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Abstract - Robotic manipulation systems are increasingly 

deployed in real-world environments where reliability, 

safety, and scalability are as critical as task performance. 

As these systems grow in complexity, software architecture 

has emerged as a primary determinant of operational 

robustness and long-term maintainability. This paper 

presents a modular software architecture for mobile 

manipulation robots that emphasizes separation of 

concerns, explicit task lifecycle management, and event-

driven coordination under real-time constraints. The 

proposed architecture decomposes robotic functionality 

into layered subsystems spanning perception, task 

reasoning, motion and skill generation, and execution and 

control. Design choices are motivated by the need to 

manage heterogeneous time scales, partial failures, and 

safety-critical behaviors. The architecture is evaluated 

through multiple case studies, including a holonomic 

mobile base with a specialized cleaning end effector, 

warehouse automation systems, and assistive robotics 

platforms. The results demonstrate that disciplined 

architectural design improves fault containment, system 

observability, and deployment reliability, supporting 

scalable robotics development and safe operation in 

dynamic environments. 

 

Keywords - Robotics Software Architecture, Mobile 

Manipulation, Real-Time Systems, Safety-Critical 

Robotics, ROS2, Autonomous Systems, Robot Learning, 

Task Planning. 

  

1. Introduction 
Modern robotic systems integrate perception, 

planning, control, and actuation across heterogeneous 

hardware and software components. While advances in 

machine learning and motion planning have significantly 

expanded robotic capabilities, many deployed systems 

continue to suffer from brittle behavior, limited fault 

tolerance, and slow development cycles. These issues are 

often rooted not in algorithmic deficiencies but in 

inadequate software architecture [1], [2]. Mobile 

manipulation systems are particularly challenging due to 

their combination of navigation, manipulation, and long-

horizon task execution. Such systems must operate under 

real-time constraints, tolerate sensor and actuator failures, 

and remain maintainable as new behaviors are added. 

Traditional monolithic control stacks, commonly used in 

research prototypes, struggle to meet these requirements at 

scale [3]. This paper argues that scalable and safe mobile 

manipulation depends on explicit architectural structure. 

We present a modular, event-driven software architecture 

designed to manage complexity, improve fault isolation, 

and support reliable deployment in real-world 

environments. 

 

2. Background and Related Work 
Robotic software architectures have historically drawn 

from layered control paradigms, most notably subsumption 

architectures for reactive behavior [3]. While effective for 

certain classes of problems, such approaches become 

difficult to extend as task complexity increases. More 

recent work has explored hierarchical task representations, 

including state machines and behavior trees, to manage 

complex robotic behaviors [4], [5]. Middleware platforms 

such as ROS and ROS2 provide communication 

abstractions that facilitate modularity, though architectural 

discipline remains the responsibility of system designers 

[1], [6].In parallel, research on cyber-physical systems has 

highlighted the importance of timing determinism, explicit 

state modeling, and safety enforcement in systems that 

interact with the physical world [7]. However, many 

robotics systems still lack clear separation between safety-

critical execution paths and higher-level decision logic. 

This work builds on prior research by synthesizing proven 

architectural patterns into a cohesive design tailored for 

mobile manipulation under real-time and safety 

constraints. 

 

1.1. Modularity in Robotics 

Modularity has long been touted as a key principle in 

robotics software engineering. In essence, modular 

software architecture means breaking down system 

functionality into independent, interchangeable 

components (modules) with well-defined interfaces. For 

robots, modules might correspond to perception 

algorithms, planning systems, control loops, user interface 

handlers, etc. This separation is valuable because it 

localizes complexity: each module can be developed and 

tested in isolation, and changes to one module (such as 

swapping out a localization algorithm or upgrading a path 

planner) need not ripple through the entire codebase as 

long as the interface contracts are maintained. Research in 

robotics consistently highlights that greater modularity 
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leads to more flexible and reusable systems, and reduces 

integration effort when building or modifying robots 

 

For example, one industrial report notes that modular 

robots can be reconfigured more easily for new tasks or 

hardware, and that ―modularity in robots has been 

proclaimed as one of the most promising approaches to 

making robots more flexible while decreasing integration 

times‖ 

 

Hardware modularity (like easily swapping sensors or 

arm tools) must be matched by software modularity, so the 

control software can accommodate new hardware or 

functionalities with minimal changes 

 

1.2. Robot Software Frameworks 

Over the past two decades, several frameworks have 

emerged to facilitate modular development. ROS (Robot 

Operating System) is the foremost example – an open-

source middleware that provides a publish/subscribe 

communication layer, package management, and a vast 

ecosystem of reusable modules (known as nodes in ROS) 

for common capabilities like SLAM (Simultaneous 

Localization and Mapping), perception, and navigation. 

