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Abstract - Modern GPU data centers supporting Al
training workloads have increas- ingly adopted direct-
to-chip liquid cooling systems to manage thermal loads
exceeding 50 kW per rack, far beyond air cooling
capabilities. However, coolant leaks in these high-
density facilities result in substantial energy waste through
unplanned shutdowns, extended repair periods, and
preventive isolation of adjacent racks. We present a
novel smart 10T monitoring system combining LSTM
neural networks for probabilistic time- to-leak
forecasting with Random Forest classifiers for real-time
binary detection. The dual-model architecture provides
both advance warning (2-4 hours) for planned mainte- nance
and immediate alerts (sub-minute latency) for sudden
failures. Validation using simulation-based data
generation following ASHRAE 2021 specifications
demonstrates strong performance: 96.5% F1-score for
binary detection and 87% forecasting accu- racy at
90% probability within +30-minute windows. The
dataset comprises 72 hours of minute-resolution
monitoring with realistic leak scenarios incorporating
documented industry patterns. Statistical analysis
reveals strong predictive signals from humidity (r =
0.70, p j 0.001), pressure (r = -0.50), and flow rate,
while temperature shows minimal immediate response
(p = 0.236) due to thermal inertia, guiding optimal sen-
sor deployment. The integrated system achieves 98.4%
coverage with 850ms end-to-end latency. Energy analysis
shows this approach could prevent approximately 1,500
kWh annual waste for a 47-rack facility, supporting
sustainable operations. The complete implementation is
provided to facilitate validation in operational
environments, estab- lishing a foundation for intelligent
leak management as liquid cooling becomes standard in
Al infrastructure.

Keywords - Liquid Cooling, Leak Detection, LSTM,
Random Forest, Energy Efficiency, Smart lot, Green
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1. Introduction

Modern Al data centers require liquid cooling to
manage thermal loads beyond air cool- ing capabilities [1].
Direct-to-chip cold plates offer superior thermal transfer
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but create leak risks causing equipment failures and energy
waste. The 2019 Google Paris incident demonstrated these
risks when cooling system failure flooded infrastructure
and ignited fires, disrupting continental services [2].
Similar events at Meta facilities underscore industry-wide
vulnerability [3]. Existing methods, containment trays,
moisture sensors, threshold monitoring, respond only after
leaks occur and damage begins.

Predictive maintenance techniques reducing utility
equipment failures by 50% [4,5] can apply to cooling
infrastructure. We develop a comprehensive machine
learning frame- work to identify precursor patterns in
sensor data, forecasting leaks before occurrence. We
combine LSTM networks for probabilistic time-horizon
prediction with Random Forest classifiers for immediate
detection, implemented through MQTT streaming [13],
InfluxDB storage [15], and Streamlit visualization.

We validate our approach wusing controlled
simulation following ASHRAE 2021 spec- ifications
[16], enabling systematic evaluation under documented
industry conditions representing 7 days of minute-
resolution monitoring from four 10T sensors in rack enclo-
sures, with cold plate leak scenarios matching ASHRAE
2021 specifications [16]. Key contributions: (1) novel
probabilistic LSTM forecasting methodology validated
within plus or minus 30-minute windows, (2) high-
performance RF detection achieving 96.5% F1-score, (3)
integrated smart 10T architecture design, (4) physical
insights on thermal inertia with practical implications for
sensor deployment, (5) energy savings quantifica- tion
demonstrating sustainability impact. The complete
implementation is provided to facilitate validation in
operational environments.

2. Related Work
2.1. Physical Leak Detection Systems

Physical leak detection relies on hardware sensors. TTK
and Sensaphone systems locate moisture but cannot predict
failures [6,7]. Machine learning shows promise:
Random Forest achieved 96% accuracy on irrigation leak
detection from pressure signatures [8], CNNSs identified
water pipe leaks through acoustic analysis [9]. LSTM
autoencoders reached 97-100% sensitivity in distribution
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networks by modeling normal behavior [10]. RUL
forecasting for industrial equipment [11] provides precedent
for our coolant system application.

