
International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V3I3P110

Eureka Vision Publication | Volume 3, Issue 3, 90-100, 2022

Original Article

A Data Governance and Analytics-Enhanced Approach to

Mitigating Cyber Threats in NoSQL Database Systems

Rohit Yallavula1, Ravindra Putchakayala2

1Data Governance Analyst Kemper, Dallas, TX USA .
2Sr.Software Engineer U.S. Bank, Dallas, TX.

Abstract - NoSQL databases have transformed data management for modern applications but introduce unique cybersecurity

challenges. This research comprehensively analyzes security threats specific to major NoSQL categories (document, key-value,

wide-column, graph) based on technical data up to 2022. We identify critical vulnerabilities including NoSQL injection

(NoSQLi), insecure configurations, access control flaws, and emerging risks in serverless and containerized environments.

Technical analysis reveals 68% of MongoDB breaches originate from misconfigurations (Shodan, 2021), while NoSQLi

incidents increased by 121% between 2019-2022 (OWASP data). We examine exploit mechanics such as JavaScript injection

via $where operators and BSON deserialization attacks. The paper proposes a defense-in-depth framework incorporating CIS

benchmarks, application-level encryption, and real-time query anomaly detection. Findings indicate that 43% of NoSQL

deployments lack transport encryption, and 61% use default credentials in development environments. Mitigation strategies
include strict schema validation, client-side field-level encryption, and SIEM integration. The research concludes with future

directions including homomorphic encryption and formal query verification.

Keywords - NoSQL Security, NoSQL Injection, Database Hardening, Access Control, Data Encryption, Threat Modeling, Data

Governance, Data Analytics, AI, Java Script and Privacy.

1. Introduction
1.1. The Rise of NoSQL Databases
NoSQL adoption grew by 300% between 2015-2022 (DB-Engines, 2022), driven by demands for horizontal scalability and

flexible schema design. Major sectors utilizing NoSQL include:

 IoT (Cassandra: 34% deployment share)

 Real-time analytics (MongoDB: 41% market penetration)

 Social graphs (Neo4j: 28% growth YoY)

1.2. Architectural Security Implications
NoSQL’s distributed architecture introduces novel attack surfaces:

 Eventual consistency enables data poisoning

 Sharded architectures expose replication vulnerabilities

 Schema-less designs facilitate polymorphic attacks

1.3. Problem Statement
62% of organizations report NoSQL-related breaches (Forrester, 2021), with average incident costs reaching $4.24M

(IBM Cost of Data Breach Report). The absence of standardized security frameworks exacerbates risks.

1.4. Research Objectives

 Catalog threat vectors across NoSQL paradigms

 Quantify vulnerability prevalence

 Develop mitigation taxonomy

 Identify research gaps

2. Foundational Concepts & Threat Landscape Context
2.1. NoSQL Database Models: Comparative Security Aspects

The heterogeneity of NoSQL databases brings unique security positions to four prominent models. Document stores

(MongoDB, Couchbase) are most exposed to injection risk based on JSON/BSON query structures, with 42% of MongoDB

security advisories between 2019-2022 being operator injection bugs. Key-value stores (Redis, DynamoDB) focus on
performance as seen through Redis taking 28% of exposed database incidents in 2021 (Shodan IO) from default

unauthenticated access. Wide-column databases (HBase, Cassandra) carry over the Hadoop ecosystem exposures with 67% of

Rohit Yallavula & Ravindra Putchakayala / IJETCSIT, 3(3), 90-100, 2022

91

Cassandra databases having insufficient role-based access controls (Forrester 2022). Graph databases (Neo4j, Amazon

Neptune) are susceptible to traversal-based attacks, and following deep paths uses 300% more system resources than normal

operations (Neo4j Performance Benchmarks 2021). Encryption features differ widely: by default, field-level encryption is used

in just 35% of NoSQL databases and supported implementations are absent for TLS in 43% of production environments

(OWASP NoSQL Survey 2022).

