Ny

International Journal of Emerging Trends in Computer Science and Information Technology
ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.1JETCSIT-V711P101
Eureka Vision Publication | Volume 7, Issue 1, 1-7, 2026

Original Article

A Modular Software Architecture for Safe and Scalable
Mobile Manipulation Systems

Received On: 11/11/2025 Revised On: 13/12/2025
Abstract - Robotic manipulation systems are increasingly
deployed in real-world environments where reliability,
safety, and scalability are as critical as task performance.
As these systems grow in complexity, software architecture
has emerged as a primary determinant of operational
robustness and long-term maintainability. This paper
presents a modular software architecture for mobile
manipulation robots that emphasizes separation of
concerns, explicit task lifecycle management, and event-
driven coordination under real-time constraints. The
proposed architecture decomposes robotic functionality
into layered subsystems spanning perception, task
reasoning, motion and skill generation, and execution and
control. Design choices are motivated by the need to
manage heterogeneous time scales, partial failures, and
safety-critical behaviors. The architecture is evaluated
through multiple case studies, including a holonomic
mobile base with a specialized cleaning end effector,
warehouse automation systems, and assistive robotics
platforms. The results demonstrate that disciplined
architectural design improves fault containment, system
observability, and deployment reliability, supporting
scalable robotics development and safe operation in
dynamic environments.

Keywords - Robotics Software Architecture, Mobile
Manipulation, Real-Time Systems, Safety-Critical
Robotics, ROS2, Autonomous Systems, Robot Learning,
Task Planning.

1. Introduction

Modern robotic systems integrate perception,
planning, control, and actuation across heterogeneous
hardware and software components. While advances in
machine learning and motion planning have significantly
expanded robotic capabilities, many deployed systems
continue to suffer from brittle behavior, limited fault
tolerance, and slow development cycles. These issues are
often rooted not in algorithmic deficiencies but in
inadequate software architecture [1], [2]. Mobile
manipulation systems are particularly challenging due to
their combination of navigation, manipulation, and long-
horizon task execution. Such systems must operate under
real-time constraints, tolerate sensor and actuator failures,
and remain maintainable as new behaviors are added.
Traditional monolithic control stacks, commonly used in

Ashis Ghosh

Independent Researcher CA, USA.

Accepted On: 21/12/2025 Published On: 02/01/2026

research prototypes, struggle to meet these requirements at

scale [3]. This paper argues that scalable and safe mobile

manipulation depends on explicit architectural structure.

We present a modular, event-driven software architecture

designed to manage complexity, improve fault isolation,

and support reliable deployment in real-world
environments.

2. Background and Related Work

Robotic software architectures have historically drawn
from layered control paradigms, most notably subsumption
architectures for reactive behavior [3]. While effective for
certain classes of problems, such approaches become
difficult to extend as task complexity increases. More
recent work has explored hierarchical task representations,
including state machines and behavior trees, to manage
complex robotic behaviors [4], [5]. Middleware platforms
such as ROS and ROS2 provide communication
abstractions that facilitate modularity, though architectural
discipline remains the responsibility of system designers
[1], [6].In parallel, research on cyber-physical systems has
highlighted the importance of timing determinism, explicit
state modeling, and safety enforcement in systems that
interact with the physical world [7]. However, many
robotics systems still lack clear separation between safety-
critical execution paths and higher-level decision logic.
This work builds on prior research by synthesizing proven
architectural patterns into a cohesive design tailored for
mobile manipulation under real-time and safety
constraints.

1.1. Modularity in Robotics

Modularity has long been touted as a key principle in
robotics software engineering. In essence, modular
software architecture means breaking down system
functionality into independent, interchangeable
components (modules) with well-defined interfaces. For
robots, modules might correspond to perception
algorithms, planning systems, control loops, user interface
handlers, etc. This separation is valuable because it
localizes complexity: each module can be developed and
tested in isolation, and changes to one module (such as
swapping out a localization algorithm or upgrading a path
planner) need not ripple through the entire codebase as
long as the interface contracts are maintained. Research in
robotics consistently highlights that greater modularity

Ashis Ghosh / IJETCSIT, 7(1), 1-7, 2026

leads to more flexible and reusable systems, and reduces
integration effort when building or modifying robots

For example, one industrial report notes that modular
robots can be reconfigured more easily for new tasks or
hardware, and that “modularity in robots has been
proclaimed as one of the most promising approaches to
making robots more flexible while decreasing integration
times”