2.2. 10T Monitoring Infrastructure

IoT monitoring leverages MQTT’s lightweight
architecture and low latency [13]. Man- ufacturing
facilities use MQTT streaming for equipment fault
detection [14]. InfluxDB optimizes high-volume
timestamped data handling [15]. However, prior work
hasn’t integrated probabilistic time-to-event forecasting
with real-time classification for liquid- cooled facilities
while quantifying energy efficiency gains.

2.3. Deep Learning for Anomaly Detection

Deep learning approaches have demonstrated
effectiveness in anomaly detection for crit- ical
infrastructure monitoring. Recurrent architectures excel at
capturing temporal de- pendencies in multivariate sensor
streams, enabling early warning systems before catas-
trophic failures occur. Time-series forecasting using
sequence-to-sequence models has shown particular
promise for systems with gradual degradation patterns,
where subtle precursor signals emerge hours before actual
failures. However, these approaches typi- cally focus on
binary classification or point-in-time predictions rather

3. Materials and Methods
3.1. System Architecture

than probabilistic time-to-event forecasting that provides
actionable maintenance windows. The challenge lies in
calibrating prediction confidence intervals to balance early
warning time against false alarm rates in operational
environments.

2.4. Data Center Cooling Challenges

Data center cooling systems present unique challenges
for predictive maintenance due to their mission-critical
nature and complex failure modes. Traditional approaches
rely on threshold-based alerting with fixed parameter
bounds, leading to high false positive rates from normal
operational variance or delayed detection when
degradation occurs gradually within nominal ranges.
While BMS and DCIM platforms collect extensive
telemetry, they primarily serve reactive monitoring rather
than predictive analytics. Recent work in HVAC fault
detection [12] demonstrates the value of model-based ap-
proaches, but direct-to-chip liquid cooling introduces
distinct physics with rapid failure propagation requiring
sub-minute detection latency. The integration of edge
computing capabilities with cloud-based training pipelines
remains an open research area for en- abling real-time
inference while maintaining model currency through
continuous learning from operational data.
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Our four-layer system validates performance under
direct-to-chip cold plate scenarios per ASHRAE 2021
specifications [16]: coolant loop pressure (0.7-2.5 bar
[17]), cold plate flow rate (2-5 L/min [18]), rack
enclosure ambient humidity (40-60% RH [16]), and
enclosure temperature (18-27 degrees C [16]). Normal
operation uses Gaussian- distributed minute-resolution
parameters: pressure 2.0 plus or minus 0.05 bar, flow 1.5
plus or minus 0.03 L/min, humidity 50 plus or minus
2% RH, temperature 25 plus or minus 0.3 degrees C,
matching major facility operations [19].

Leak scenarios (5% occurrence rate) incorporate
documented industry patterns [16,20]: coolant pressure
drops greater than 15%, ambient humidity spikes greater
than 10% from vapor escape, flow reductions greater than
20%, and gradual temperature shifts due to server
component and rack air thermal inertia. The 7-day dataset
contains 40,320 observations with 500 leak instances.

3.2. Machine Learning Models

The ML engine uses dual models. LSTM forecasting
employs 60-minute sliding windows through two stacked
layers (128, 64 units) with 0.2 dropout, trained via MSE
loss. Random Forest detection uses 100 trees at depth 15.
Feature importance: humidity (51%), pressure (27%),
flow (17%), temperature (5%), matching documented
signatures [16].

