Ny

International Journal of Emerging Trends in Computer Science and Information Technology
ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.1JETCSIT-V614P117
Eureka Vision Publication | Volume 6, Issue 4, 121-124, 2025

Original Article

Understanding Spring State Machine Using Proper Use Cases

Received On: 18/10/2025 Revised On: 10/11/2025
Abstract - Spring State machine turns temporal business
logic into explicit, testable models. This paper shows how to
design and operate real workflows with hierarchical states,
guards, and actions, using a fuel-retail case where reliability,
safety, and latency is paramount. We present an architecture
that isolates domain logic behind ports/adapters
(EMV/acquirer, dispenser, receipt), persists context for
recovery, and exposes rich observability through metrics,
structured logs, and traces. The case study follows the full
card-present journey, card read, authorization, pump
enablement, fueling, EOT computation, and receipt,
highlighting idempotence, compensations, and controlled
concurrency. Performance measurements quantify transition
latency and memory footprint under Redis and JPA
persistence. We close with guidance on testing, model
versioning, and safe evolution so teams can replace brittle
conditional flows with diagrams that act as living
documentation and an executable contract.

Keywords - Spring State Machine, State Machine, State
Charts, Hierarchical States, Guards, Actions, Event-Driven
Architecture, EMV Payments, Fueling Workflow,
Observability.

1. Introduction

State machines provide a precise vocabulary to describe
how software behaves over time, especially when many
external actors exchange asynchronous signals. In retail
fueling, payment terminals, pump dispensers, acquirer hosts,
and receipt printers collaborate under strict timing, safety,
and compliance constraints. Historically, teams have woven
this collaboration with scattered flags, nested conditionals,
and callbacks, making failure modes hard to reason about
and audits painful. Spring State machine introduces a formal
structure that elevates temporal behavior to the same status
as data models: states describe phases of work, transitions
specify when and how movement occurs, and actions
localize side effects. The result is both executable
orchestration and self-documenting intent. When paired with
Spring Boot, the framework integrates smoothly with REST,
messaging, metrics, and persistence, allowing domain logic
to remain pure while adapters bridge the outside world.

This paper explains the framework through use cases
rather than a catalog of APIs. We begin by positioning state
machines against alternative coordination techniques such as
imperative controllers and message-driven sagas, then
motivate when to choose explicit orchestration over implicit

Sasikanth Mamidi
Independent Researcher, USA.
Accepted On: 18/11/2025 Published On: 25/11/2025
choreography. We outline modeling practices that keep
machines readable domain-centric naming, clear separation
between guards and actions, minimal extended state, and
hierarchical decomposition. The heart of the paper is a fuel
transaction case study that follows the customer journey.
card insertion, host approval, pump authorization, fueling,
computation of EOT details, and receipt issuance. We close
with performance measurements and operational guidance,
demonstrating that a well-designed machine can meet strict
latency targets and improve reliability, while remaining
evolvable as payment rules, device protocols, and product
features change.

2. Problem Statement

Fuel retail transactions require coordinating several
unreliable systems. Card readers (often EMV), acquirer
gateways, dispenser controllers, receipt services, and store
back-office systems. Each component introduces latency,
partial failure, and non-determinism, yet the customer
expects a seamless, fast experience at the forecourt. Common
implementations rely on nested control structures and
implicit state encoded in Booleans and callbacks. This
approach obscures business rules, makes race conditions
likely (e.g., card removal during authorization, nozzle lift
before approval), and complicates recovery. Operators and
auditors face a visibility gap: they can see logs but not the
transaction’s exact phase, complicating troubleshooting and
SLA enforcement. As the number of pumps and promotions
grows, so does the combinatorial space of corner cases,
further stressing ad-hoc controllers.

The orchestration layer therefore needs to externalize
state, render transitions explicit, and provide hooks for
cross-cutting concerns such as metrics, tracing, idempotence,
and compensations. It must support long-running interactions
with persisted context, hierarchical decomposition to keep
the model manageable, and concurrency to coordinate
devices without deadlocks. It must also protect invariant “no
dispenser activation before host approval,” “receipt content
reflects persisted EOT details,” “duplicate events never
produce duplicate side effects”, while integrating with
payment and device protocols that vary by market. Finally, it
should evolve safely. Models need versioning, in-flight
instances need migration strategies, and teams need a way to
test changes against realistic event streams before exposing
them to customers.

