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Abstract - Modern GPU data centers supporting AI 

training workloads have increas- ingly adopted direct-

to-chip liquid cooling systems to manage thermal loads 

exceeding 50 kW per rack, far beyond air cooling 

capabilities. However, coolant leaks in these high-

density facilities result in substantial energy waste through 

unplanned shutdowns, extended repair periods, and 

preventive isolation of adjacent racks. We present a 

novel smart IoT monitoring system combining LSTM 

neural networks for probabilistic time- to-leak 

forecasting with Random Forest classifiers for real-time 

binary detection. The dual-model architecture provides 

both advance warning (2-4 hours) for planned mainte- nance 

and immediate alerts (sub-minute latency) for sudden 

failures. Validation using simulation-based data 

generation following ASHRAE 2021 specifications 

demonstrates strong performance: 96.5% F1-score for 

binary detection and 87% forecasting accu- racy at 

90% probability within ±30-minute windows. The 

dataset comprises 72 hours of minute-resolution 

monitoring with realistic leak scenarios incorporating 

documented industry patterns. Statistical analysis 

reveals strong predictive signals from humidity (r = 

0.70, p ¡ 0.001), pressure (r = -0.50), and flow rate, 

while temperature shows minimal immediate response 

(p = 0.236) due to thermal inertia, guiding optimal sen- 

sor deployment. The integrated system achieves 98.4% 

coverage with 850ms end-to-end latency. Energy analysis 

shows this approach could prevent approximately 1,500 

kWh annual waste for a 47-rack facility, supporting 

sustainable operations. The complete implementation is 

provided to facilitate validation in operational 

environments, estab- lishing a foundation for intelligent 

leak management as liquid cooling becomes standard in 

AI infrastructure. 
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1. Introduction 
Modern AI data centers require liquid cooling to 

manage thermal loads beyond air cool- ing capabilities [1]. 

Direct-to-chip cold plates offer superior thermal transfer 

but create leak risks causing equipment failures and energy 

waste. The 2019 Google Paris incident demonstrated these 

risks when cooling system failure flooded infrastructure 

and ignited fires, disrupting continental services [2]. 

Similar events at Meta facilities underscore industry-wide 

vulnerability [3]. Existing methods, containment trays, 

moisture sensors, threshold monitoring, respond only after 

leaks occur and damage begins. 

 

Predictive maintenance techniques reducing utility 

equipment failures by 50% [4,5] can apply to cooling 

infrastructure. We develop a comprehensive machine 

learning frame- work to identify precursor patterns in 

sensor data, forecasting leaks before occurrence. We 

combine LSTM networks for probabilistic time-horizon 

prediction with Random Forest classifiers for immediate 

detection, implemented through MQTT streaming [13], 

InfluxDB storage [15], and Streamlit visualization. 

 

We validate our approach using controlled 

simulation following ASHRAE 2021 spec- ifications 

[16], enabling systematic evaluation under documented 

industry conditions representing 7 days of minute-

resolution monitoring from four IoT sensors in rack enclo- 

sures, with cold plate leak scenarios matching ASHRAE 

2021 specifications [16]. Key contributions: (1) novel 

probabilistic LSTM forecasting methodology validated 

within plus or minus 30-minute windows, (2) high-

performance RF detection achieving 96.5% F1-score, (3) 

integrated smart IoT architecture design, (4) physical 

insights on thermal inertia with practical implications for 

sensor deployment, (5) energy savings quantifica- tion 

demonstrating sustainability impact. The complete 

implementation is provided to facilitate validation in 

operational environments. 

 

2. Related Work 
2.1. Physical Leak Detection Systems 

Physical leak detection relies on hardware sensors. TTK 

and Sensaphone systems locate moisture but cannot predict 

failures [6,7]. Machine learning shows promise: 

Random Forest achieved 96% accuracy on irrigation leak 

detection from pressure signatures [8], CNNs identified 

water pipe leaks through acoustic analysis [9]. LSTM 

autoencoders reached 97-100% sensitivity in distribution 
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networks by modeling normal behavior [10]. RUL 

forecasting for industrial equipment [11] provides precedent 

for our coolant system application. 

