
International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V6I4P117

Eureka Vision Publication | Volume 6, Issue 4, 121-124, 2025

Original Article

Understanding Spring State Machine Using Proper Use Cases

Sasikanth Mamidi
Independent Researcher, USA.

Received On: 18/10/2025 Revised On: 10/11/2025 Accepted On: 18/11/2025 Published On: 25/11/2025

Abstract - Spring State machine turns temporal business

logic into explicit, testable models. This paper shows how to

design and operate real workflows with hierarchical states,

guards, and actions, using a fuel-retail case where reliability,

safety, and latency is paramount. We present an architecture

that isolates domain logic behind ports/adapters

(EMV/acquirer, dispenser, receipt), persists context for

recovery, and exposes rich observability through metrics,

structured logs, and traces. The case study follows the full

card-present journey, card read, authorization, pump

enablement, fueling, EOT computation, and receipt,

highlighting idempotence, compensations, and controlled

concurrency. Performance measurements quantify transition

latency and memory footprint under Redis and JPA

persistence. We close with guidance on testing, model

versioning, and safe evolution so teams can replace brittle

conditional flows with diagrams that act as living

documentation and an executable contract.

Keywords - Spring State Machine, State Machine, State

Charts, Hierarchical States, Guards, Actions, Event-Driven

Architecture, EMV Payments, Fueling Workflow,

Observability.

1. Introduction
State machines provide a precise vocabulary to describe

how software behaves over time, especially when many

external actors exchange asynchronous signals. In retail

fueling, payment terminals, pump dispensers, acquirer hosts,

and receipt printers collaborate under strict timing, safety,

and compliance constraints. Historically, teams have woven

this collaboration with scattered flags, nested conditionals,

and callbacks, making failure modes hard to reason about

and audits painful. Spring State machine introduces a formal

structure that elevates temporal behavior to the same status

as data models: states describe phases of work, transitions

specify when and how movement occurs, and actions

localize side effects. The result is both executable

orchestration and self-documenting intent. When paired with

Spring Boot, the framework integrates smoothly with REST,

messaging, metrics, and persistence, allowing domain logic

to remain pure while adapters bridge the outside world.

This paper explains the framework through use cases

rather than a catalog of APIs. We begin by positioning state

machines against alternative coordination techniques such as

imperative controllers and message-driven sagas, then

motivate when to choose explicit orchestration over implicit

choreography. We outline modeling practices that keep

machines readable domain-centric naming, clear separation

between guards and actions, minimal extended state, and

hierarchical decomposition. The heart of the paper is a fuel

transaction case study that follows the customer journey.

card insertion, host approval, pump authorization, fueling,

computation of EOT details, and receipt issuance. We close

with performance measurements and operational guidance,

demonstrating that a well-designed machine can meet strict

latency targets and improve reliability, while remaining

evolvable as payment rules, device protocols, and product

features change.

2. Problem Statement
Fuel retail transactions require coordinating several

unreliable systems. Card readers (often EMV), acquirer

gateways, dispenser controllers, receipt services, and store

back-office systems. Each component introduces latency,

partial failure, and non-determinism, yet the customer

expects a seamless, fast experience at the forecourt. Common

implementations rely on nested control structures and

implicit state encoded in Booleans and callbacks. This

approach obscures business rules, makes race conditions

likely (e.g., card removal during authorization, nozzle lift

before approval), and complicates recovery. Operators and

auditors face a visibility gap: they can see logs but not the

transaction’s exact phase, complicating troubleshooting and

SLA enforcement. As the number of pumps and promotions

grows, so does the combinatorial space of corner cases,

further stressing ad-hoc controllers.

The orchestration layer therefore needs to externalize

state, render transitions explicit, and provide hooks for

cross-cutting concerns such as metrics, tracing, idempotence,

and compensations. It must support long-running interactions

with persisted context, hierarchical decomposition to keep

the model manageable, and concurrency to coordinate

devices without deadlocks. It must also protect invariant ―no

dispenser activation before host approval,‖ ―receipt content

reflects persisted EOT details,‖ ―duplicate events never

produce duplicate side effects‖, while integrating with

payment and device protocols that vary by market. Finally, it

should evolve safely. Models need versioning, in-flight

instances need migration strategies, and teams need a way to

test changes against realistic event streams before exposing

them to customers.