Sasikanth Mamidi / IJETCSIT, 6(4), 121-124, 2025

3. Objectives

The primary objective is to demonstrate how Spring
State machine can encode the full lifecycle of a card-present
fueling transaction in a way that is correct by construction,
testable in isolation, and observable in production. By
modeling with explicit states and guardable transitions, we
clarify domain invariants, such as the prerequisites for pump
authorization and the rules for computing totals and allow
the runtime to enforce them mechanically. A second
objective is to show how hierarchical states and concurrent
regions reduce cognitive load without losing precision,
letting payment and device flows proceed in sequence or in
parallel as policy and hardware permit. We aim to preserve a
crisp domain core while adapters handle the messy outer
edge: EMV exchanges, acquirer requests, dispenser
protocols, and receipt formatting.

A further objective is architectural portability. We
articulate a set of patterns and adapters for external systems,
pure domain actions, deterministic guards, and idempotent
side effects that let teams replace payment gateways,
dispenser protocols, or printers without remapping the core
machine. We also target operational excellence, consistent
metrics for transition counts and durations, structured logs
that carry correlation 1Ds, and traces that narrate each step.
Finally, we propose governance for safe change, versioned
state models stored alongside code, data migration for
in-flight instances when invariants evolve, and model-level
tests that exercise event sequences rather than lines of code.
By the end, readers should be able to build a production
grade machine that is easy to reason about, simple to operate,
and resilient to failure.

4. Literature Review

Finite State Machines (FSMs) and Harel state charts
underpin many safety-critical systems because they make
temporal behavior explicit. State charts extend FSMs with
hierarchy, concurrency, and history semantics, reducing
diagram complexity while maintaining rigor. In software, the
GoF State pattern popularized encapsulating state-dependent
behavior, but hand-rolled implementations often devolve into
scattered flags. Workflow engines and BPM suites addressed
long-running processes, yet their heavyweight modeling and
execution semantics are overkill for many transactional
domains. Spring State machine occupies an attractive middle
ground: it borrows the expressive power of state charts,
composes naturally with Spring Boot, and keeps execution
lightweight enough for high-throughput services.

Empirical studies of payments orchestration highlight
failure hotspots, authorization timeouts, duplicate
submissions, and reconciliation drift, where explicit state
models improve outcomes by centralizing guard logic and
making retries transparent. In retail fueling and forecourt
control, device controllers emit asynchronous signals (nozzle
lift, pump ready, fuel start/stop) that must be synchronized
with host approvals and safety interlocks. Event-driven
microservices literature often advocates choreography, but
for safety-critical sequences with strict ordering and
compensations, orchestration via a state machine provides

crisper guarantees. Prior art in open-source libraries (e.g.,
SCXML engines, Akka FSM, XState) and industrial
controllers validates the approach. Spring State machine
distinguishes itself with idiomatic Spring integration,
multiple persistence options, and support for hierarchical
modeling. This body of work informs our modeling choices,
test strategies, and performance expectations.

5. System Architecture

The proposed system centers on a Spring Boot service
that owns the fueling transaction lifecycle via Spring State
machine, flanked by adapters to external systems. A thin
HTTP/JSON command API accepts card events from the
payment terminal, host responses from the acquirer, device
events from the dispenser controller and maps them to
domain events published into the machine. Outbound actions
call adapter ports implemented by infrastructure components.
a payments client for EMV host calls, a dispenser client for
pump authorization and status, and a receipt client for
formatting and printing. The machine persists context so that
restarts and retries do not lose progress. Persistence can be
in-memory for tests, Redis for speed, or JPA for durability.
Structured logging and tracing propagate a transaction 1D
from first event to receipt, allowing precise observability.

Concurrency is handled with one machine instance per
transaction, while multi-pump coordination uses separate
instances correlated by store and dispenser identifiers.
Guards ensure exclusivity. no pump is authorized twice and
idempotence replaying an approval event does not duplicate
side effects. Hierarchical states keep the diagram
manageable. a superstate “InProgress” contains ‘“Payment
Flow” and “Fueling Flow” as concurrent regions where
hardware permits, or as sequential substates where policy
requires payment before dispenser activation. Entry and exit
actions initialize timers, schedule retries, and collect metrics.
Interceptors capture transitions for auditing, and error
subgraphs route failures to compensations (reversals,
deauthorizations, customer messaging). The architecture is
intentionally modular so that replacing a gateway or adding
promotions only touches adapters and, when necessary,
localized model branches.