3.3. Probabilistic Forecasting Methodology

The LSTM outputs point estimates of time-to-leak in
hours. We convert these to proba- bilistic forecasts using
calibrated prediction intervals derived from validation set
errors. Specifically, we compute the empirical distribution
of prediction errors on the valida-tion set and use the 90th
percentile error to construct confidence bounds. A forecast
translates t0790% probability leak occurs within the
predicted hours.” Calibration validation compares
predicted probability levels against actual coverage rates.
For 90% probability forecasts predicting leaks within time
window, we measure what fraction of actual leaks fall
within this window. Our system achieves 87% empirical
coverage for nominal 90% probability forecasts,
demonstrating reasonable calibration. Forecasting model is
shown in Equation 1, where time-to-leak (hours) is
predicted from 60-minute input window.

Vi = fLstm(Xi—59, - - -, Xo)

3.4. 10T Infrastructure

MQTT publishes one-second sensor readings from
rack enclosures. Mosquitto broker routes messages (QoS
1). InfluxDB stores nanosecond-precision time-series,
enabling sub-100ms queries. Streamlit dashboard shows
live sensor plots, LSTM forecasts with probability bands,
RF alerts, and analytics. Triggers: forecasts greater than
80% prob- ability within 4 hours, pressure drops greater
than 15%.

4. Results and Discussion
4.1. Data Exploration and Insights

Analysis reveals distinct cold plate leak signatures.
Coolant pressure inversely correlates with ambient
humidity (r = -0.50), fluid loss reduces loop pressure while
raising enclosure moisture. Flow positively correlates with
pressure (r = 0.30). Enclosure temperature shows minimal
correlation (r approximately 0.01-0.03), indicating thermal
inertia de- couples immediate leak dynamics. Humidity
strongly correlates with leak occurrence (r= 0.70),
confirming primary indicator status.

Distribution analysis via violin plots shows clear
normal/leak separation. Coolant pres- sure: normal
(approximately 2.0 bar) vs leak (approximately 1.7-1.9
bar). Flow rate: normal (approximately 1.5 L/min) vs leak
(approximately 1.35-1.45 L/min). Ambient humidity:
normal (approximately 30% RH) vs leak (35-40% RH
spread). Temperature distributions completely overlap,
server hardware and rack air thermal mass resists rapid
changes.
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Figure 2: Correlation Matrix Showing Pressure-
Humidity Inverse Correlation (R=-0.50),
Humidity-Leak Strong Positive Correlation
(R=0.70), and Tempera- Ture Independence (R
Approximately 0.01).
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Pairwise scatter analysis shows clustering separation.
Pressure-humidity plane: normal clusters at high pressure
(approximately 2.0 bar)/low humidity (approximately
30% RH), leak at lower pressure (1.6-1.9 bar)/elevated
humidity (32-40% RH). Temperature shows no clustering
across variable pairs, confirming inadequacy as immediate
indicator.
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Figure 4. Humidity Distribution Showing
Dramatic Separation:Normal (Leak=0,
Approximately 302 RH) Vs Leak (Leak=1,
35-40% RH Spread).
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Figure 5. Flow Rate Separation: Normal
(Leak=0, Approximately 1.5 L/Min) Vs Leak
(Leak=1, Approximately 1.35-1.45 L/Min).
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Figure 7. Pairwise Scatter Plots Showing Clear

Clustering Separation for Pressure-Humidity

(Red=Normal, Blue=Leak) and Temperature
Overlap across All VVariable Pairs.

Statistical validation: t-tests yield p less than 0.001 for
pressure, flow, humidity (reject null hypothesis).
Temperature p = 0.236 (not significant), consistent with
thermal inertia. Cohen’s d exceeds 2.0 for pressure and
humidity (large effect sizes). Results validate pressure,
flow, humidity as immediate indicators while confirming
temperature’s physical limitation.

4.2. Model Training and Validation

LSTM training: 60-minute windows labeled with
actual time-to-leak. 80-20 split with early stopping, Adam
optimizer (0.001 learning rate), 50-epoch convergence.
Validation MSE 0.23 hours squared (approximately 14-
minute RMSE). Calibration check: 87% of actual leaks
occurred within predicted windows for 90% probability
forecasts. RF training: 500 leak, 9,580 normal instances with
stratified sampling and class weights. Five-fold cross-
validation: 96.2% accuracy, 94.8% precision, 97.1%
recall, 96.5% F1- score, minimal overfit (98.1% train).
Feature ablation: pressure+humidity alone main- tains
95% F1-score, removing either degrades below 90%.
Temporal validation: Final 24 hours as test set. LSTM
maintained 15-minute RMSE. RF achieved 96.3% test
accuracy, confirming generalization.

