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Abstract - Spring State machine turns temporal business 

logic into explicit, testable models. This paper shows how to 

design and operate real workflows with hierarchical states, 

guards, and actions, using a fuel-retail case where reliability, 

safety, and latency is paramount. We present an architecture 

that isolates domain logic behind ports/adapters 

(EMV/acquirer, dispenser, receipt), persists context for 

recovery, and exposes rich observability through metrics, 

structured logs, and traces. The case study follows the full 

card-present journey, card read, authorization, pump 

enablement, fueling, EOT computation, and receipt, 

highlighting idempotence, compensations, and controlled 

concurrency. Performance measurements quantify transition 

latency and memory footprint under Redis and JPA 

persistence. We close with guidance on testing, model 

versioning, and safe evolution so teams can replace brittle 

conditional flows with diagrams that act as living 

documentation and an executable contract. 
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1. Introduction 
State machines provide a precise vocabulary to describe 

how software behaves over time, especially when many 

external actors exchange asynchronous signals. In retail 

fueling, payment terminals, pump dispensers, acquirer hosts, 

and receipt printers collaborate under strict timing, safety, 

and compliance constraints. Historically, teams have woven 

this collaboration with scattered flags, nested conditionals, 

and callbacks, making failure modes hard to reason about 

and audits painful. Spring State machine introduces a formal 

structure that elevates temporal behavior to the same status 

as data models: states describe phases of work, transitions 

specify when and how movement occurs, and actions 

localize side effects. The result is both executable 

orchestration and self-documenting intent. When paired with 

Spring Boot, the framework integrates smoothly with REST, 

messaging, metrics, and persistence, allowing domain logic 

to remain pure while adapters bridge the outside world. 

 

This paper explains the framework through use cases 

rather than a catalog of APIs. We begin by positioning state 

machines against alternative coordination techniques such as 

imperative controllers and message-driven sagas, then 

motivate when to choose explicit orchestration over implicit 

choreography. We outline modeling practices that keep 

machines readable domain-centric naming, clear separation 

between guards and actions, minimal extended state, and 

hierarchical decomposition. The heart of the paper is a fuel 

transaction case study that follows the customer journey. 

card insertion, host approval, pump authorization, fueling, 

computation of EOT details, and receipt issuance. We close 

with performance measurements and operational guidance, 

demonstrating that a well-designed machine can meet strict 

latency targets and improve reliability, while remaining 

evolvable as payment rules, device protocols, and product 

features change. 

 

2. Problem Statement 
Fuel retail transactions require coordinating several 

unreliable systems. Card readers (often EMV), acquirer 

gateways, dispenser controllers, receipt services, and store 

back-office systems. Each component introduces latency, 

partial failure, and non-determinism, yet the customer 

expects a seamless, fast experience at the forecourt. Common 

implementations rely on nested control structures and 

implicit state encoded in Booleans and callbacks. This 

approach obscures business rules, makes race conditions 

likely (e.g., card removal during authorization, nozzle lift 

before approval), and complicates recovery. Operators and 

auditors face a visibility gap: they can see logs but not the 

transaction’s exact phase, complicating troubleshooting and 

SLA enforcement. As the number of pumps and promotions 

grows, so does the combinatorial space of corner cases, 

further stressing ad-hoc controllers. 

 

The orchestration layer therefore needs to externalize 

state, render transitions explicit, and provide hooks for 

cross-cutting concerns such as metrics, tracing, idempotence, 

and compensations. It must support long-running interactions 

with persisted context, hierarchical decomposition to keep 

the model manageable, and concurrency to coordinate 

devices without deadlocks. It must also protect invariant ―no 

dispenser activation before host approval,‖ ―receipt content 

reflects persisted EOT details,‖ ―duplicate events never 

produce duplicate side effects‖, while integrating with 

payment and device protocols that vary by market. Finally, it 

should evolve safely. Models need versioning, in-flight 

instances need migration strategies, and teams need a way to 

test changes against realistic event streams before exposing 

them to customers. 
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3. Objectives 
The primary objective is to demonstrate how Spring 

State machine can encode the full lifecycle of a card-present 

fueling transaction in a way that is correct by construction, 

testable in isolation, and observable in production. By 

modeling with explicit states and guardable transitions, we 

clarify domain invariants, such as the prerequisites for pump 

authorization and the rules for computing totals and allow 

the runtime to enforce them mechanically. A second 

objective is to show how hierarchical states and concurrent 

regions reduce cognitive load without losing precision, 

letting payment and device flows proceed in sequence or in 

parallel as policy and hardware permit. We aim to preserve a 

crisp domain core while adapters handle the messy outer 

edge: EMV exchanges, acquirer requests, dispenser 

protocols, and receipt formatting. 

 

A further objective is architectural portability. We 

articulate a set of patterns and adapters for external systems, 

pure domain actions, deterministic guards, and idempotent 

side effects that let teams replace payment gateways, 

dispenser protocols, or printers without remapping the core 

machine. We also target operational excellence, consistent 

metrics for transition counts and durations, structured logs 

that carry correlation IDs, and traces that narrate each step. 