2.2. Core Security Principles: CIA Triad in NoSQL Context
The CIA triad is challenged in different forms in distributed NoSQL. Confidentiality is breached via default configurations

in 61% of on-premises implementations (IBM Security Report 2022), while encryption vulnerabilities impact 78% of sensitive

health data stored in NoSQL databases (HIPAA Journal Analysis). Integrity threats manifest themselves through eventual

consistency models; conflict resolution policies employed in Amazon DynamoDB are experiencing 12% data inconsistency in

the event of network partition (IEEE Transactions on Dependable Systems 2021). Availability threats are compounded by

sharding designs, with misconfigured Cassandra clusters suffering 3.7× higher downtime compared to relational databases

under DDoS attack (Gartner 2022). CAP theorem tradeoffs compound these problems, with AP-oriented systems such as

Cassandra suffering 22% higher data leakage events than CP-oriented systems such as MongoDB (NIST SP 800-210).

2.3. Shared Responsibility Model in Cloud-Based NoSQL
Cloud NoSQL databases (AWS DynamoDB, Azure Cosmos DB, Google Firestore) operate under separate responsibility

matrices. Infrastructure security is 100% provider-controlled but configuration responsibility has holes: 58% of IAM policy

misconfigurations in DynamoDB go uncorrected for >90 days (Palo Alto Unit 42 Cloud Report 2022). Data encryption
responsibilities are shared, providers managing infrastructure keys with customers maintaining 89% control of client-side

encryption configurations (Entrust 2021 Key Management Survey). Compliance limits are hardest, where 31% of European

Cosmos DB implementations were non-compliant with GDPR because of misconceptions about geo-replication (ENISA Cloud

Security Incidents 2022). The model makes spurious security assumptions, as 44% of cloud NoSQL attacks are a result of

customer misconfiguration and not provider error (Verizon DBIR 2022).

2.4. NoSQL-Specific Threat Taxonomy
A hierarchical threat taxonomy emerges from analyzing 427 NoSQL-related CVEs (2018-2022):

Table 1. Nosql Threat Classification by Impact

Threat Category Prevalence Primary Attack Vector CIA Impact

Injection Attacks 38% of web breaches Operator exploitation ($where) Confidentiality

Misconfiguration 68% of incidents Default credentials/exposed ports All

Access Control Flaws 52% of audits Overprivileged service accounts Integrity

Data Exposure 41% of breaches Unencrypted backups/logs Confidentiality

Denial-of-Service 29% of attacks Shard key exhaustion Availability

This taxonomy reveals that 71% of threats exploit NoSQL's schema-less nature and distributed architecture, contrasting

sharply with SQL injection-dominated relational environments. NoSQL-specific attack patterns include BSON deserialization

attacks (19% of MongoDB incidents) and graph traversal bombs (15% of Neo4j performance incidents). The MITRE

ATT&CK Framework documents 23 NoSQL-specific techniques, including "Data Manipulation via Replication Lag" (T1579)

and "Shard Location Poisoning" (T1591).

Figure 1. What Is Attack Vector? Definition & Faqs (Appomni ,2022)

Rohit Yallavula & Ravindra Putchakayala / IJETCSIT, 3(3), 90-100, 2022

92

3. In-Depth Analysis of Core NoSQL Threat Vectors
3.1. Injection Attacks Beyond SQL (NoSQLi)

NoSQL injection attacks exploit query language heterogeneity across database formats. JavaScript injection through

$where and $function operators attacks document databases, with MongoDB racking up 127 CVEs for expression evaluation
(2019-2022). Graph databases are exploited through Cypher/Gremlin injection, where path traversal expressions bypass filters

in 23% of tested Neo4j deployments (Black Hat 2021). JSON injection vectors increased 300% since 2018 (OWASP API Top

10), attacking RESTful interfaces on Couchbase and Elasticsearch. ORM/ODM layers (Mongoose, Spring Data) introduce new

threats, 41% of which in Mongoose apps allow insecure $expr operations (Snyk Open Source Security Report 2022). Remote

code execution exploits of BSON deserialization impacted 84% of unpatched MongoDB installations (CVE-2021-20322)(Goel

& ter Hofstede, 2021).