6. Implementation Strategy
Implementation begins with modeling. Enumerate the
domain states Idle, Card Inserted, Awaiting Host Approval,

Approved, Pump Authorized, Fueling, Finalizing,
Completed, Failure and sketch hierarchical groupings.
Identify events that trigger transitions: CARD_READ,

HOST_APPROVED, HOST_DECLINED, PUMP_READY,
FUEL_START, FUEL_STOP, EOT_TOTALS,
RECEIPT_PRINTED, and TIMEOUT variants. Express
invariants as guards, authorize the pump only if the approval
code is present and the dispenser is assigned; compute totals
only after fuel stop and dispenser latch closed. Embed
idempotence by reading and updating a single EOT context,
running the same action twice yields the same result. Keep
extended state minimal and domain-centric approval code,
assigned dispenser, product, unit price, quantities, taxes, and

122

Sasikanth Mamidi / IJETCSIT, 6(4), 121-124, 2025

timestamps, so that diagrams stay readable and tests remain
focused.

Next, wire adapters and observability. Define interfaces
for payments, dispenser, and receipt services. Provide test
doubles for integration tests. Use interceptors to publish
metrics, transition counts, guard rejections, retries and traces
with the transaction ID as the span root. Configure
persistence (JPA or Redis) and enable state machine regions
if device and payment can advance independently. Write
model-level tests that inject events and assert resulting states,
guards, and actions without spinning up web servers or
external systems. For failure paths, script timeouts, host
declines, printer errors, and dispenser faults. verify
compensations, reversals posted, pump deauthorized, and
customer messaging triggered. Finally, package the machine
as a library with versioned models so applications can evolve
the diagram safely, extending or replacing branches under
feature flags and migrating in-flight instances as needed.

7. Case Study & Performance Evaluation

Consider a single fueling transaction. The customer
inserts a card, the terminal emits CARD_READ with
tokenized PAN and requested pre-authorization amount. The
machine leaves Idle for Card Inserted, triggers an action to
request host authorization, and moves to Awaiting Host
Approval. On HOST_APPROVED, the approval code and
limit are persisted, and the machine transitions to Approved,
where it calls the dispenser client to authorize the assigned
pump and product. When the dispenser replies
PUMP_READY, the machine enters Pump Authorized and
awaits FUEL_START. During Fueling, device events stream
in. the machine records quantity and price calculations
without producing customer-visible side effects. On
FUEL_STOP and nozzle replacement, the machine
transitions to Finalizing, computes End-of-Transaction
(EOT) details from the persisted context, totals, taxes,
discounts, card token, and EMV tags and triggers receipt
formatting. After RECEIPT_PRINTED, the machine enters
Completed and emits a reconciliation event to back-office
systems. If any step fails, error states launch compensations,
reversals to the acquirer, deauthorization for the pump, or a
reprint flow for the receipt.

We evaluated latency and resilience under
production-like load. With pre-warmed machine factories
and Redis persistence, median transition latency remained
sub-millisecond for internal transitions and under a few tens
of milliseconds when actions invoked external adapters.
End-to-end from CARD_READ to Completed, the P50
remained single-digit seconds, with P95 bounded primarily
by acquirer response times. Memory overhead per live
machine instance averaged a few kilobytes of context plus
framework structures, supporting thousands of concurrent
transactions per node. Under fault injection gateway
timeouts, duplicated device events, transient printer failures
guards and idempotent actions prevented duplicates and
ensured that retries remained safe. Operators used metrics
and traces to spot bottlenecks, reveal slow approvals, and

confirm that compensations
validating the model’s reliability.

triggered exactly once,

8. Results

The implementation delivered measurable
improvements across reliability, operability, and
evolvability. By relocating business rules into guards and
idempotent actions, we eliminated classes of race conditions
and reduced defect density in areas previously dominated by
conditional sprawl. Incident investigations benefited from
model-aligned observability. operators could answer “where
is my transaction?” by inspecting live counts per state and
opening traces that narrate the precise sequence of events.
Because every side effect hangs off a named transition,
post-mortems could map directly to the diagram, aligning
engineering, QA, and compliance conversations. The explicit
error subgraph constrained compensations reversals,
deauthorizations, and reprints, so that failure handling was
deliberate rather than ad-hoc.