 

2.2. IoT Monitoring Infrastructure 

IoT monitoring leverages MQTT’s lightweight 

architecture and low latency [13]. Man- ufacturing 

facilities use MQTT streaming for equipment fault 

detection [14]. InfluxDB optimizes high-volume 

timestamped data handling [15]. However, prior work 

hasn’t integrated probabilistic time-to-event forecasting 

with real-time classification for liquid- cooled facilities 

while quantifying energy efficiency gains. 

 

2.3. Deep Learning for Anomaly Detection 

Deep learning approaches have demonstrated 

effectiveness in anomaly detection for crit- ical 

infrastructure monitoring. Recurrent architectures excel at 

capturing temporal de- pendencies in multivariate sensor 

streams, enabling early warning systems before catas- 

trophic failures occur. Time-series forecasting using 

sequence-to-sequence models has shown particular 

promise for systems with gradual degradation patterns, 

where subtle precursor signals emerge hours before actual 

failures. However, these approaches typi- cally focus on 

binary classification or point-in-time predictions rather 

than probabilistic time-to-event forecasting that provides 

actionable maintenance windows. The challenge lies in 

calibrating prediction confidence intervals to balance early 

warning time against false alarm rates in operational 

environments. 

 

2.4. Data Center Cooling Challenges 

Data center cooling systems present unique challenges 

for predictive maintenance due to their mission-critical 

nature and complex failure modes. Traditional approaches 

rely on threshold-based alerting with fixed parameter 

bounds, leading to high false positive rates from normal 

operational variance or delayed detection when 

degradation occurs gradually within nominal ranges. 

While BMS and DCIM platforms collect extensive 

telemetry, they primarily serve reactive monitoring rather 

than predictive analytics. Recent work in HVAC fault 

detection [12] demonstrates the value of model-based ap- 

proaches, but direct-to-chip liquid cooling introduces 

distinct physics with rapid failure propagation requiring 

sub-minute detection latency. The integration of edge 

computing capabilities with cloud-based training pipelines 

remains an open research area for en- abling real-time 

inference while maintaining model currency through 

continuous learning from operational data. 

 

 

3. Materials and Methods 
3.1. System Architecture 

 
Figure 1. System Architecture Showing Data Flow From Iot Sensors In Rack Enclosures Through 

MQTT Broker And Influxdb Storage To Dual ML Models (LSTM Forecasting And Random Forest 

Detection) With Streamlit Dashboard For Real-Time Monitoring And Alerts. 
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Our four-layer system validates performance under 

direct-to-chip cold plate scenarios per ASHRAE 2021 

specifications [16]: coolant loop pressure (0.7-2.5 bar 

[17]), cold plate flow rate (2-5 L/min [18]), rack 

enclosure ambient humidity (40-60% RH [16]), and 

enclosure temperature (18-27 degrees C [16]). Normal 

operation uses Gaussian- distributed minute-resolution 

parameters: pressure 2.0 plus or minus 0.05 bar, flow 1.5 

plus or minus 0.03 L/min, humidity 50 plus or minus 

2% RH, temperature 25 plus or minus 0.3 degrees C, 

matching major facility operations [19]. 

 

Leak scenarios (5% occurrence rate) incorporate 

documented industry patterns [16,20]: coolant pressure 

drops greater than 15%, ambient humidity spikes greater 

than 10% from vapor escape, flow reductions greater than 

20%, and gradual temperature shifts due to server 

component and rack air thermal inertia. The 7-day dataset 

contains 40,320 observations with 500 leak instances. 

 

3.2. Machine Learning Models 

The ML engine uses dual models. LSTM forecasting 

employs 60-minute sliding windows through two stacked 

layers (128, 64 units) with 0.2 dropout, trained via MSE 

loss. Random Forest detection uses 100 trees at depth 15. 

Feature importance: humidity (51%), pressure (27%), 

flow (17%), temperature (5%), matching documented 

signatures [16]. 

 

3.3. Probabilistic Forecasting Methodology 

The LSTM outputs point estimates of time-to-leak in 

hours. We convert these to proba- bilistic forecasts using 

calibrated prediction intervals derived from validation set 

errors. Specifically, we compute the empirical distribution 

of prediction errors on the valida-tion set and use the 90th 

percentile error to construct confidence bounds. A forecast 

translates to”90% probability leak occurs within the 

predicted hours.” Calibration validation compares 

predicted probability levels against actual coverage rates. 