Finally, we propose governance for safe change, versioned 

state models stored alongside code, data migration for 

in-flight instances when invariants evolve, and model-level 

tests that exercise event sequences rather than lines of code. 

By the end, readers should be able to build a production 

grade machine that is easy to reason about, simple to operate, 

and resilient to failure. 

 

4. Literature Review 
Finite State Machines (FSMs) and Harel state charts 

underpin many safety-critical systems because they make 

temporal behavior explicit. State charts extend FSMs with 

hierarchy, concurrency, and history semantics, reducing 

diagram complexity while maintaining rigor. In software, the 

GoF State pattern popularized encapsulating state-dependent 

behavior, but hand-rolled implementations often devolve into 

scattered flags. Workflow engines and BPM suites addressed 

long-running processes, yet their heavyweight modeling and 

execution semantics are overkill for many transactional 

domains. Spring State machine occupies an attractive middle 

ground: it borrows the expressive power of state charts, 

composes naturally with Spring Boot, and keeps execution 

lightweight enough for high-throughput services. 

 

Empirical studies of payments orchestration highlight 

failure hotspots, authorization timeouts, duplicate 

submissions, and reconciliation drift, where explicit state 

models improve outcomes by centralizing guard logic and 

making retries transparent. In retail fueling and forecourt 

control, device controllers emit asynchronous signals (nozzle 

lift, pump ready, fuel start/stop) that must be synchronized 

with host approvals and safety interlocks. Event-driven 

microservices literature often advocates choreography, but 

for safety-critical sequences with strict ordering and 

compensations, orchestration via a state machine provides 

crisper guarantees. Prior art in open-source libraries (e.g., 

SCXML engines, Akka FSM, XState) and industrial 

controllers validates the approach. Spring State machine 

distinguishes itself with idiomatic Spring integration, 

multiple persistence options, and support for hierarchical 

modeling. This body of work informs our modeling choices, 

test strategies, and performance expectations. 

 

5. System Architecture 
The proposed system centers on a Spring Boot service 

that owns the fueling transaction lifecycle via Spring State 

machine, flanked by adapters to external systems. A thin 

HTTP/JSON command API accepts card events from the 

payment terminal, host responses from the acquirer, device 

events from the dispenser controller and maps them to 

domain events published into the machine. Outbound actions 

call adapter ports implemented by infrastructure components. 

a payments client for EMV host calls, a dispenser client for 

pump authorization and status, and a receipt client for 

formatting and printing. The machine persists context so that 

restarts and retries do not lose progress. Persistence can be 

in-memory for tests, Redis for speed, or JPA for durability. 

Structured logging and tracing propagate a transaction ID 

from first event to receipt, allowing precise observability. 

 

Concurrency is handled with one machine instance per 

transaction, while multi-pump coordination uses separate 

instances correlated by store and dispenser identifiers. 

Guards ensure exclusivity. no pump is authorized twice and 

idempotence replaying an approval event does not duplicate 

side effects. Hierarchical states keep the diagram 

manageable. a superstate ―InProgress‖ contains ―Payment 

Flow‖ and ―Fueling Flow‖ as concurrent regions where 

hardware permits, or as sequential substates where policy 

requires payment before dispenser activation. Entry and exit 

actions initialize timers, schedule retries, and collect metrics. 

Interceptors capture transitions for auditing, and error 

subgraphs route failures to compensations (reversals, 

deauthorizations, customer messaging). The architecture is 

intentionally modular so that replacing a gateway or adding 

promotions only touches adapters and, when necessary, 

localized model branches. 

 

6. Implementation Strategy 
Implementation begins with modeling. Enumerate the 

domain states Idle, Card Inserted, Awaiting Host Approval, 

Approved, Pump Authorized, Fueling, Finalizing, 

Completed, Failure and sketch hierarchical groupings. 

Identify events that trigger transitions: CARD_READ, 

HOST_APPROVED, HOST_DECLINED, PUMP_READY, 

FUEL_START, FUEL_STOP, EOT_TOTALS, 

RECEIPT_PRINTED, and TIMEOUT variants. Express 

invariants as guards, authorize the pump only if the approval 

code is present and the dispenser is assigned; compute totals 

only after fuel stop and dispenser latch closed. Embed 

idempotence by reading and updating a single EOT context, 

running the same action twice yields the same result. Keep 

extended state minimal and domain-centric approval code, 

assigned dispenser, product, unit price, quantities, taxes, and 
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timestamps, so that diagrams stay readable and tests remain 

focused. 

 

Next, wire adapters and observability. Define interfaces 

for payments, dispenser, and receipt services. Provide test 

doubles for integration tests. Use interceptors to publish 

metrics, transition counts, guard rejections, retries and traces 

with the transaction ID as the span root. Configure 

persistence (JPA or Redis) and enable state machine regions 

if device and payment can advance independently. Write 

model-level tests that inject events and assert resulting states, 

guards, and actions without spinning up web servers or 

external systems. For failure paths, script timeouts, host 

declines, printer errors, and dispenser faults. verify 

compensations, reversals posted, pump deauthorized, and 

customer messaging triggered. Finally, package the machine 

as a library with versioned models so applications can evolve 

the diagram safely, extending or replacing branches under 

feature flags and migrating in-flight instances as needed. 