From a product perspective, the state model simplified
introducing features that once threatened regressions. Adding
a pre-authorization top-up, for example, became a localized
subgraph gated by clear guards and compensations. The
same was true for loyalty accrual and targeted promotions,
actions emitted domain events without polluting the core
machine, while guards ensured they could never alter safety
or payment ordering. Audit and compliance gained
confidence because the machine’s structure mapped directly
to payment rules and forecourt interlocks. Receipts were
generated from a single source of truth (the EOT context)
rather than reconstructed heuristics. Developer experience
improved as tests focused on event sequences and invariant
enforcement instead of incidental wiring, leading to faster
cycle times and more predictable releases.

9. Conclusion & Future Work

Spring State machine demonstrates that explicit
orchestration can coexist with cloud-native development
without sacrificing agility. For fueling transactions, the
framework offered a disciplined way to encode invariants,
coordinate unreliable devices, and surface precise
operational signals. The case study showed that a carefully
designed model renders the happy path simple and the failure
paths deliberate, avoiding the silent complexity that
accumulates in ad-hoc controllers. Equally important, the
diagram becomes a contract among engineering, product,
and compliance. a shared artifact that expresses what is
allowed, when, and under what conditions then enforces it at
runtime.

Future work spans engineering, operations, and product.
On the engineering side, we intend to formalize properties
“authorization precedes dispensing,” “receipts reflect
persisted EOT” and verify them with model-checking and
property-based tests. We will explore fully reactive
execution to simplify back-pressure and timeouts, and extend
persistence to support long-lived reservations and offline
modes when connectivity degrades. Operationally, we will
expand metrics to include customer-centric SLOs, add

123

Sasikanth Mamidi / IJETCSIT, 6(4), 121-124, 2025

automated anomaly detection over transition streams, and
harden migration tooling for versioned models and in-flight
upgrades. Product efforts will integrate digital receipts and
loyalty accrual without bloating the core machine by housing
these concerns in sidecar actions and event listeners.
Together, these directions deepen the model’s guarantees
while keeping the implementation straightforward, auditable,
and adaptable to evolving payment and device landscapes.

References
[1] Spring Team, “Spring Statemachine — Reference
Documentation,” Spring.io, [Online]. Available:

https://docs.spring.io/spring-statemachine/reference/
[2] Vegesna, R. V. (2025). Developing software for
automated firmware updates in fuel controllers. Journal
of Artificial Intelligence & Cloud Computing, 1-3.
https://doi.org/10.47363/jaicc/2025(4)e263
[3] Bazzi Abir, Ma Di (2023) MT-SOTA: A Merkle-Tree-
Based Approach for Secure Software Updates over the

(4]

[5]
(6]

(71

(8]

Air in Automotive Systems. Applied Sciences 13. 9397.
10.3390/ app13169397

Vegesna, R. V. (2024). Designing an archival system for
Long-Term Fuel System data analysis. International
Scientific Journal of Engineering and Management,
03(09), 1-3. https://doi.org/10.55041/isjem02155
Tammaa, Ahmed. (2022). MongoDB Case Study on
Forbes. 10.13140/RG.2.2.32766.46408.

antkorwin.com, “Spring Statemachine,” antkorwin.com,
[Online]. Available:
https://antkorwin.com/statemachine/statemachine.html
oohm.io, “Building a Non-Blocking State Machine in
Spring Boot,” oohm.io, [Online]. Available:
https://oohm.io/blog/Building-a-Non-Blocking-State-
Machine-in-Spring-Boot/

Kanji, R. K. (2022). A Unified Data Warehouse
Architecture for Multi-Source Forest Inventory
Integration and Automated Remote Sensing
Analysis. Sarcouncil Journal of Engineering and
Computer Sciences, 1, 10-16.

5

124

https://doi.org/10.47363/jaicc/2025(4)e263
https://doi.org/10.55041/isjem02155
https://antkorwin.com/statemachine/statemachine.html
https://oohm.io/blog/Building-a-Non-Blocking-State-Machine-in-Spring-Boot/
https://oohm.io/blog/Building-a-Non-Blocking-State-Machine-in-Spring-Boot/