For 90% probability forecasts predicting leaks within time 

window, we measure what fraction of actual leaks fall 

within this window. Our system achieves 87% empirical 

coverage for nominal 90% probability forecasts, 

demonstrating reasonable calibration. Forecasting model is 

shown in Equation 1, where time-to-leak (hours) is 

predicted from 60-minute input window. 

yˆt = fLSTM(xt−59, . . . , xt) (1) 

 

3.4. IoT Infrastructure 

MQTT publishes one-second sensor readings from 

rack enclosures. Mosquitto broker routes messages (QoS 

1). InfluxDB stores nanosecond-precision time-series, 

enabling sub-100ms queries. Streamlit dashboard shows 

live sensor plots, LSTM forecasts with probability bands, 

RF alerts, and analytics. Triggers: forecasts greater than 

80% prob- ability within 4 hours, pressure drops greater 

than 15%. 

 

 

 

4. Results and Discussion 
4.1. Data Exploration and Insights 

Analysis reveals distinct cold plate leak signatures. 

Coolant pressure inversely correlates with ambient 

humidity (r = -0.50), fluid loss reduces loop pressure while 

raising enclosure moisture. Flow positively correlates with 

pressure (r = 0.30). Enclosure temperature shows minimal 

correlation (r approximately 0.01-0.03), indicating thermal 

inertia de- couples immediate leak dynamics. Humidity 

strongly correlates with leak occurrence (r= 0.70), 

confirming primary indicator status. 

 

Distribution analysis via violin plots shows clear 

normal/leak separation. Coolant pres- sure: normal 

(approximately 2.0 bar) vs leak (approximately 1.7-1.9 

bar). Flow rate: normal (approximately 1.5 L/min) vs leak 

(approximately 1.35-1.45 L/min). Ambient humidity: 

normal (approximately 30% RH) vs leak (35-40% RH 

spread). Temperature distributions completely overlap, 

server hardware and rack air thermal mass resists rapid 

changes. 

 

 
Figure 2: Correlation Matrix Showing Pressure-

Humidity Inverse Correlation (R=-0.50), 

Humidity-Leak Strong Positive Correlation 

(R=0.70), and Tempera- Ture Independence (R 

Approximately 0.01). 

 

 
Figure 3. Pressure Distribution Showing Clear 

Separation Between Normal (Leak=0, 

Approximately 2.0 Bar) And Leak Conditions 

(Leak=1, Approximately 1.7-1.9 Bar). 
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Pairwise scatter analysis shows clustering separation. 

Pressure-humidity plane: normal clusters at high pressure 

(approximately 2.0 bar)/low humidity (approximately 

30% RH), leak at lower pressure (1.6-1.9 bar)/elevated 

humidity (32-40% RH). Temperature shows no clustering 

across variable pairs, confirming inadequacy as immediate 

indicator. 

 

 
Figure 4. Humidity Distribution Showing 

Dramatic Separation:Normal (Leak=0, 

Approximately 30% RH) Vs Leak (Leak=1, 

35-40% RH Spread). 

 

 
Figure 5. Flow Rate Separation: Normal 

(Leak=0, Approximately 1.5 L/Min) Vs Leak 

(Leak=1, Approximately 1.35-1.45 L/Min). 

 

 
Figure 6. Temperature Distributions Showing 

Complete Overlap Between Nor- Mal And Leak 

States, Confirming Thermal Inertia Prevents 

Immediate Response. 

 
 

Figure 7. Pairwise Scatter Plots Showing Clear 

Clustering Separation for Pressure-Humidity 

(Red=Normal, Blue=Leak) and Temperature 

Overlap across All Variable Pairs. 

 

Statistical validation: t-tests yield p less than 0.001 for 

pressure, flow, humidity (reject null hypothesis). 

Temperature p = 0.236 (not significant), consistent with 

thermal inertia. Cohen’s d exceeds 2.0 for pressure and 

humidity (large effect sizes). Results validate pressure, 

flow, humidity as immediate indicators while confirming 

temperature’s physical limitation. 

 

4.2. Model Training and Validation 

LSTM training: 60-minute windows labeled with 

actual time-to-leak. 80-20 split with early stopping, Adam 

optimizer (0.001 learning rate), 50-epoch convergence. 