ROS essentially enforces a component-based architecture: 

each node performs a specific role and communicates with 

others through topics (asynchronous message streams) or 

services. This decoupling via message passing is a 

deliberate architectural choice to support distributed 

development and runtime flexibility. The upcoming ROS 2 

further builds on this by using DDS, a data-centric 

middleware, to eliminate the need for a central master node 

and allow peer-to-peer discovery – making the system 

more fault-tolerant and scalable by design. Other robotics 

middleware (YARP, LCM, OROCOS, etc.) similarly 

provide infrastructure for modular system design. In 

parallel, there is a trend toward domain-specific languages 

and model-driven engineering in robotics to design 

behavior logic at a higher abstraction level (e.g., visual 

programming of state machines or behavior trees), again 

underscoring the need for software engineering rigor as 

robot software grows in size and complexity. 

 

2. Architectural Design Principles 
The proposed architecture is guided by four foundational 

principles: 

 Separation of Concerns: Perception, reasoning, 

motion generation, and execution are isolated into 

distinct layers. 

 Explicit State Modeling: Task progress and 

system state are represented explicitly rather than 

inferred from control flow. 

 Event-Driven Coordination: Asynchronous events 

replace blocking, synchronous calls across 

subsystems.  

 Fault Containment and Safety: Failures are 

localized, and recovery paths are explicitly 

defined. 

 

These principles reduce unintended coupling, improve 

observability, and support safe system evolution. 

 

3. Proposed Software Architecture 
3.1. Layered System Decomposition  

The architecture is organized into four layers: 

 Perception Layer: Processes sensor data (vision, 

depth, LiDAR) into semantic world models and 

publishes state updates asynchronously. 

 Task and Reasoning Layer: Interprets goals, 

manages task lifecycles using explicit state 

machines or LLM driven workflows, and issues 

high-level intent. 

 Motion and Skill Layer: Translates task intent into 

reusable skills and motion plans, including base 

positioning and end-effector actions. 

 Execution and Control Layer: Executes 

trajectories and low-level commands under real-

time constraints, interfacing directly with 

hardware controllers. 

 

Figure 1 illustrates the interaction between these layers and 

the bidirectional flow of commands and feedback. 

 

3.2. Event-Driven Coordination 

Subsystems communicate through typed events such 

as task_started, action_failed, or state_updated. This design 

avoids blocking dependencies and allows subsystems to 

operate at independent rates. Event-driven coordination 

aligns naturally with publish-subscribe middleware and 

supports monitoring, logging, and debugging [6]. 

 

3.3. Real-Time Constraints and Determinism 

Robotic systems operate across heterogeneous time 

scales. The architecture enforces strict boundaries between 

real-time execution and non-real-time reasoning. The 

execution layer operates with deterministic scheduling and 

bounded latency, while higher layers tolerate variable 

delays. This separation reduces timing interference and 

improves predictability [7], [8]. 

 



 

 
 

 
Figure 1. Modular Software Architecture for Mobile 

Manipulation 

 

4. Safety and Deployment Considerations 
4.1. Safety Mechanisms  

Safety is enforced through supervisory state machines, 

watchdog timers, and health monitoring processes. 

Execution controllers reject unsafe commands, while task-

level supervisors manage recovery and shutdown 

procedures. These mechanisms reflect best practices in 

safety-critical cyber-physical systems [7], [9]. 

 

4.2. Deployment Frameworks 

Modern robotic deployment increasingly leverages 

containerization, continuous integration pipelines, and 

automated testing. Modular architecture enables isolated 

testing of subsystems, simulation-based validation, and 

staged rollout of new capabilities. Such practices improve 

reliability and reduce regression risk during field updates 

[10]. 