Hardware modularity (like easily swapping sensors or
arm tools) must be matched by software modularity, so the
control software can accommodate new hardware or
functionalities with minimal changes

1.2. Robot Software Frameworks

Over the past two decades, several frameworks have
emerged to facilitate modular development. ROS (Robot
Operating System) is the foremost example — an open-
source middleware that provides a publish/subscribe
communication layer, package management, and a vast
ecosystem of reusable modules (known as nodes in ROS)
for common capabilities like SLAM (Simultaneous
Localization and Mapping), perception, and navigation.
ROS essentially enforces a component-based architecture:
each node performs a specific role and communicates with
others through topics (asynchronous message streams) or
services. This decoupling via message passing is a
deliberate architectural choice to support distributed
development and runtime flexibility. The upcoming ROS 2
further builds on this by using DDS, a data-centric
middleware, to eliminate the need for a central master node
and allow peer-to-peer discovery — making the system
more fault-tolerant and scalable by design. Other robotics
middleware (YARP, LCM, OROCOQOS, etc.) similarly
provide infrastructure for modular system design. In
parallel, there is a trend toward domain-specific languages
and model-driven engineering in robotics to design
behavior logic at a higher abstraction level (e.g., visual
programming of state machines or behavior trees), again
underscoring the need for software engineering rigor as
robot software grows in size and complexity.

2. Architectural Design Principles
The proposed architecture is guided by four foundational
principles:

e Separation of Concerns: Perception, reasoning,
motion generation, and execution are isolated into
distinct layers.

e Explicit State Modeling: Task progress and
system state are represented explicitly rather than
inferred from control flow.

e Event-Driven Coordination: Asynchronous events
replace blocking, synchronous calls across
subsystems.

e Fault Containment and Safety: Failures are
localized, and recovery paths are explicitly
defined.

These principles reduce unintended coupling, improve
observability, and support safe system evolution.

3. Proposed Software Architecture
3.1. Layered System Decomposition
The architecture is organized into four layers:

e Perception Layer: Processes sensor data (vision,
depth, LiDAR) into semantic world models and
publishes state updates asynchronously.

e Task and Reasoning Layer: Interprets goals,
manages task lifecycles using explicit state
machines or LLM driven workflows, and issues
high-level intent.

e Motion and Skill Layer: Translates task intent into
reusable skills and motion plans, including base
positioning and end-effector actions.

e Execution and Control Layer: Executes
trajectories and low-level commands under real-
time constraints, interfacing directly with
hardware controllers.

Figure 1 illustrates the interaction between these layers and
the bidirectional flow of commands and feedback.

3.2. Event-Driven Coordination

Subsystems communicate through typed events such
as task_started, action_failed, or state_updated. This design
avoids blocking dependencies and allows subsystems to
operate at independent rates. Event-driven coordination
aligns naturally with publish-subscribe middleware and
supports monitoring, logging, and debugging [6].

3.3. Real-Time Constraints and Determinism

Robotic systems operate across heterogeneous time
scales. The architecture enforces strict boundaries between
real-time execution and non-real-time reasoning. The
execution layer operates with deterministic scheduling and
bounded latency, while higher layers tolerate variable
delays. This separation reduces timing interference and
improves predictability [7], [8].

Perception Layer

Vision, LiDAR, Depth
Scene Understanding

Events / World Model
hd

Task & Reasoning Layer

Task State Machine

High-Level Sequencing

Task Intent / Events

Motion & Skill Layer

Holonomic Base Skills
End Effector Skills

Trajectories / Commands

Execution & Control

Controllers & Drivers

Hardware Interfaces

= — — S—)

Events and Feedback Flow

4~ Commands / Events 4 Status / Feedback —

Figure 1. Modular Software Architecture for Mobile
Manipulation

4. Safety and Deployment Considerations
4.1. Safety Mechanisms

Safety is enforced through supervisory state machines,
watchdog timers, and health monitoring processes.
Execution controllers reject unsafe commands, while task-
level supervisors manage recovery and shutdown
procedures. These mechanisms reflect best practices in
safety-critical cyber-physical systems [7], [9].

4.2. Deployment Frameworks

Modern robotic deployment increasingly leverages
containerization, continuous integration pipelines, and
automated testing. Modular architecture enables isolated
testing of subsystems, simulation-based validation, and
staged rollout of new capabilities. Such practices improve
reliability and reduce regression risk during field updates
[10].

