizing real-time

execution loops. Similar observations have been reported

in large-scale navigation and manipulation systems, where

architectural decoupling reduces recovery time and

improves system uptime [2], [11].

Explicit task lifecycle modeling further improves

system observability. Rather than inferring system

behavior from logs or controller states, engineers can

inspect task-level transitions and events, enabling faster

diagnosis of failure modes. This aligns with prior findings

that state-based task executives improve transparency and

debuggability in complex robotic systems [4], [9].

6.2. Implications for Warehouse Automation

Warehouse automation presents one of the most

demanding environments for mobile manipulation software

due to scale, throughput requirements, and safety

constraints. Robots must operate continuously, often

alongside humans, while adapting to changing layouts and

inventory configurations. In such environments,

architectural rigidity becomes a liability. The proposed

architecture maps naturally onto warehouse workflows.

Task and reasoning layers manage long-horizon objectives

such as order fulfillment, bin replenishment, and exception

handling, while motion and execution layers operate under

strict real-time constraints. This separation enables system

operators to modify task logic—such as prioritization

strategies or recovery behaviors—without re-tuning low-

level controllers.

Prior work in large-scale indoor navigation has shown

that modular task coordination improves robustness and

adaptability when environments evolve over time [11]. The

present architecture extends these ideas to full mobile

manipulation, where grasping, placement, and base motion

must be coordinated safely. Event-driven coordination

allows robots to react asynchronously to external triggers,

such as human intervention or dynamic obstacles, without

blocking execution threads or violating timing guarantees.

From a deployment perspective, warehouse systems also

benefit from incremental rollout. New task behaviors can

be deployed at the reasoning layer while preserving

validated execution pipelines, reducing operational risk.

This mirrors best practices in distributed systems and has

been shown to reduce downtime and regression failures in

production robotics deployments [10].

6.3. Safety, Real-Time Guarantees, and Certification

Safety considerations cut across all layers of the

architecture. By isolating safety-critical execution within

deterministic control loops and enforcing command

validation at layer boundaries, the system aligns with

established principles in cyber-physical system design [7].

Supervisory state machines and watchdog mechanisms

provide clear intervention points for fault detection and

emergency handling. Importantly, this architectural clarity

supports certification and regulatory review, particularly in

domains such as healthcare and human-robot collaboration.

Systems with implicit control flow and tightly coupled

components are difficult to audit, whereas explicit task

models and well-defined interfaces improve traceability

and accountability [8].

Ashis Ghosh / IJETCSIT, 7(1), 1-7, 2026

7

6.4. Limitations and Trade-Offs

The proposed architecture introduces additional

abstraction layers, which may increase initial development

effort and require disciplined interface design. In latency-

critical subsystems, excessive message passing must be

avoided to preserve real-time guarantees. However, these

trade-offs are manageable through careful allocation of

responsibilities and by constraining abstraction boundaries

around timing-sensitive components. Overall, the benefits

in scalability, safety, and maintainability outweigh the

costs for systems intended for real-world deployment.

7. Conclusion
This paper presented a modular, event-driven software

architecture for mobile manipulation systems designed to

address the combined challenges of real-time execution,

safety, and scalable deployment. By decomposing robotic

functionality into perception, task reasoning, motion and

skill generation, and execution layers, the architecture

enables explicit task lifecycle management, fault

containment, and predictable system behavior. Through

multiple case studies—including a holonomic cleaning

robot, warehouse automation systems, and assistive

robotics platforms—we demonstrated that architectural

discipline materially improves robustness, observability,

and operational reliability. In warehouse environments in

particular, the architecture supports continuous operation,

incremental deployment, and safe human-robot interaction

without sacrificing performance. The findings reinforce

that advances in robotics must be accompanied by equally

rigorous advances in software architecture. As robotic

systems become increasingly integrated into safety-critical

and large-scale environments, architectures that emphasize

explicit state modeling, asynchronous coordination, and

real-time isolation will be essential. Future work will

explore formal verification of task-level logic, tighter

integration with learning-based components, and

standardized architectural patterns to accelerate adoption

across robotic domains.

Conflicts of Interest

The author declares that there is no conflict of interest

concerning the publishing of this paper.

References
[1] M. Quigley, K. Conley, B. Gerkey, et al., ―ROS: An

Open-Source Robot Operating System,‖ Proc. ICRA

Workshop on Open Source Software, 2009.

[2] S. Macenski, T. Moore, D. Lu, et al., ―The ROS 2

Navigation Stack,‖ IEEE Robotics & Automation

Magazine, vol. 27, no. 2, pp. 23–31, 2020.

[3] R. A. Brooks, ―A Robust Layered Control System for

a Mobile Robot,‖ IEEE Journal of Robotics and

Automation, vol. 2, no. 1, pp. 14–23, 1986.

[4] D. Harel, ―Statecharts: A Visual Formalism for

Complex Systems,‖ Science of Computer

Programming, vol. 8, no. 3, pp. 231–274, 1987.

[5] M. Colledanchise and P. Ögren, Behavior Trees in

Robotics and AI, CRC Press, 2018.

[6] G. Pardo-Castellote, ―OMG Data Distribution Service:

Architectural Overview,‖ Proc. ICDCS Workshops,

2003.

[7] E. A. Lee, ―Cyber-Physical Systems: Design

Challenges,‖ Proc. IEEE ISORC, 2008.

[8] P. Koopman and M. Wagner, ―Challenges in

Autonomous Vehicle Testing and Validation,‖ SAE

Int. J. Transportation Safety, 2016.

[9] J. Bohren and S. Cousins, ―The SMACH High-Level

Executive,‖ IEEE Robotics & Automation Magazine,

vol. 17, no. 4, pp. 18–20, 2010.

[10] M. Kleppmann, Designing Data-Intensive

Applications, O’Reilly Media, 2017.

[11] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey

and K. Konolige, "The Office Marathon: Robust

navigation in an indoor office environment," 2010

IEEE International Conference on Robotics and

Automation, Anchorage, AK, USA, 2010, pp. 300-

307, doi: 10.1109/ROBOT.2010.5509725.

[12] U.S. Patent 11,407,118 B1, ―Robot for performing

dextrous tasks and related methods and systems,‖

2022.