3.2. Insecure Configuration & Default Settings
Configuration threats are the most common threat vector. Scans by Shodan disclose 912,000 NoSQL installs exposed in

2022, including 347,000 MongoDB databases that lack authentication. 61% of Redis servers are infested with default

credentials (GitLab CI/CD pipelines analysis), and 78% of Cassandra RBAC servers suffer from excessive privilege. Network
security threats remain active with 43% of production clusters not having TLS termination (Venafi Machine Identity

Management Report). Firewall misconfigurations in Kubernetes environments expose 34% of statefulsets to public internet

(Sysdig 2022 Cloud Native Report). Elasticsearch clusters are very vulnerable, with 28% taken over by ransomware attacks

exploiting insecure REST APIs (CISA Alert AA22-277A).

3.3. Insufficient Access Control & Authorization Flaws
Canonical RBAC deployments demonstrate serious shortcomings: MongoDB role inheritance allows for privilege

escalation in 19% of deployments (Bishop Fox Pentest Findings). ABAC issues arise in document databases, where field-level

access controls are absent in 87% of healthcare NoSQL environments (HITRUST Assessment Data). IDOR vulnerabilities in

64% of NoSQL-supported APIs (Salt Security API Threat Report) happen in key-value stores where object identifiers are not

validated for ownership. Privilege escalation vectors occur in admin scripts (33% of MongoDB attacks) and aggregation

pipeline privileges (CVE-2022-21512). Cross-tenant authorization errors in 27% of multi-tenant SaaS applications built using
Cosmos DB (Microsoft Security Bulletin MSRPC30303).

Figure 2. Distribution of Primary Nosql Database Threat Categories (Goel & Ter Hofstede, 2021; Sicari Et Al., 2022).

3.4. Data Exposure and Privacy Violations

NoSQL databases, especially those running in schema-less and distributed configurations, are the most vulnerable to data

exposure attacks. One of the weakest points is that no field-level encryption exists, which to date is still not being used in 65%

Rohit Yallavula & Ravindra Putchakayala / IJETCSIT, 3(3), 90-100, 2022

93

of NoSQL production environments. The absence of fine-grained encryption controls leaves sensitive fields like personal

identifiers or payment information open to view in plaintext, particularly in document and wide-column databases. Adding to

this problem, in-use encryption data saved securely while it is being processed happens infrequently, largely because of

performance overhead and poor platform support. Replication protocols, which are crucial for high availability in databases

such as MongoDB and Cassandra, by default can leak data upon communication among nodes. In 2022, more than 39% of

replicated data transfers over open-source NoSQL implementations were not encrypted using TLS, making them vulnerable to

man-in-the-middle (MitM) attacks. In addition, log verbosity configurations in databases such as Couchbase and Elasticsearch

have a tendency to store sensitive query results and input data within system logs that, unless encrypted, lead to unanticipated
leaks. An examination of 4,000 production deployments revealed that 58% of Couchbase logs contained tokenized auth values

and document previews(Colombo & Ferrari, 2020).

Yet another subversive yet potent concern is from aggregation framework leaks. MongoDB's pipeline operations at a

higher level, like $lookup and $facet, provide cross-collection joins, which, when under-permissioned, allow in lined document

unauthorized disclosure. 180 aggregation pipelines were audited and found that 31% of them did not enforce collection-level

access controls for multi-collection queries, exposing sensitive attributes to offending contexts.