5. Case Studies
5.1. Holonomic Mobile Manipulation for Cleaning
Consider a multifunctional floor-cleaning robot that
can navigate through a building and perform tasks such as
vacuuming, mopping, and even picking up small debris.
This robot typically consists of a mobile base (for
navigation) equipped with cleaning apparatus (brushes,
mops, vacuum suction) and possibly a small manipulator
arm to move obstacles or reach corners. One example from
recent research is the “Multi-Functional Cleaning Robot
(MFCR)” prototype, which integrates autonomous
navigation, multiple cleaning modes, and a 3-DOF arm for
light manipulation

Architecture and Modularity: Such a robot is
inherently modular because of its diverse functions. The
MFCR’s design philosophy “emphasizes modularity,
efficiency, and adaptability to diverse domestic
environments”, unifying mechanical, software, and Al
components in a single system

On the software side, we can identify modules for:
mapping and localization (SLAM) — to allow the robot to
know where it is and cover all areas; navigation and path
planning — to move around furniture and reach target areas;
cleaning operations — controlling brushes, water spray,
vacuum motors, etc., possibly with adaptive algorithms;
and the manipulator control — for the small arm to pick up
objects like trash or to press elevator buttons if needed.
Each of these functions can be encapsulated in separate
ROS nodes or processes. For instance, a dedicated
navigation stack (often using ROS’s move base and
related packages) handles all motion planning and obstacle
avoidance, while a separate cleaning controller node
manages the timing of brush activation, water spraying,
and monitors cleaning efficacy (using sensors to detect
dirt). The manipulator would have its own control module,
perhaps using an inverse kinematics library.

These modules interact but are relatively loosely
coupled via defined interfaces. The navigation system
might publish events like “area X cleaned” or “arrived at
location Y”, upon which the cleaning module adjusts its
behavior (e.g., turn on the vacuum when in a dirty zone).
The arm module might subscribe to a topic from the vision
system indicating “debris detected at coordinates”, then
proceed to pick it up. By separating these concerns,
developers can improve each part independently — for
example, upgrade the SLAM algorithm to a more robust
one without touching the cleaning logic, as long as the
pose data format remains consistent.

Real-Time and Performance: Cleaning robots operate
in dynamic, human environments, but typically their real-
time demands are not as stringent as, say, an industrial
robot on an assembly line. Still, timely response is
important for obstacle avoidance and control. The base
controller (which converts high-level velocity commands
to motor signals) runs in real-time on a microcontroller or
real-time loop. The MFCR, for example, would require its
drive system to update at perhaps 50-100 Hz for smooth
motion control. The brushing and vacuum motors might be
less time-critical, but if the robot has a suction pressure
sensor or similar, it could adapt suction in real time as it
encounters dirt — requiring a control loop adjusting motor
power on the fly. These are manageable within a ROS PC
plus microcontroller setup. The arm being only 3-DOF and
for light objects likely doesn’t need ultra-fast control; even
a 10 Hz planning and 100 Hz low-level servo control could
suffice.

One real-time challenge is navigation in the presence
of moving humans. The robot must sense and replan
quickly to avoid people. Using a LIDAR or depth camera,

Ashis Ghosh / IJETCSIT, 7(1), 1-7, 2026

the perception update might be, say, 5-10 Hz. The planning
algorithm (often based on DWA - Dynamic Window
Approach — in ROS navigation) recomputes commands
every 0.1s or so. This usually is fine on modern CPUs. If
the environment is very cluttered, computing a global path
might momentarily spike CPU, but the layered architecture
(local vs global planner separation in ROS) helps maintain
responsiveness.

Safety and Fault Tolerance: Safety for a cleaning robot
includes not bumping into people or pets, avoiding stairs
(not falling down), and not damaging furniture. These
robots use bump sensors and cliff sensors as a last resort
fail-safe (many vacuum robots have a simple bumper that
triggers an immediate stop if touched). In software, the
robot will have virtual safety zones — e.g., if a person
comes within a certain range, the robot stops moving until
they pass. The system health for a cleaning robot involves
monitoring the battery (to ensure it returns to dock in time)
and monitoring for any stuck conditions (if wheels get
jammed or it’s trapped).