4.3. Forecasting and Detection Performance
LSTM forecasting:  2-hour forecasts at 90%
probability achieved 87% accuracy within plus or minus
30-minute tolerance, predictions of 90% probability within
2 hours matched actual leaks occurring 1.5-2.5 hours later
in 87% of cases. Four-hour forecasts at 80% probability:
91% accuracy with plus or minus 45-minute tolerance.
Detection begins 3-6 hours ahead with increasing
confidence. At 2 hours pre-leak, forecasts consistently
exceed 85% probability. False positive rate: 3.2% at 90%
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threshold. RF classification: 96.5% F1-score, 96.0%
accuracy, 94.8% precision, 97.1% recall. Con- fusion
matrix: 14 false negatives, 23 false positives across 500
instances. Detection latency: 83% within 1 minute,
remainder within 2-3 minutes. Integrated system: 98.4%
coverage, 87% via 2-4 hour forecasting, 11.4% via real-
time detection. End-to-end latency: 850ms average from
sensor to alert.

4.4. Infrastructure Performance

Infrastructure: MQTT handles 60 messages/second
(less than 10ms latency). InfluxDB writes exceed 10,000
points/second (operational: 60/second). Queries average
45ms. Dashboard: 2-second refresh, stable. Seven-day
testing: zero message loss, consistent sub-second latency.

4.5. Proactive Maintenance Applications

The system demonstrates that 90% probability alerts 2
hours ahead enable workload migration, rack isolation, and
team preparation before coolant loss in operational deploy-
ments. RF’s 97% recall catches sudden leaks for
emergency shutoff. Dual architecture design: forecasting
handles gradual degradation, detection handles unexpected
failures. This complementary approach  provides
comprehensive coverage across failure modes.

4.6. Temperature and Thermal Inertia

Enclosure temperature shows minimal immediate leak
response due to server component thermal mass, rack air
volume, ambient buffering, and HVAC compensation.
Distribu- tion overlap (p = 0.236) confirms this reflects
physics, not sensor issues. Server hardware and rack
environments resist rapid temperature changes at leak
onset. Temperature becomes relevant for sustained leaks
(hours) as thermal equilibrium shifts and cooling degrades.
Operational systems should prioritize coolant pressure and
am- bient humidity for rapid detection and short-term
forecasting (minutes to hours), using temperature trends
for prolonged degradation detection (hours to days). This
finding guides sensor deployment priorities and alert
configuration.

4.7. Energy Efficiency Impact

Modern GPU racks draw 30-50 kW [21]. For 47-rack
facilities (industry benchmark), emergency leak responses
waste approximately 20 kWh in shutdown overhead [22].
Six- hour repair downtime loses 240 kWh per rack [23].
Operators typically shut down 2-3 adjacent racks
preventively, totaling approximately 600 kWh per incident
[24]. Industry data: 3-5 leak incidents per 100 racks
annually under reactive maintenance [25]. 47-rack
facility: approximately 2.5 expected events yearly. Our
system’s 98.4% coverage could prevent 2.46 incidents
annually in operational deployment. At 600 kWh per
prevented leak, projected annual savings: approximately
1,500 kWh. This excludes additional savings from
prevented hardware replacement, extended equipment life,
or avoided cooling inefficiency.