 

7. Case Study & Performance Evaluation 
Consider a single fueling transaction. The customer 

inserts a card, the terminal emits CARD_READ with 

tokenized PAN and requested pre-authorization amount. The 

machine leaves Idle for Card Inserted, triggers an action to 

request host authorization, and moves to Awaiting Host 

Approval. On HOST_APPROVED, the approval code and 

limit are persisted, and the machine transitions to Approved, 

where it calls the dispenser client to authorize the assigned 

pump and product. When the dispenser replies 

PUMP_READY, the machine enters Pump Authorized and 

awaits FUEL_START. During Fueling, device events stream 

in. the machine records quantity and price calculations 

without producing customer-visible side effects. On 

FUEL_STOP and nozzle replacement, the machine 

transitions to Finalizing, computes End-of-Transaction 

(EOT) details from the persisted context, totals, taxes, 

discounts, card token, and EMV tags and triggers receipt 

formatting. After RECEIPT_PRINTED, the machine enters 

Completed and emits a reconciliation event to back-office 

systems. If any step fails, error states launch compensations, 

reversals to the acquirer, deauthorization for the pump, or a 

reprint flow for the receipt. 

 

We evaluated latency and resilience under 

production-like load. With pre-warmed machine factories 

and Redis persistence, median transition latency remained 

sub-millisecond for internal transitions and under a few tens 

of milliseconds when actions invoked external adapters. 

End-to-end from CARD_READ to Completed, the P50 

remained single-digit seconds, with P95 bounded primarily 

by acquirer response times. Memory overhead per live 

machine instance averaged a few kilobytes of context plus 

framework structures, supporting thousands of concurrent 

transactions per node. Under fault injection gateway 

timeouts, duplicated device events, transient printer failures 

guards and idempotent actions prevented duplicates and 

ensured that retries remained safe. Operators used metrics 

and traces to spot bottlenecks, reveal slow approvals, and 

confirm that compensations triggered exactly once, 

validating the model’s reliability. 

 

8. Results 
The implementation delivered measurable 

improvements across reliability, operability, and 

evolvability. By relocating business rules into guards and 

idempotent actions, we eliminated classes of race conditions 

and reduced defect density in areas previously dominated by 

conditional sprawl. Incident investigations benefited from 

model-aligned observability. operators could answer ―where 

is my transaction?‖ by inspecting live counts per state and 

opening traces that narrate the precise sequence of events. 

Because every side effect hangs off a named transition, 

post-mortems could map directly to the diagram, aligning 

engineering, QA, and compliance conversations. The explicit 

error subgraph constrained compensations reversals, 

deauthorizations, and reprints, so that failure handling was 

deliberate rather than ad-hoc. 

 

From a product perspective, the state model simplified 

introducing features that once threatened regressions. Adding 

a pre-authorization top-up, for example, became a localized 

subgraph gated by clear guards and compensations. The 

same was true for loyalty accrual and targeted promotions, 

actions emitted domain events without polluting the core 

machine, while guards ensured they could never alter safety 

or payment ordering. Audit and compliance gained 

confidence because the machine’s structure mapped directly 

to payment rules and forecourt interlocks. Receipts were 

generated from a single source of truth (the EOT context) 

rather than reconstructed heuristics. Developer experience 

improved as tests focused on event sequences and invariant 

enforcement instead of incidental wiring, leading to faster 

cycle times and more predictable releases. 

 

9. Conclusion & Future Work 
Spring State machine demonstrates that explicit 

orchestration can coexist with cloud-native development 

without sacrificing agility. For fueling transactions, the 

framework offered a disciplined way to encode invariants, 

coordinate unreliable devices, and surface precise 

operational signals. The case study showed that a carefully 

designed model renders the happy path simple and the failure 

paths deliberate, avoiding the silent complexity that 

accumulates in ad-hoc controllers. Equally important, the 

diagram becomes a contract among engineering, product, 

and compliance. a shared artifact that expresses what is 

allowed, when, and under what conditions then enforces it at 

runtime. 

 

Future work spans engineering, operations, and product. 

On the engineering side, we intend to formalize properties 

―authorization precedes dispensing,‖ ―receipts reflect 

persisted EOT‖ and verify them with model-checking and 

property-based tests. We will explore fully reactive 

execution to simplify back-pressure and timeouts, and extend 

persistence to support long-lived reservations and offline 

modes when connectivity degrades. Operationally, we will 

expand metrics to include customer-centric SLOs, add 
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automated anomaly detection over transition streams, and 

harden migration tooling for versioned models and in-flight 

upgrades. Product efforts will integrate digital receipts and 

loyalty accrual without bloating the core machine by housing 

these concerns in sidecar actions and event listeners. 

Together, these directions deepen the model’s guarantees 

while keeping the implementation straightforward, auditable, 

and adaptable to evolving payment and device landscapes. 
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