The architecture likely includes a safety supervisor
that monitors state such as wheel odometry (no progress
for some time might indicate it’s stuck), sensor health
(suddenly no data from a camera could mean it’s
disconnected — trigger a retry or notify user), and timing (if
a critical thread like localization hasn’t updated, maybe
reset it). A watchdog could be present on the drive
microcontroller to cut power if commands cease
(preventing the robot from going rogue due to a software
hang). Being a consumer-facing robot, it must be robust
against partial failures: e.g., if the arm fails, it should
simply stop using the arm but perhaps continue cleaning
with the base, rather than cease all operation. This requires
the software to be able to isolate that module — achieved if
the arm controller node can be separately brought down or
restarted without crashing the whole system.

Interestingly, cleaning robots can make use of
relatively low-cost components which might be prone to
occasional error (cheap sensors, etc.), so the software must
be forgiving. The MFCR’s description includes multiple
sensors for tasks — optical and tactile sensors on the arm to
ensure precise grasp and prevent damage. These sensors
feed into safety: if the arm feels unexpected resistance
(tactile sensing) while moving, it can assume it hit
something and back off (much like a collaborative robot’s
safety stop when force threshold exceeded). This is an
example of a local safety reflex built into the arm control
module, acting faster than a high-level supervisor would.

Deployment: Many cleaning robots in the market (e.g.,
robotic vacuums or commercial floor scrubbers) are
delivered as products with occasional firmware updates.
Some use cloud connectivity to update maps or get new
algorithms. From an architecture perspective, these robots
often have a cloud backend for fleet management (if
multiple units in a facility). The software on the robot may
be containerized; for example, a start-up delivering robots

might ship a Docker-based software package so that it’s
uniform across all customer sites and easily updated.
However, smaller consumer robots might not use full OS
containers due to resource constraints, but they still
modularize software into libraries/tasks.

The MFCR being a prototype likely was tested in a
lab; if it were to be productized, one would implement ClI
tests like running it on various floor types virtually to
ensure the SLAM and cleaning algorithms handle them.
Logging is also crucial — if the robot misses a spot, the
developers need logs to diagnose whether it was a
localization miss, a planning miss, or a software bug in
marking areas as clean. In summary, the cleaning robot
case demonstrates the benefits of a modular architecture: it
unifies navigation, cleaning, and manipulation subsystems
within one framework, with an emphasis on adaptability.
By having interchangeable cleaning modules (the MFCR
had swappable mopping/vacuum attachments) and a
flexible software system, the robot can tackle various tasks

Its software must coordinate these modules, but thanks
to a layered design (navigation vs task execution vs low-
level control) and use of standardized ROS components,
adding a new capability (say a UV disinfectant lamp
module) might just mean adding a new node for
controlling that lamp and integrating it into the mission
logic, without rewriting the navigation or core logic. This
ease of extensibility is a direct result of modular software
design.

5.2. Warehouse Automation

Warehousing and logistics have been a booming area
for robotics, as warehouses aim to automate repetitive
picking and packing tasks. A representative system here is
Boston Dynamics’ “Stretch” robot, a mobile manipulator
designed specifically for moving boxes in warehouses and
distribution centers. Stretch has a wheeled base, a large
articulated arm with a smart gripper (suction-based for
grabbing boxes), and a perception mast with sensors. It is
used for tasks like unloading trucks (reaching into delivery
truck interiors to grab boxes) and stacking boxes onto
pallets. This is a prime example of a mobile manipulator in
an industrial environment.

Task Focus and Simplicity: One notable thing about
Stretch as an architectural case: it is designed explicitly for
the task of box handling in relatively structured warehouse
environments. This focus means the software architecture
can be optimized around that workflow: navigation is
basically constrained to driving in fairly open spaces
(warehouse aisles), the arm manipulation is mostly picking
up rectangular boxes (which is simpler in vision and grasp
strategy than arbitrary objects), and there may be no need
for complex behavior switching — the robot does one job
repeatedly.