5. Discussion and Future Directions
5.1. Validation Approach

Our simulation-based validation approach following
ASHRAE 2021 specifications en- ables controlled
evaluation with ground-truth labels essential for
supervised learning. The dataset aligns with industry
patterns [16,20], matching manufacturer specs [17,18] and
major facility operations [19]. Strong correlations (r = -
0.50 pressure-humidity, r = 0.70 humidity-leak) and
statistical significance (p less than 0.001) validate
realis- tic leak physics capture. This controlled
approach provides systematic testing under documented
conditions while maintaining reproducibility.

5.2. Operational Deployment Pathway

Future empirical validation with production telemetry
will assess performance under operational conditions
including sensor drift, noise, and environmental
variability. The simulation-based results establish baseline
metrics and guide deployment strategies. Transfer learning
could adapt models to specific hardware using limited real
samples. Initial deployment in controlled test
environments or lower-criticality facilities would provide
refinement feedback and operational performance data
before broader rollout.

5.3. Extended Capabilities

Future work will expand sensor modalities: acoustic
sensing for leak location, vibration monitoring for pump
degradation, thermal cameras for cooling effectiveness
assessment. Multi-rack spatial analysis could detect
systemic patterns. BMS/DCIM integration enables
automated responses including valve shutoff, backup
activation, and workload migration. SHAP interpretability
techniques will provide prediction explanations to build
operator trust.

5.4. Comprehensive Failure Mode Coverage

Our current model addresses gradual seal degradation
as the primary failure mode. Future work will incorporate
additional scenarios including catastrophic ruptures, pump
cavitation, tube disconnections, and thermal cycling
fatigue to provide comprehensive coverage across all
documented failure mechanisms [20].

5.5. Comparative Evaluation

Future work includes systematic comparison against
traditional threshold-based detec- tion systems and single-
sensor monitoring approaches to quantify improvement
over existing industry practices. Such benchmarking will
demonstrate the value of the mul- tivariate ML approach
relative to current reactive maintenance strategies.

5.6. Long-Term Deployment Considerations
Operational deployment will require empirical
validation across multiple data centers with diverse
configurations, long-term stability testing (greater than 6
months) under real workload conditions, and integration
with existing BMS/DCIM systems and alert workflows.
Operator training and trust-building through explainable
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Al techniques will facilitate adoption. Regulatory
compliance for automated control actions in critical
infrastructure must be addressed.

6. Conclusion

We developed a comprehensive smart 10T framework
combining LSTM forecasting with Random Forest
classification for leak detection in liquid-cooled GPU data
centers. Val- idation demonstrates 87% forecasting
accuracy at 90% probability within plus or minus 30-
minute windows and 96.5% F1-score real-time
detection using MQTT, InfluxDB, and Streamlit
infrastructure with sub-second latency. The system
achieves these results through a dual-model architecture
that provides both probabilistic advance warning and
immediate failure detection. Analysis reveals coolant
pressure drops, ambient humidity increases, and flow
reductions as strong predictive signals (p less than 0.001,
large effect sizes), with validated leak physics (r = -0.50
pressure-humidity, r = 070 humidity-leak).
Temperature’s minimal immediate response (p = 0.236,
distribution overlap) reflects thermal inertia physics,
providing practical guidance for sensor deployment
prioritization. Temperature monitor- ing remains relevant
for sustained cooling degradation detection over longer
timeframes.

The dual-model architecture achieves 98.4% coverage
combining 2-4 hour advance warn- ings with sub-minute
unexpected failure detection. For 47-rack facilities,
projected ap- proximately 1,500 kWh annual energy
savings from emergency cycle prevention supports
sustainable data center operations. As liquid cooling
becomes standard for Al infrastruc- ture thermal
management, this work establishes a foundation for
intelligent loT-driven leak management systems. Future
work includes empirical validation in operational data
centers, comparative eval- uation against traditional
threshold-based methods, and extended failure mode
coverage. The complete implementation facilitates
deployment adaptation and validation across diverse
facility configurations. The novel probabilistic forecasting
methodology and inte- grated 10T architecture demonstrate
the potential for advancing predictive maintenance in next-
generation data center cooling infrastructure.
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