 

5. Case Studies 
5.1. Holonomic Mobile Manipulation for Cleaning 

Consider a multifunctional floor-cleaning robot that 

can navigate through a building and perform tasks such as 

vacuuming, mopping, and even picking up small debris. 

This robot typically consists of a mobile base (for 

navigation) equipped with cleaning apparatus (brushes, 

mops, vacuum suction) and possibly a small manipulator 

arm to move obstacles or reach corners. One example from 

recent research is the ―Multi-Functional Cleaning Robot 

(MFCR)‖ prototype, which integrates autonomous 

navigation, multiple cleaning modes, and a 3-DOF arm for 

light manipulation 

 

Architecture and Modularity: Such a robot is 

inherently modular because of its diverse functions. The 

MFCR’s design philosophy ―emphasizes modularity, 

efficiency, and adaptability to diverse domestic 

environments‖, unifying mechanical, software, and AI 

components in a single system 

 

On the software side, we can identify modules for: 

mapping and localization (SLAM) – to allow the robot to 

know where it is and cover all areas; navigation and path 

planning – to move around furniture and reach target areas; 

cleaning operations – controlling brushes, water spray, 

vacuum motors, etc., possibly with adaptive algorithms; 

and the manipulator control – for the small arm to pick up 

objects like trash or to press elevator buttons if needed. 

Each of these functions can be encapsulated in separate 

ROS nodes or processes. For instance, a dedicated 

navigation stack (often using ROS’s move_base and 

related packages) handles all motion planning and obstacle 

avoidance, while a separate cleaning controller node 

manages the timing of brush activation, water spraying, 

and monitors cleaning efficacy (using sensors to detect 

dirt). The manipulator would have its own control module, 

perhaps using an inverse kinematics library.  

 

These modules interact but are relatively loosely 

coupled via defined interfaces. The navigation system 

might publish events like ―area X cleaned‖ or ―arrived at 

location Y‖, upon which the cleaning module adjusts its 

behavior (e.g., turn on the vacuum when in a dirty zone). 

The arm module might subscribe to a topic from the vision 

system indicating ―debris detected at coordinates‖, then 

proceed to pick it up. By separating these concerns, 

developers can improve each part independently – for 

example, upgrade the SLAM algorithm to a more robust 

one without touching the cleaning logic, as long as the 

pose data format remains consistent. 

 

Real-Time and Performance: Cleaning robots operate 

in dynamic, human environments, but typically their real-

time demands are not as stringent as, say, an industrial 

robot on an assembly line. Still, timely response is 

important for obstacle avoidance and control. The base 

controller (which converts high-level velocity commands 

to motor signals) runs in real-time on a microcontroller or 

real-time loop. The MFCR, for example, would require its 

drive system to update at perhaps 50-100 Hz for smooth 

motion control. The brushing and vacuum motors might be 

less time-critical, but if the robot has a suction pressure 

sensor or similar, it could adapt suction in real time as it 

encounters dirt – requiring a control loop adjusting motor 

power on the fly. These are manageable within a ROS PC 

plus microcontroller setup. The arm being only 3-DOF and 

for light objects likely doesn’t need ultra-fast control; even 

a 10 Hz planning and 100 Hz low-level servo control could 

suffice. 

 

One real-time challenge is navigation in the presence 

of moving humans. The robot must sense and replan 

quickly to avoid people. Using a LIDAR or depth camera, 
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the perception update might be, say, 5-10 Hz. The planning 

algorithm (often based on DWA – Dynamic Window 

Approach – in ROS navigation) recomputes commands 

every 0.1s or so. This usually is fine on modern CPUs. If 

the environment is very cluttered, computing a global path 

might momentarily spike CPU, but the layered architecture 

(local vs global planner separation in ROS) helps maintain 

responsiveness. 