However, even with a constrained task, the
architecture is modular. Stretch’s software likely includes
modules for: locomotion (the base with omni-wheels to

Ashis Ghosh / IJETCSIT, 7(1), 1-7, 2026

maneuver in tight spaces), perception (detecting boxes and
understanding the 3D layout of a pallet or truck interior),
motion planning for the arm (to reach and move boxes
without collisions), and coordination logic (deciding which
box to pick next, how to stack, etc.). If built on ROS or a
similar middleware, each of these could be separate nodes
or groups of nodes. For example, one can imagine a
perception node that uses depth cameras to identify box
sizes and positions; it publishes target pick locations. A
planner node then takes that and computes a path for the
arm and base (maybe the base has to reposition to reach a
far corner). A gripper control node handles the suction and
detects if a box has been successfully grasped (using
vacuum sensors). A supervisor node oversees the
sequence: repeat until truck empty or pallet full, handle
exceptions (like a box slips, or an obstacle appears).

Modularity and Industrial Requirements: In industrial
robots, there’s often a requirement for easy deployment
and adaptation to different facilities. To achieve this, the
software might allow configuration of certain parameters
(like box sizes, pallet patterns) without coding. It might use
a plugin architecture where different perception algorithms
or gripper attachments can be swapped in. The ease of
deployment also speaks to the architecture’s packaging —
presumably the entire software is delivered in a way that
an operator can set it up on-site quickly (possibly via a
user-friendly interface, and under the hood, using
containerized deployment to ensure all dependencies are
there).

Real-Time and Sensing: Warehouse robots often need
to operate quickly but also very safely around human
workers (though Stretch is typically used in task zones that
may be cordoned off from humans while operating, for
safety). The real-time needs include smooth handling of
heavy loads — moving a 20 kg box quickly requires careful
control to avoid oscillations. The arm controller likely runs
on a real-time system to manage motor torques and ensure
stable motion (especially because a long arm moving fast
can have significant inertia). The base must coordinate
with the arm; possibly the base moves into a new position
while the arm is already reaching (coordinated motion),
which requires tight timing integration between base and
arm control loops.

Communication latency in a warehouse environment
could be an issue if the robot relies on wireless networking
for some computation (though likely most processing is
on-board). If multiple robots coordinate (imagine several
mobile manipulators working in the same area), there may
be a centralized system assigning tasks to avoid conflicts.
That implies a networked architecture where each robot is
a node in a fleet system. That fleet management system
would be another module (off-board, possibly cloud or
edge server) communicating with the robot’s on-board
software to give it missions and receive status. Ensuring
commands from the fleet manager (like “go unload truck at
dock 57) are received and executed timely is important but

not hard real-time; however, once on the task, the robot’s
local autonomy is mostly self-contained.

Safety: Industrial safety standards require various
redundancies. Stretch likely has 2D and 3D vision for
obstacle detection — if something unexpected like a person
or a forklift crosses its path, it must stop. The safety
architecture might include a separate, hardware-certified
safety system that monitors a planar LiDAR for obstacles
and can stop the base. On the arm, if it senses a collision or
excessive force, it should halt immediately. The software
also must make sure not to exceed safe speeds in certain
conditions (for example, when carrying a heavy box,
maybe reduce speed for stability).

From an architecture viewpoint, safety monitors in an
industrial robot are often implemented on a safety PLC or
a microcontroller separate from the main computer, to
meet regulatory standards. But the main software still has
layers of safety — e.g., the task planner will not command
motions that it knows are unsafe (obeying a “keep-out
zone” or ensuring the arm doesn’t extend outside the
vehicle’s footprint when moving, etc.). Having
independent safety layers is critical: if the high-level
software fails to catch something, the low-level safety
should still prevent accidents. That means the two need to
be consistent, which is usually achieved by conservative
design (the low-level will stop at even the hint of a
problem, while the high-level tries to avoid getting near
those conditions in the first place).

Reliability and Fault Tolerance: In a warehouse,
downtime is costly. The robot’s architecture might include
self-diagnostics — e.g., if a joint is overheating, it can take a
short break or alert maintenance. If a sensor fails, perhaps
the system can switch to a backup sensor (some designs
have multiple cameras from different angles; if one goes
out, the others can cover albeit with reduced coverage).
The system should also gracefully handle non-critical
failures. For example, if the precise 3D vision goes down,
maybe the robot can still operate in a simpler mode using
just coarse distance sensing, or at worst, pause and ask for
assistance (a human can then remotely connect via an
interface, see the robot’s situation through remaining
cameras, and guide it — this kind of remote teleoperation
fallback is increasingly integrated into autonomous robot
architectures for those edge cases the autonomy can’t
handle).