Sasikanth Mamidi / IJETCSIT, 6(4), 121-124, 2025

122

3. Objectives
The primary objective is to demonstrate how Spring

State machine can encode the full lifecycle of a card-present

fueling transaction in a way that is correct by construction,

testable in isolation, and observable in production. By

modeling with explicit states and guardable transitions, we

clarify domain invariants, such as the prerequisites for pump

authorization and the rules for computing totals and allow

the runtime to enforce them mechanically. A second

objective is to show how hierarchical states and concurrent

regions reduce cognitive load without losing precision,

letting payment and device flows proceed in sequence or in

parallel as policy and hardware permit. We aim to preserve a

crisp domain core while adapters handle the messy outer

edge: EMV exchanges, acquirer requests, dispenser

protocols, and receipt formatting.

A further objective is architectural portability. We

articulate a set of patterns and adapters for external systems,

pure domain actions, deterministic guards, and idempotent

side effects that let teams replace payment gateways,

dispenser protocols, or printers without remapping the core

machine. We also target operational excellence, consistent

metrics for transition counts and durations, structured logs

that carry correlation IDs, and traces that narrate each step.

Finally, we propose governance for safe change, versioned

state models stored alongside code, data migration for

in-flight instances when invariants evolve, and model-level

tests that exercise event sequences rather than lines of code.

By the end, readers should be able to build a production

grade machine that is easy to reason about, simple to operate,

and resilient to failure.

4. Literature Review
Finite State Machines (FSMs) and Harel state charts

underpin many safety-critical systems because they make

temporal behavior explicit. State charts extend FSMs with

hierarchy, concurrency, and history semantics, reducing

diagram complexity while maintaining rigor. In software, the

GoF State pattern popularized encapsulating state-dependent

behavior, but hand-rolled implementations often devolve into

scattered flags. Workflow engines and BPM suites addressed

long-running processes, yet their heavyweight modeling and

execution semantics are overkill for many transactional

domains. Spring State machine occupies an attractive middle

ground: it borrows the expressive power of state charts,

composes naturally with Spring Boot, and keeps execution

lightweight enough for high-throughput services.

Empirical studies of payments orchestration highlight

failure hotspots, authorization timeouts, duplicate

submissions, and reconciliation drift, where explicit state

models improve outcomes by centralizing guard logic and

making retries transparent. In retail fueling and forecourt

control, device controllers emit asynchronous signals (nozzle

lift, pump ready, fuel start/stop) that must be synchronized

with host approvals and safety interlocks. Event-driven

microservices literature often advocates choreography, but

for safety-critical sequences with strict ordering and

compensations, orchestration via a state machine provides

crisper guarantees. Prior art in open-source libraries (e.g.,

SCXML engines, Akka FSM, XState) and industrial

controllers validates the approach. Spring State machine

distinguishes itself with idiomatic Spring integration,

multiple persistence options, and support for hierarchical

modeling. This body of work informs our modeling choices,

test strategies, and performance expectations.

5. System Architecture
The proposed system centers on a Spring Boot service

that owns the fueling transaction lifecycle via Spring State

machine, flanked by adapters to external systems. A thin

HTTP/JSON command API accepts card events from the

payment terminal, host responses from the acquirer, device

events from the dispenser controller and maps them to

domain events published into the machine. Outbound actions

call adapter ports implemented by infrastructure components.

a payments client for EMV host calls, a dispenser client for

pump authorization and status, and a receipt client for

formatting and printing. The machine persists context so that

restarts and retries do not lose progress. Persistence can be

in-memory for tests, Redis for speed, or JPA for durability.

Structured logging and tracing propagate a transaction ID

from first event to receipt, allowing precise observability.

Concurrency is handled with one machine instance per

transaction, while multi-pump coordination uses separate

instances correlated by store and dispenser identifiers.

Guards ensure exclusivity. no pump is authorized twice and

idempotence replaying an approval event does not duplicate

side effects. Hierarchical states keep the diagram

manageable. a superstate ―InProgress‖ contains ―Payment

Flow‖ and ―Fueling Flow‖ as concurrent regions where

hardware permits, or as sequential substates where policy

requires payment before dispenser activation. Entry and exit

actions initialize timers, schedule retries, and collect metrics.