 

Safety and Fault Tolerance: Safety for a cleaning robot 

includes not bumping into people or pets, avoiding stairs 

(not falling down), and not damaging furniture. These 

robots use bump sensors and cliff sensors as a last resort 

fail-safe (many vacuum robots have a simple bumper that 

triggers an immediate stop if touched). In software, the 

robot will have virtual safety zones – e.g., if a person 

comes within a certain range, the robot stops moving until 

they pass. The system health for a cleaning robot involves 

monitoring the battery (to ensure it returns to dock in time) 

and monitoring for any stuck conditions (if wheels get 

jammed or it’s trapped). 

 

The architecture likely includes a safety supervisor 

that monitors state such as wheel odometry (no progress 

for some time might indicate it’s stuck), sensor health 

(suddenly no data from a camera could mean it’s 

disconnected – trigger a retry or notify user), and timing (if 

a critical thread like localization hasn’t updated, maybe 

reset it). A watchdog could be present on the drive 

microcontroller to cut power if commands cease 

(preventing the robot from going rogue due to a software 

hang). Being a consumer-facing robot, it must be robust 

against partial failures: e.g., if the arm fails, it should 

simply stop using the arm but perhaps continue cleaning 

with the base, rather than cease all operation. This requires 

the software to be able to isolate that module – achieved if 

the arm controller node can be separately brought down or 

restarted without crashing the whole system. 

 

Interestingly, cleaning robots can make use of 

relatively low-cost components which might be prone to 

occasional error (cheap sensors, etc.), so the software must 

be forgiving. The MFCR’s description includes multiple 

sensors for tasks – optical and tactile sensors on the arm to 

ensure precise grasp and prevent damage. These sensors 

feed into safety: if the arm feels unexpected resistance 

(tactile sensing) while moving, it can assume it hit 

something and back off (much like a collaborative robot’s 

safety stop when force threshold exceeded). This is an 

example of a local safety reflex built into the arm control 

module, acting faster than a high-level supervisor would. 

 

Deployment: Many cleaning robots in the market (e.g., 

robotic vacuums or commercial floor scrubbers) are 

delivered as products with occasional firmware updates. 

Some use cloud connectivity to update maps or get new 

algorithms. From an architecture perspective, these robots 

often have a cloud backend for fleet management (if 

multiple units in a facility). The software on the robot may 

be containerized; for example, a start-up delivering robots 

might ship a Docker-based software package so that it’s 

uniform across all customer sites and easily updated. 

However, smaller consumer robots might not use full OS 

containers due to resource constraints, but they still 

modularize software into libraries/tasks. 

 

The MFCR being a prototype likely was tested in a 

lab; if it were to be productized, one would implement CI 

tests like running it on various floor types virtually to 

ensure the SLAM and cleaning algorithms handle them. 

Logging is also crucial – if the robot misses a spot, the 

developers need logs to diagnose whether it was a 

localization miss, a planning miss, or a software bug in 

marking areas as clean. In summary, the cleaning robot 

case demonstrates the benefits of a modular architecture: it 

unifies navigation, cleaning, and manipulation subsystems 

within one framework, with an emphasis on adaptability. 

By having interchangeable cleaning modules (the MFCR 

had swappable mopping/vacuum attachments) and a 

flexible software system, the robot can tackle various tasks 

 

Its software must coordinate these modules, but thanks 

to a layered design (navigation vs task execution vs low-

level control) and use of standardized ROS components, 

adding a new capability (say a UV disinfectant lamp 

module) might just mean adding a new node for 

controlling that lamp and integrating it into the mission 

logic, without rewriting the navigation or core logic. This 

ease of extensibility is a direct result of modular software 

design. 

 

5.2. Warehouse Automation 

Warehousing and logistics have been a booming area 

for robotics, as warehouses aim to automate repetitive 

picking and packing tasks. A representative system here is 

Boston Dynamics’ ―Stretch‖ robot, a mobile manipulator 

designed specifically for moving boxes in warehouses and 

distribution centers. Stretch has a wheeled base, a large 

articulated arm with a smart gripper (suction-based for 

grabbing boxes), and a perception mast with sensors. It is 

used for tasks like unloading trucks (reaching into delivery 

truck interiors to grab boxes) and stacking boxes onto 

pallets. This is a prime example of a mobile manipulator in 

an industrial environment. 