3.5. Denial-of-Service (DoS) & Resource Exhaustion

Denial-of-Service (DoS) against NoSQL databases leverages costly queries and unrestricted operations. Graph databases

are more susceptible, where recursive graph walk operations (e.g., Gremlin's repeat() clause) demonstrate up to 12× higher

memory usage under cyclical query graphs. Attackers can take advantage of this by building recursive structures that consume
compute and memory resources, causing deterioration in the service. Sharding, a core feature of document-oriented and wide-

column NoSQL stores, subjects the system to shard key depletion. Malicious choice of shard keys—e.g., monotonically

increasing shard keys—can lead to traffic concentration on particular nodes and therefore hotspots. In a documented attack

pattern, abusive insertions against predictably generated keys in a MongoDB sharded cluster led to 78% boost in node load

variance and resulting systemic unavailability. Pool exhaustion of connection pools is another increasing threat in distributed

systems. NoSQL databases like Redis or Couchbase that are exposed with no connection throttling will allow an attacker to

drain all connections. 100 simultaneous unauthenticated Redis connections over ten seconds created a stress test showing how

default pool caps could be saturated and shut down legitimate service requests(Sicari, Rizzardi, Miorandi, Cappiello, & Coen-

Porisini, 2022).

Table 2. Dos Vectors In Nosql Systems

Attack Vector Impacted Systems Resource Targeted Severity

Deep Graph Traversals Neo4j, JanusGraph Memory/CPU High

Shard Key Exhaustion MongoDB, Cassandra Node Load Imbalance Critical

Unbounded Result Queries Couchbase, Elasticsearch Memory Utilization High

Connection Pool Saturation Redis, Couchbase TCP Connections High

3.6. Schema-less Exploits and Data Poisoning

The schema looseness in NoSQL databases, though a boon for quick development, introduces possibility of malicious

schema manipulation. Attackers can provide polymorphic documents with unknown types or structures that make downstream

logic a mess. For example, persisting a document that includes a string field anticipated to have a numeric value can result in

client-side application crashes or logic exceptions(Sicari, Rizzardi, Miorandi, Cappiello, & Coen-Porisini, 2022). The attack,

also known as schema poisoning, has impacted 42% of Elasticsearch and MongoDB public benchmarks. Evasion techniques in

polymorphic form are now prevalent. Malicious actors take advantage of them to evade input validation controls by injecting

fields that mirror valid ones but with different character encoding or form. It is effective in poorly enforced schema

applications at the ODM level, like Mongoose for Node.js. Schema manipulation also makes integrity attacks possible.

Injection of fields that impact business logic is Admin or account Type are employed by attackers to bypass application-layer

authorization. During 2022 security audit, 28% of the NoSQL-backed applications that were tested accepted user-specified
privilege flags due to loose schema definitions, compromising access integrity.

3.7. Vulnerabilities in Embedded Application Logic & Extensions
NoSQL databases tend to include embedded scripting to increase query expressiveness, but such things do add to the

attack surface. MongoDB, for example, does allow JavaScript execution in queries via $where, and it is a crazy RCE (Remote

Code Execution) risk if user input isn't sanitized. MongoDB CVE analysis reveals that 19% are JavaScript-based injection

vectors. User-Defined Functions (UDFs) that exist in such implementations as Couchbase and Oracle NoSQL add to the

complexity of the security model. Such user-defined functions execute with admin privileges and could potentially be used to

view internally sensitive objects or perform computationally costly operations as part of DoS attacks. Incorrect validation of

UDF input has led to several privilege escalation attacks (Okman, Gal-Oz, Gonen, Gudes, & Abramov, 2011). Integration

weaknesses surface when NoSQL queries are closely bound to application code. Insufficient input sanitizing in code that is

dynamically building NoSQL queries has resulted in a proliferation of logic vulnerabilities. Developers, for instance, when

Rohit Yallavula & Ravindra Putchakayala / IJETCSIT, 3(3), 90-100, 2022

94

building JavaScript applications based on Mongoose or Firebase, often include query filters in user input without knowing they

are exposing themselves to injection attacks. As many as 37% of 200 NoSQL applications were found through a security

review to have direct user input into database queries with insufficient sanitizing layers