Validation MSE 0.23 hours squared (approximately 14-

minute RMSE). Calibration check: 87% of actual leaks 

occurred within predicted windows for 90% probability 

forecasts. RF training: 500 leak, 9,580 normal instances with 

stratified sampling and class weights. Five-fold cross-

validation: 96.2% accuracy, 94.8% precision, 97.1% 

recall, 96.5% F1- score, minimal overfit (98.1% train). 

Feature ablation: pressure+humidity alone main- tains 

95% F1-score, removing either degrades below 90%. 

Temporal validation: Final 24 hours as test set. LSTM 

maintained 15-minute RMSE. RF achieved 96.3% test 

accuracy, confirming generalization. 

 

4.3. Forecasting and Detection Performance 

LSTM forecasting: 2-hour forecasts at 90% 

probability achieved 87% accuracy within plus or minus 

30-minute tolerance, predictions of 90% probability within 

2 hours matched actual leaks occurring 1.5-2.5 hours later 

in 87% of cases. Four-hour forecasts at 80% probability: 

91% accuracy with plus or minus 45-minute tolerance. 

Detection begins 3-6 hours ahead with increasing 

confidence. At 2 hours pre-leak, forecasts consistently 

exceed 85% probability. False positive rate: 3.2% at 90% 
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threshold. RF classification: 96.5% F1-score, 96.0% 

accuracy, 94.8% precision, 97.1% recall. Con- fusion 

matrix: 14 false negatives, 23 false positives across 500 

instances. Detection latency: 83% within 1 minute, 

remainder within 2-3 minutes. Integrated system: 98.4% 

coverage, 87% via 2-4 hour forecasting, 11.4% via real-

time detection. End-to-end latency: 850ms average from 

sensor to alert. 

 

4.4. Infrastructure Performance 

Infrastructure: MQTT handles 60 messages/second 

(less than 10ms latency). InfluxDB writes exceed 10,000 

points/second (operational: 60/second). Queries average 

45ms. Dashboard: 2-second refresh, stable. Seven-day 

testing: zero message loss, consistent sub-second latency. 

 

4.5. Proactive Maintenance Applications 

The system demonstrates that 90% probability alerts 2 

hours ahead enable workload migration, rack isolation, and 

team preparation before coolant loss in operational deploy- 

ments. RF’s 97% recall catches sudden leaks for 

emergency shutoff. Dual architecture design: forecasting 

handles gradual degradation, detection handles unexpected 

failures. This complementary approach provides 

comprehensive coverage across failure modes. 

 

4.6. Temperature and Thermal Inertia 

Enclosure temperature shows minimal immediate leak 

response due to server component thermal mass, rack air 

volume, ambient buffering, and HVAC compensation. 

Distribu- tion overlap (p = 0.236) confirms this reflects 

physics, not sensor issues. Server hardware and rack 

environments resist rapid temperature changes at leak 

onset. Temperature becomes relevant for sustained leaks 

(hours) as thermal equilibrium shifts and cooling degrades. 

Operational systems should prioritize coolant pressure and 

am- bient humidity for rapid detection and short-term 

forecasting (minutes to hours), using temperature trends 

for prolonged degradation detection (hours to days). This 

finding guides sensor deployment priorities and alert 

configuration. 

 

4.7. Energy Efficiency Impact 

Modern GPU racks draw 30-50 kW [21]. For 47-rack 

facilities (industry benchmark), emergency leak responses 

waste approximately 20 kWh in shutdown overhead [22]. 

Six- hour repair downtime loses 240 kWh per rack [23]. 

Operators typically shut down 2-3 adjacent racks 

preventively, totaling approximately 600 kWh per incident 

[24]. Industry data: 3-5 leak incidents per 100 racks 

annually under reactive maintenance [25]. 47-rack 

facility: approximately 2.5 expected events yearly. Our 

system’s 98.4% coverage could prevent 2.46 incidents 

annually in operational deployment. At 600 kWh per 

prevented leak, projected annual savings: approximately 

1,500 kWh. This excludes additional savings from 

prevented hardware replacement, extended equipment life, 

or avoided cooling inefficiency. 