 

Task Focus and Simplicity: One notable thing about 

Stretch as an architectural case: it is designed explicitly for 

the task of box handling in relatively structured warehouse 

environments. This focus means the software architecture 

can be optimized around that workflow: navigation is 

basically constrained to driving in fairly open spaces 

(warehouse aisles), the arm manipulation is mostly picking 

up rectangular boxes (which is simpler in vision and grasp 

strategy than arbitrary objects), and there may be no need 

for complex behavior switching – the robot does one job 

repeatedly. 

 

However, even with a constrained task, the 

architecture is modular. Stretch’s software likely includes 

modules for: locomotion (the base with omni-wheels to 
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maneuver in tight spaces), perception (detecting boxes and 

understanding the 3D layout of a pallet or truck interior), 

motion planning for the arm (to reach and move boxes 

without collisions), and coordination logic (deciding which 

box to pick next, how to stack, etc.). If built on ROS or a 

similar middleware, each of these could be separate nodes 

or groups of nodes. For example, one can imagine a 

perception node that uses depth cameras to identify box 

sizes and positions; it publishes target pick locations. A 

planner node then takes that and computes a path for the 

arm and base (maybe the base has to reposition to reach a 

far corner). A gripper control node handles the suction and 

detects if a box has been successfully grasped (using 

vacuum sensors). A supervisor node oversees the 

sequence: repeat until truck empty or pallet full, handle 

exceptions (like a box slips, or an obstacle appears). 

 

Modularity and Industrial Requirements: In industrial 

robots, there’s often a requirement for easy deployment 

and adaptation to different facilities. To achieve this, the 

software might allow configuration of certain parameters 

(like box sizes, pallet patterns) without coding. It might use 

a plugin architecture where different perception algorithms 

or gripper attachments can be swapped in. The ease of 

deployment also speaks to the architecture’s packaging – 

presumably the entire software is delivered in a way that 

an operator can set it up on-site quickly (possibly via a 

user-friendly interface, and under the hood, using 

containerized deployment to ensure all dependencies are 

there). 

 

Real-Time and Sensing: Warehouse robots often need 

to operate quickly but also very safely around human 

workers (though Stretch is typically used in task zones that 

may be cordoned off from humans while operating, for 

safety). The real-time needs include smooth handling of 

heavy loads – moving a 20 kg box quickly requires careful 

control to avoid oscillations. The arm controller likely runs 

on a real-time system to manage motor torques and ensure 

stable motion (especially because a long arm moving fast 

can have significant inertia). The base must coordinate 

with the arm; possibly the base moves into a new position 

while the arm is already reaching (coordinated motion), 

which requires tight timing integration between base and 

arm control loops. 

 

Communication latency in a warehouse environment 

could be an issue if the robot relies on wireless networking 

for some computation (though likely most processing is 

on-board). If multiple robots coordinate (imagine several 

mobile manipulators working in the same area), there may 

be a centralized system assigning tasks to avoid conflicts. 

That implies a networked architecture where each robot is 

a node in a fleet system. That fleet management system 

would be another module (off-board, possibly cloud or 

edge server) communicating with the robot’s on-board 

software to give it missions and receive status. Ensuring 

commands from the fleet manager (like ―go unload truck at 

dock 5‖) are received and executed timely is important but 

not hard real-time; however, once on the task, the robot’s 

local autonomy is mostly self-contained. 

 

Safety: Industrial safety standards require various 

redundancies. Stretch likely has 2D and 3D vision for 

obstacle detection – if something unexpected like a person 

or a forklift crosses its path, it must stop. The safety 

architecture might include a separate, hardware-certified 

safety system that monitors a planar LiDAR for obstacles 

and can stop the base. On the arm, if it senses a collision or 

excessive force, it should halt immediately. The software 

also must make sure not to exceed safe speeds in certain 

conditions (for example, when carrying a heavy box, 

maybe reduce speed for stability). 