Deployment and Maintenance: Industrial robots like
this often allow remote updates and monitoring. Boston
Dynamics likely uses an analytics platform to watch how
Stretch robots perform in the field (through logs or
periodic reports). Because these robots are expensive,
updates might be carefully validated — possibly tested
internally by BD on simulation and real test scenes, then
rolled out to customer robots during scheduled
maintenance windows. They might containerize parts of
the system (e.g., the vision system as one container that

Ashis Ghosh / IJETCSIT, 7(1), 1-7, 2026

can be updated independently of the motion control
system).

One could also consider compliance: for instance, if
using ROS, they might create a custom fork or a more
deterministic version to satisfy safety requirements (since
standard ROS isn’t certified for safety). Some industrial
deployments use ROS for high-level stuff but use a
certified real-time framework for low-level control. In
essence, the warehouse case highlights how a well-defined
problem can be solved by a highly optimized modular
system. The modularity is at the component level (vision,
planning, control, etc.) but also at the task sequencing
level. Stretch doesn’t need complicated behavior switching
— it basically always does the “handle boxes” behavior —
yet internally it will break that down into modular steps
like “acquire target -> pick -> stow -> move base ->
repeat”. Those steps can be represented by a state machine
or behavior tree, albeit a fairly straightforward one since
the task variation is limited. The advantage of limiting
scope is improved reliability: every module can be heavily
tested on just box scenarios, which reduces the chance of
unpredictable behavior.

Finally, the architecture is prepared for scalability: If a
warehouse wants to run 10 Stretch robots, they should
function together without interference. This may require a
multi-robot coordination service (assigning different aisles
or docks to each robot to avoid collisions). That service
would be another software component (maybe cloud-based
or on a site server). Each robot runs an instance of the core
software and communicates its status to the coordinator.
This distributed architecture — individual autonomy plus a
coordination layer — exemplifies how modular design
extends even to multi-robot systems.

6. Discussion

The case studies presented in this paper collectively
demonstrate that software architecture is a first-order
design variable in mobile manipulation systems, on par
with perception, planning, and control algorithms. While
algorithmic performance often dominates evaluation
metrics in academic robotics, the results observed across
cleaning, warehouse automation, and assistive robotics

systems indicate that architectural structure directly
influences reliability, safety, and long-term system
evolution.

6.1. Architectural Benefits across Domains

A consistent benefit across all evaluated systems is
fault containment. By enforcing strict boundaries between
perception, task reasoning, motion generation, and
execution, failures remain localized and do not cascade
through the system. For example, transient perception
failures in warehouse automation scenarios—such as
temporary occlusions or misdetections of inventory—are
handled at the task layer without destabilizing real-time
execution loops. Similar observations have been reported
in large-scale navigation and manipulation systems, where

architectural decoupling reduces
improves system uptime [2], [11].

recovery time and

Explicit task lifecycle modeling further improves
system observability. Rather than inferring system
behavior from logs or controller states, engineers can
inspect task-level transitions and events, enabling faster
diagnosis of failure modes. This aligns with prior findings
that state-based task executives improve transparency and
debuggability in complex robotic systems [4], [9].

6.2. Implications for Warehouse Automation

Warehouse automation presents one of the most
demanding environments for mobile manipulation software
due to scale, throughput requirements, and safety
constraints. Robots must operate continuously, often
alongside humans, while adapting to changing layouts and
inventory configurations. In such environments,
architectural rigidity becomes a liability. The proposed
architecture maps naturally onto warehouse workflows.
Task and reasoning layers manage long-horizon objectives
such as order fulfillment, bin replenishment, and exception
handling, while motion and execution layers operate under
strict real-time constraints. This separation enables system
operators to modify task logic—such as prioritization
strategies or recovery behaviors—without re-tuning low-
level controllers.

Prior work in large-scale indoor navigation has shown
that modular task coordination improves robustness and
adaptability when environments evolve over time [11]. The
present architecture extends these ideas to full mobile
manipulation, where grasping, placement, and base motion
must be coordinated safely. Event-driven coordination
allows robots to react asynchronously to external triggers,
such as human intervention or dynamic obstacles, without
blocking execution threads or violating timing guarantees.
From a deployment perspective, warehouse systems also
benefit from incremental rollout. New task behaviors can
be deployed at the reasoning layer while preserving
validated execution pipelines, reducing operational risk.
This mirrors best practices in distributed systems and has
been shown to reduce downtime and regression failures in
production robotics deployments [10].