Interceptors capture transitions for auditing, and error

subgraphs route failures to compensations (reversals,

deauthorizations, customer messaging). The architecture is

intentionally modular so that replacing a gateway or adding

promotions only touches adapters and, when necessary,

localized model branches.

6. Implementation Strategy
Implementation begins with modeling. Enumerate the

domain states Idle, Card Inserted, Awaiting Host Approval,

Approved, Pump Authorized, Fueling, Finalizing,

Completed, Failure and sketch hierarchical groupings.

Identify events that trigger transitions: CARD_READ,

HOST_APPROVED, HOST_DECLINED, PUMP_READY,

FUEL_START, FUEL_STOP, EOT_TOTALS,

RECEIPT_PRINTED, and TIMEOUT variants. Express

invariants as guards, authorize the pump only if the approval

code is present and the dispenser is assigned; compute totals

only after fuel stop and dispenser latch closed. Embed

idempotence by reading and updating a single EOT context,

running the same action twice yields the same result. Keep

extended state minimal and domain-centric approval code,

assigned dispenser, product, unit price, quantities, taxes, and

Sasikanth Mamidi / IJETCSIT, 6(4), 121-124, 2025

123

timestamps, so that diagrams stay readable and tests remain

focused.

Next, wire adapters and observability. Define interfaces

for payments, dispenser, and receipt services. Provide test

doubles for integration tests. Use interceptors to publish

metrics, transition counts, guard rejections, retries and traces

with the transaction ID as the span root. Configure

persistence (JPA or Redis) and enable state machine regions

if device and payment can advance independently. Write

model-level tests that inject events and assert resulting states,

guards, and actions without spinning up web servers or

external systems. For failure paths, script timeouts, host

declines, printer errors, and dispenser faults. verify

compensations, reversals posted, pump deauthorized, and

customer messaging triggered. Finally, package the machine

as a library with versioned models so applications can evolve

the diagram safely, extending or replacing branches under

feature flags and migrating in-flight instances as needed.

7. Case Study & Performance Evaluation
Consider a single fueling transaction. The customer

inserts a card, the terminal emits CARD_READ with

tokenized PAN and requested pre-authorization amount. The

machine leaves Idle for Card Inserted, triggers an action to

request host authorization, and moves to Awaiting Host

Approval. On HOST_APPROVED, the approval code and

limit are persisted, and the machine transitions to Approved,

where it calls the dispenser client to authorize the assigned

pump and product. When the dispenser replies

PUMP_READY, the machine enters Pump Authorized and

awaits FUEL_START. During Fueling, device events stream

in. the machine records quantity and price calculations

without producing customer-visible side effects. On

FUEL_STOP and nozzle replacement, the machine

transitions to Finalizing, computes End-of-Transaction

(EOT) details from the persisted context, totals, taxes,

discounts, card token, and EMV tags and triggers receipt

formatting. After RECEIPT_PRINTED, the machine enters

Completed and emits a reconciliation event to back-office

systems. If any step fails, error states launch compensations,

reversals to the acquirer, deauthorization for the pump, or a

reprint flow for the receipt.

We evaluated latency and resilience under

production-like load. With pre-warmed machine factories

and Redis persistence, median transition latency remained

sub-millisecond for internal transitions and under a few tens

of milliseconds when actions invoked external adapters.

End-to-end from CARD_READ to Completed, the P50

remained single-digit seconds, with P95 bounded primarily

by acquirer response times. Memory overhead per live

machine instance averaged a few kilobytes of context plus

framework structures, supporting thousands of concurrent

transactions per node. Under fault injection gateway

timeouts, duplicated device events, transient printer failures

guards and idempotent actions prevented duplicates and

ensured that retries remained safe. Operators used metrics

and traces to spot bottlenecks, reveal slow approvals, and

confirm that compensations triggered exactly once,

validating the model’s reliability.

8. Results
The implementation delivered measurable

improvements across reliability, operability, and

evolvability. By relocating business rules into guards and

idempotent actions, we eliminated classes of race conditions

and reduced defect density in areas previously dominated by

conditional sprawl. Incident investigations benefited from

model-aligned observability. operators could answer ―where

is my transaction?‖ by inspecting live counts per state and

opening traces that narrate the precise sequence of events.