 

From an architecture viewpoint, safety monitors in an 

industrial robot are often implemented on a safety PLC or 

a microcontroller separate from the main computer, to 

meet regulatory standards. But the main software still has 

layers of safety – e.g., the task planner will not command 

motions that it knows are unsafe (obeying a ―keep-out 

zone‖ or ensuring the arm doesn’t extend outside the 

vehicle’s footprint when moving, etc.). Having 

independent safety layers is critical: if the high-level 

software fails to catch something, the low-level safety 

should still prevent accidents. That means the two need to 

be consistent, which is usually achieved by conservative 

design (the low-level will stop at even the hint of a 

problem, while the high-level tries to avoid getting near 

those conditions in the first place). 

 

Reliability and Fault Tolerance: In a warehouse, 

downtime is costly. The robot’s architecture might include 

self-diagnostics – e.g., if a joint is overheating, it can take a 

short break or alert maintenance. If a sensor fails, perhaps 

the system can switch to a backup sensor (some designs 

have multiple cameras from different angles; if one goes 

out, the others can cover albeit with reduced coverage). 

The system should also gracefully handle non-critical 

failures. For example, if the precise 3D vision goes down, 

maybe the robot can still operate in a simpler mode using 

just coarse distance sensing, or at worst, pause and ask for 

assistance (a human can then remotely connect via an 

interface, see the robot’s situation through remaining 

cameras, and guide it – this kind of remote teleoperation 

fallback is increasingly integrated into autonomous robot 

architectures for those edge cases the autonomy can’t 

handle). 

 

Deployment and Maintenance: Industrial robots like 

this often allow remote updates and monitoring. Boston 

Dynamics likely uses an analytics platform to watch how 

Stretch robots perform in the field (through logs or 

periodic reports). Because these robots are expensive, 

updates might be carefully validated – possibly tested 

internally by BD on simulation and real test scenes, then 

rolled out to customer robots during scheduled 

maintenance windows. They might containerize parts of 

the system (e.g., the vision system as one container that 
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can be updated independently of the motion control 

system). 

 

One could also consider compliance: for instance, if 

using ROS, they might create a custom fork or a more 

deterministic version to satisfy safety requirements (since 

standard ROS isn’t certified for safety). Some industrial 

deployments use ROS for high-level stuff but use a 

certified real-time framework for low-level control. In 

essence, the warehouse case highlights how a well-defined 

problem can be solved by a highly optimized modular 

system. The modularity is at the component level (vision, 

planning, control, etc.) but also at the task sequencing 

level. Stretch doesn’t need complicated behavior switching 

– it basically always does the ―handle boxes‖ behavior – 

yet internally it will break that down into modular steps 

like ―acquire target -> pick -> stow -> move base -> 

repeat‖. Those steps can be represented by a state machine 

or behavior tree, albeit a fairly straightforward one since 

the task variation is limited. The advantage of limiting 

scope is improved reliability: every module can be heavily 

tested on just box scenarios, which reduces the chance of 

unpredictable behavior.  

 

Finally, the architecture is prepared for scalability: If a 

warehouse wants to run 10 Stretch robots, they should 

function together without interference. This may require a 

multi-robot coordination service (assigning different aisles 

or docks to each robot to avoid collisions). That service 

would be another software component (maybe cloud-based 

or on a site server). Each robot runs an instance of the core 

software and communicates its status to the coordinator. 

This distributed architecture – individual autonomy plus a 

coordination layer – exemplifies how modular design 

extends even to multi-robot systems. 

 

6. Discussion 
The case studies presented in this paper collectively 

demonstrate that software architecture is a first-order 

design variable in mobile manipulation systems, on par 

with perception, planning, and control algorithms. While 

algorithmic performance often dominates evaluation 

metrics in academic robotics, the results observed across 

cleaning, warehouse automation, and assistive robotics 

systems indicate that architectural structure directly 

influences reliability, safety, and long-term system 

evolution. 

 

6.1. Architectural Benefits across Domains 

A consistent benefit across all evaluated systems is 

fault containment. By enforcing strict boundaries between 

perception, task reasoning, motion generation, and 

execution, failures remain localized and do not cascade 

through the system. For example, transient perception 

failures in warehouse automation scenarios—such as 

temporary occlusions or misdetections of inventory—are 

handled at the task layer without destabilizing real-time 

execution loops. Similar observations have been reported 

in large-scale navigation and manipulation systems, where 

architectural decoupling reduces recovery time and 

improves system uptime [2], [11]. 