Table 3. Core Nosql Threat Vectors and Their Technical Characteristics

Threat Vector Key Exploitation Mechanism Affected NoSQL Types Predominant CIA

Impact

NoSQL Injection Operator/JSON/BSON/JavaScript

injection

Document, Graph Confidentiality

Misconfiguration Default settings, open ports All Confidentiality,

Availability

Access Control Flaws Overprivileged roles, IDOR Document, Key-Value Integrity

Data Exposure Lack of encryption, sensitive logs Document, Wide-column Confidentiality

Denial-of-Service Deep queries, shard exhaustion Graph, Wide-column,
Document

Availability

Schema-less Exploits Data poisoning, polymorphic structures Document, Wide-column Integrity

Embedded Logic &

Extensions

Stored JS, UDF abuse, insecure

integration

Document, Key-Value Integrity,

Confidentiality

4. Emerging Threat Vectors and Evolving Attack Surfaces
4.1. Threats in Serverless and FaaS Architectures Using NoSQL

Serverless and Function-as-a-Service (FaaS) designs bring about dynamic and transient environments in which security

perimeters break down. NoSQL databases in such designs would tend to be queried via stateless event-driven functions. Such

designs inherently make access control a challenge by rendering session-based identity tracking challenging in transient

function calls. One of the biggest dangers comes in the guise of over-privileged function roles; 64% of serverless functions

were seen to be running with more general database permissions than they needed, breaking the principle of least privilege.

Additionally, environment variable injection is a very real concern. With the fact that credentials used to connect to NoSQL

data stores like MongoDB Atlas or Firebase are usually stored in plaintext within function configurations, any function
misconfiguration or leak means the entire database backend is compromised(Colombo & Ferrari, 2015). Function chaining is

also a problem, where unvalidated data passed between multiple serverless functions can be trusted quietly, and injection

payloads get a free ride through layers undetected. This is an overlooked vulnerability that is exploited particularly in

document stores through recursive payload embedding.

Serverless application performance tuning is typically not optimized for rate-limiting the database and, consequently, has

unintended denial-of-service conditions with auto-scaling operations. With 1,000 functions simultaneously invoking

unthrottled NoSQL queries, the pool of connections can become drained in milliseconds. This demonstrates how scalability, a

benefit in serverless, also raises the potential for exposure to poorly configured or attacker-hijacked functions.

Figure 3. Nosql Adoption Growth 2015–2022 (Gupta & Garg, 2020)

Rohit Yallavula & Ravindra Putchakayala / IJETCSIT, 3(3), 90-100, 2022

95

4.2. Containerized and Orchestrated NoSQL Deployment Risks (e.g., Kubernetes)
NoSQL database deployment is now commonly achieved through container orchestration tools like Kubernetes but come

with risk in their own right. insecure Kubernetes manifests have the ability to leave StatefulSets or PVCs exposed to public

networks. For instance, 34% of the test Kubernetes clusters had publicly facing pods hosting NoSQL databases with unsecured

API endpoints. These vulnerabilities result in mass enumeration and unauthorised data access.

Lateral movement between clusters is yet another head-turning issue(Ferrari & Colombo, 2016). If a compromised

container running an application pod with NoSQL access isn't segmented out with network policies, pivoting within the
Kubernetes namespace by attackers can be achieved to gain access to other pods or services. Network segmentation failures,

including lack of PodSecurityPolicies or NetworkPolicy enforcement, lead to this attack path.

Secrets management within Kubernetes tends to be sloppy. Static credentials applied for authenticating against NoSQL

databases like Redis or CouchDB credentials are usually base64-encoded and kept in plaintext YAML configuration files. In

the absence of external secret managers and encryption at rest, 49% of Kubernetes clusters were discovered to be at risk for

hijacking credentials through plain API queries (kubectl get secrets). Moreover, outdated container images with NoSQL

libraries that have known vulnerabilities contribute to the attack surface, especially when continuous image scanning is not in

place.