Because every side effect hangs off a named transition,

post-mortems could map directly to the diagram, aligning

engineering, QA, and compliance conversations. The explicit

error subgraph constrained compensations reversals,

deauthorizations, and reprints, so that failure handling was

deliberate rather than ad-hoc.

From a product perspective, the state model simplified

introducing features that once threatened regressions. Adding

a pre-authorization top-up, for example, became a localized

subgraph gated by clear guards and compensations. The

same was true for loyalty accrual and targeted promotions,

actions emitted domain events without polluting the core

machine, while guards ensured they could never alter safety

or payment ordering. Audit and compliance gained

confidence because the machine’s structure mapped directly

to payment rules and forecourt interlocks. Receipts were

generated from a single source of truth (the EOT context)

rather than reconstructed heuristics. Developer experience

improved as tests focused on event sequences and invariant

enforcement instead of incidental wiring, leading to faster

cycle times and more predictable releases.

9. Conclusion & Future Work
Spring State machine demonstrates that explicit

orchestration can coexist with cloud-native development

without sacrificing agility. For fueling transactions, the

framework offered a disciplined way to encode invariants,

coordinate unreliable devices, and surface precise

operational signals. The case study showed that a carefully

designed model renders the happy path simple and the failure

paths deliberate, avoiding the silent complexity that

accumulates in ad-hoc controllers. Equally important, the

diagram becomes a contract among engineering, product,

and compliance. a shared artifact that expresses what is

allowed, when, and under what conditions then enforces it at

runtime.

Future work spans engineering, operations, and product.

On the engineering side, we intend to formalize properties

―authorization precedes dispensing,‖ ―receipts reflect

persisted EOT‖ and verify them with model-checking and

property-based tests. We will explore fully reactive

execution to simplify back-pressure and timeouts, and extend

persistence to support long-lived reservations and offline

modes when connectivity degrades. Operationally, we will

expand metrics to include customer-centric SLOs, add

Sasikanth Mamidi / IJETCSIT, 6(4), 121-124, 2025

124

automated anomaly detection over transition streams, and

harden migration tooling for versioned models and in-flight

upgrades. Product efforts will integrate digital receipts and

loyalty accrual without bloating the core machine by housing

these concerns in sidecar actions and event listeners.

Together, these directions deepen the model’s guarantees

while keeping the implementation straightforward, auditable,

and adaptable to evolving payment and device landscapes.

References
[1] Spring Team, ―Spring Statemachine — Reference

Documentation,‖ Spring.io, [Online]. Available:

https://docs.spring.io/spring-statemachine/reference/

[2] Vegesna, R. V. (2025). Developing software for

automated firmware updates in fuel controllers. Journal

of Artificial Intelligence & Cloud Computing, 1–3.

https://doi.org/10.47363/jaicc/2025(4)e263

[3] Bazzi Abir, Ma Di (2023) MT-SOTA: A Merkle-Tree-

Based Approach for Secure Software Updates over the

Air in Automotive Systems. Applied Sciences 13. 9397.

10.3390/ app13169397

[4] Vegesna, R. V. (2024). Designing an archival system for

Long-Term Fuel System data analysis. International

Scientific Journal of Engineering and Management,

03(09), 1–3. https://doi.org/10.55041/isjem02155

[5] Tammaa, Ahmed. (2022). MongoDB Case Study on

Forbes. 10.13140/RG.2.2.32766.46408.

[6] antkorwin.com, ―Spring Statemachine,‖ antkorwin.com,

[Online]. Available:

https://antkorwin.com/statemachine/statemachine.html

[7] oohm.io, ―Building a Non-Blocking State Machine in

Spring Boot,‖ oohm.io, [Online]. Available:

https://oohm.io/blog/Building-a-Non-Blocking-State-

Machine-in-Spring-Boot/

[8] Kanji, R. K. (2022). A Unified Data Warehouse

Architecture for Multi-Source Forest Inventory

Integration and Automated Remote Sensing

Analysis. Sarcouncil Journal of Engineering and

Computer Sciences, 1, 10-16.

https://doi.org/10.47363/jaicc/2025(4)e263
https://doi.org/10.55041/isjem02155
https://antkorwin.com/statemachine/statemachine.html
https://oohm.io/blog/Building-a-Non-Blocking-State-Machine-in-Spring-Boot/
https://oohm.io/blog/Building-a-Non-Blocking-State-Machine-in-Spring-Boot/