 

Explicit task lifecycle modeling further improves 

system observability. Rather than inferring system 

behavior from logs or controller states, engineers can 

inspect task-level transitions and events, enabling faster 

diagnosis of failure modes. This aligns with prior findings 

that state-based task executives improve transparency and 

debuggability in complex robotic systems [4], [9]. 

 

6.2. Implications for Warehouse Automation 

Warehouse automation presents one of the most 

demanding environments for mobile manipulation software 

due to scale, throughput requirements, and safety 

constraints. Robots must operate continuously, often 

alongside humans, while adapting to changing layouts and 

inventory configurations. In such environments, 

architectural rigidity becomes a liability. The proposed 

architecture maps naturally onto warehouse workflows. 

Task and reasoning layers manage long-horizon objectives 

such as order fulfillment, bin replenishment, and exception 

handling, while motion and execution layers operate under 

strict real-time constraints. This separation enables system 

operators to modify task logic—such as prioritization 

strategies or recovery behaviors—without re-tuning low-

level controllers. 

 

Prior work in large-scale indoor navigation has shown 

that modular task coordination improves robustness and 

adaptability when environments evolve over time [11]. The 

present architecture extends these ideas to full mobile 

manipulation, where grasping, placement, and base motion 

must be coordinated safely. Event-driven coordination 

allows robots to react asynchronously to external triggers, 

such as human intervention or dynamic obstacles, without 

blocking execution threads or violating timing guarantees. 

From a deployment perspective, warehouse systems also 

benefit from incremental rollout. New task behaviors can 

be deployed at the reasoning layer while preserving 

validated execution pipelines, reducing operational risk. 

This mirrors best practices in distributed systems and has 

been shown to reduce downtime and regression failures in 

production robotics deployments [10]. 

 

6.3. Safety, Real-Time Guarantees, and Certification 

Safety considerations cut across all layers of the 

architecture. By isolating safety-critical execution within 

deterministic control loops and enforcing command 

validation at layer boundaries, the system aligns with 

established principles in cyber-physical system design [7]. 

Supervisory state machines and watchdog mechanisms 

provide clear intervention points for fault detection and 

emergency handling. Importantly, this architectural clarity 

supports certification and regulatory review, particularly in 

domains such as healthcare and human-robot collaboration. 

Systems with implicit control flow and tightly coupled 

components are difficult to audit, whereas explicit task 

models and well-defined interfaces improve traceability 

and accountability [8]. 
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6.4. Limitations and Trade-Offs 

The proposed architecture introduces additional 

abstraction layers, which may increase initial development 

effort and require disciplined interface design. In latency-

critical subsystems, excessive message passing must be 

avoided to preserve real-time guarantees. However, these 

trade-offs are manageable through careful allocation of 

responsibilities and by constraining abstraction boundaries 

around timing-sensitive components. Overall, the benefits 

in scalability, safety, and maintainability outweigh the 

costs for systems intended for real-world deployment. 

 

7. Conclusion 
This paper presented a modular, event-driven software 

architecture for mobile manipulation systems designed to 

address the combined challenges of real-time execution, 

safety, and scalable deployment. By decomposing robotic 

functionality into perception, task reasoning, motion and 

skill generation, and execution layers, the architecture 

enables explicit task lifecycle management, fault 

containment, and predictable system behavior. Through 

multiple case studies—including a holonomic cleaning 

robot, warehouse automation systems, and assistive 

robotics platforms—we demonstrated that architectural 

discipline materially improves robustness, observability, 

and operational reliability. In warehouse environments in 

particular, the architecture supports continuous operation, 

incremental deployment, and safe human-robot interaction 

without sacrificing performance. The findings reinforce 

that advances in robotics must be accompanied by equally 

rigorous advances in software architecture. As robotic 

systems become increasingly integrated into safety-critical 

and large-scale environments, architectures that emphasize 

explicit state modeling, asynchronous coordination, and 

real-time isolation will be essential. Future work will 

explore formal verification of task-level logic, tighter 

integration with learning-based components, and 

standardized architectural patterns to accelerate adoption 

across robotic domains. 
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