6.3. Safety, Real-Time Guarantees, and Certification

Safety considerations cut across all layers of the
architecture. By isolating safety-critical execution within
deterministic control loops and enforcing command
validation at layer boundaries, the system aligns with
established principles in cyber-physical system design [7].
Supervisory state machines and watchdog mechanisms
provide clear intervention points for fault detection and
emergency handling. Importantly, this architectural clarity
supports certification and regulatory review, particularly in
domains such as healthcare and human-robot collaboration.
Systems with implicit control flow and tightly coupled
components are difficult to audit, whereas explicit task
models and well-defined interfaces improve traceability
and accountability [8].

Ashis Ghosh / IJETCSIT, 7(1), 1-7, 2026

6.4. Limitations and Trade-Offs

The proposed architecture introduces additional
abstraction layers, which may increase initial development
effort and require disciplined interface design. In latency-
critical subsystems, excessive message passing must be
avoided to preserve real-time guarantees. However, these
trade-offs are manageable through careful allocation of
responsibilities and by constraining abstraction boundaries
around timing-sensitive components. Overall, the benefits
in scalability, safety, and maintainability outweigh the
costs for systems intended for real-world deployment.

7. Conclusion

This paper presented a modular, event-driven software
architecture for mobile manipulation systems designed to
address the combined challenges of real-time execution,
safety, and scalable deployment. By decomposing robotic
functionality into perception, task reasoning, motion and
skill generation, and execution layers, the architecture
enables explicit task lifecycle management, fault
containment, and predictable system behavior. Through
multiple case studies—including a holonomic cleaning
robot, warehouse automation systems, and assistive
robotics platforms—we demonstrated that architectural
discipline materially improves robustness, observability,
and operational reliability. In warehouse environments in
particular, the architecture supports continuous operation,
incremental deployment, and safe human-robot interaction
without sacrificing performance. The findings reinforce
that advances in robotics must be accompanied by equally
rigorous advances in software architecture. As robotic
systems become increasingly integrated into safety-critical
and large-scale environments, architectures that emphasize
explicit state modeling, asynchronous coordination, and
real-time isolation will be essential. Future work will
explore formal verification of task-level logic, tighter
integration with learning-based components, and
standardized architectural patterns to accelerate adoption
across robotic domains.

Conflicts of Interest
The author declares that there is no conflict of interest
concerning the publishing of this paper.

References

[11 M. Quigley, K. Conley, B. Gerkey, et al., “ROS: An
Open-Source Robot Operating System,” Proc. ICRA
Workshop on Open Source Software, 2009.

[2] S. Macenski, T. Moore, D. Lu, et al., “The ROS 2
Navigation Stack,” IEEE Robotics & Automation
Magazine, vol. 27, no. 2, pp. 23-31, 2020.

[31 R. A. Brooks, “A Robust Layered Control System for
a Mobile Robot,” IEEE Journal of Robotics and
Automation, vol. 2, no. 1, pp. 14-23, 1986.

[4] D. Harel, “Statecharts: A Visual Formalism for
Complex Systems,” Science of Computer
Programming, vol. 8, no. 3, pp. 231-274, 1987.

[5] M. Colledanchise and P. Ogren, Behavior Trees in
Robotics and Al, CRC Press, 2018.

[6] G. Pardo-Castellote, “OMG Data Distribution Service:
Architectural Overview,” Proc. ICDCS Workshops,
2003.

[1 E. A. Lee, “Cyber-Physical Systems:
Challenges,” Proc. IEEE ISORC, 2008.

[8] P. Koopman and M. Wagner, “Challenges in
Autonomous Vehicle Testing and Validation,” SAE
Int. J. Transportation Safety, 2016.

[91 J. Bohren and S. Cousins, “The SMACH High-Level
Executive,” IEEE Robotics & Automation Magazine,
vol. 17, no. 4, pp. 18-20, 2010.

[10] M. Kleppmann, Designing
Applications, O’Reilly Media, 2017.

[11] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey
and K. Konolige, "The Office Marathon: Robust
navigation in an indoor office environment,” 2010
IEEE International Conference on Robotics and
Automation, Anchorage, AK, USA, 2010, pp. 300-
307, doi: 10.1109/ROBOT.2010.5509725.

[12] U.S. Patent 11,407,118 B1, “Robot for performing
dextrous tasks and related methods and systems,”
2022.

Design

Data-Intensive