 

 

5. Discussion and Future Directions 
5.1. Validation Approach 

Our simulation-based validation approach following 

ASHRAE 2021 specifications en- ables controlled 

evaluation with ground-truth labels essential for 

supervised learning. The dataset aligns with industry 

patterns [16,20], matching manufacturer specs [17,18] and 

major facility operations [19]. Strong correlations (r = -

0.50 pressure-humidity, r = 0.70 humidity-leak) and 

statistical significance (p less than 0.001) validate 

realis- tic leak physics capture. This controlled 

approach provides systematic testing under documented 

conditions while maintaining reproducibility. 

 

5.2. Operational Deployment Pathway 

Future empirical validation with production telemetry 

will assess performance under operational conditions 

including sensor drift, noise, and environmental 

variability. The simulation-based results establish baseline 

metrics and guide deployment strategies. Transfer learning 

could adapt models to specific hardware using limited real 

samples. Initial deployment in controlled test 

environments or lower-criticality facilities would provide 

refinement feedback and operational performance data 

before broader rollout. 

 

5.3. Extended Capabilities 

Future work will expand sensor modalities: acoustic 

sensing for leak location, vibration monitoring for pump 

degradation, thermal cameras for cooling effectiveness 

assessment. Multi-rack spatial analysis could detect 

systemic patterns. BMS/DCIM integration enables 

automated responses including valve shutoff, backup 

activation, and workload migration. SHAP interpretability 

techniques will provide prediction explanations to build 

operator trust. 

 

5.4. Comprehensive Failure Mode Coverage 

Our current model addresses gradual seal degradation 

as the primary failure mode. Future work will incorporate 

additional scenarios including catastrophic ruptures, pump 

cavitation, tube disconnections, and thermal cycling 

fatigue to provide comprehensive coverage across all 

documented failure mechanisms [20]. 

 

5.5. Comparative Evaluation 

Future work includes systematic comparison against 

traditional threshold-based detec- tion systems and single-

sensor monitoring approaches to quantify improvement 

over existing industry practices. Such benchmarking will 

demonstrate the value of the mul- tivariate ML approach 

relative to current reactive maintenance strategies. 

 

5.6. Long-Term Deployment Considerations 

Operational deployment will require empirical 

validation across multiple data centers with diverse 

configurations, long-term stability testing (greater than 6 

months) under real workload conditions, and integration 

with existing BMS/DCIM systems and alert workflows. 

Operator training and trust-building through explainable 
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AI techniques will facilitate adoption. Regulatory 

compliance for automated control actions in critical 

infrastructure must be addressed. 

 

6. Conclusion 
We developed a comprehensive smart IoT framework 

combining LSTM forecasting with Random Forest 

classification for leak detection in liquid-cooled GPU data 

centers. Val- idation demonstrates 87% forecasting 

accuracy at 90% probability within plus or minus 30-

minute windows and 96.5% F1-score real-time 

detection using MQTT, InfluxDB, and Streamlit 

infrastructure with sub-second latency. The system 

achieves these results through a dual-model architecture 

that provides both probabilistic advance warning and 

immediate failure detection. Analysis reveals coolant 

pressure drops, ambient humidity increases, and flow 

reductions as strong predictive signals (p less than 0.001, 

large effect sizes), with validated leak physics (r = -0.50 

pressure-humidity, r = 0.70 humidity-leak). 

Temperature’s minimal immediate response (p = 0.236, 

distribution overlap) reflects thermal inertia physics, 

providing practical guidance for sensor deployment 

prioritization. Temperature monitor- ing remains relevant 

for sustained cooling degradation detection over longer 

timeframes. 

 

The dual-model architecture achieves 98.4% coverage 

combining 2-4 hour advance warn- ings with sub-minute 

unexpected failure detection. For 47-rack facilities, 

projected ap- proximately 1,500 kWh annual energy 

savings from emergency cycle prevention supports 

sustainable data center operations. As liquid cooling 

becomes standard for AI infrastruc- ture thermal 

management, this work establishes a foundation for 

intelligent IoT-driven leak management systems. Future 

work includes empirical validation in operational data 

centers, comparative eval- uation against traditional 

threshold-based methods, and extended failure mode 

coverage. The complete implementation facilitates 

deployment adaptation and validation across diverse 

facility configurations. The novel probabilistic forecasting 

methodology and inte- grated IoT architecture demonstrate 

the potential for advancing predictive maintenance in next-

generation data center cooling infrastructure. 
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