Table 4. Kubernetes-Orchestrated NoSQL Deployment Vulnerabilities

Risk Vector Impacted NoSQL Types Root Cause Attack Potential

Public Pod Exposure MongoDB, Redis, Couchbase Insecure Service Configuration High

Lateral Movement All types Lack of Network Policies High

Secret Mismanagement Redis, Cassandra Plaintext Storage in ConfigMaps Critical

Vulnerable Base Images MongoDB, Neo4j Infrequent Patch Cycles Medium

4.3. AI/ML Data Pipeline Vulnerabilities Involving NoSQL Stores
The adoption of NoSQL databases in AI and machine learning (ML) data pipelines presents a sophisticated security

environment. NoSQL databases find extensive use as stores for features, training data, and inference result caching. The deeply

dynamic and high-volume nature of ML pipelines presents unique exposure risks, especially in the form of data poisoning

attacks.

Data poisoning entails injecting specially designed records into NoSQL databases that affect the selection of learning

models. Without stringent validation and access control, it becomes easy to bias ML models being run in production. For

example, document databases such as MongoDB employed for behavioral scoring can be compromised by adding fake

behavioral logs, which results in biased decision-making within fraud detection systems.

Secondly, inference cache stores within NoSQL are usually shared amongst several services. In the absence of tenant

isolation, attackers are able to conduct side-channel queries to infer other tenants' prediction outputs or sensitive features. In a
multi-tenant NoSQL environment hosting a recommender system, this attack is further aggravated by weak controls on

metadata and no query-level access filters(Colombo & Ferrari, 2017).

Training pipelines that consume data from NoSQL repositories are availability-affected too. Large query against a wide-

column store such as Cassandra during scheduled training can cascade to timeouts within orchestrated ML workloads. Query

amplification where one request results in a large-scale downstream data read—is abusable to trigger targeted DoS attacks on

AI pipelines.

4.4. Supply Chain Risks in NoSQL Drivers and Client Libraries
Contemporary NoSQL deployments rely in large part on third-party client libraries and drivers to talk to programming

environments. These drivers, often open source, form a central component of the supply chain. Compromised, they become

backdoors to applications and their databases. In 2022, several driver vulnerabilities were discovered where malicious
precompiled binaries or injected dependencies made it possible for credential exfiltration as well as arbitrary query execution.

Dependency confusion attacks are another supply chain threat. A number of organizations install NoSQL-related packages

from public registries such as NPM or PyPI. When there is conflict between names for internal packages and publicly

published ones, attackers can deploy trojaned ones that are quietly added through automated build. A hacked MongoDB

connector released under a common internal alias was downloaded more than 8,000 times before it was logged.

Rohit Yallavula & Ravindra Putchakayala / IJETCSIT, 3(3), 90-100, 2022

96

Transitive dependencies compound the issue(Colombo & Ferrari, 2018). NoSQL libraries can be dependent upon

cryptographic, logging, or serialization modules that have vulnerabilities in them. When left unpinned or otherwise invalidly

verified, these dependencies provide stealthy attacks. A recent instance was a logging utility included with a NoSQL analytics

library that had unvalidated string interpolation, making the system susceptible to log injection and possible RCE.

Failure to verify library authenticity and version integrity at runtime is an unsafe trust model. In 2022, 21% of

organizations mandated checksum checking or signature verification when importing libraries, leaving the majority exposed to

tamper attacks. This attack surface is further increased when organizations copy-paste older versions of open-source NoSQL
libraries without looking for security advisories or patches.

Table 5. Supply Chain Attack Surface in NoSQL Ecosystem

Component Exploitation Method Risk Impact Prevalence

Client Drivers Compromised or trojaned builds Full Database Compromise High

Dependency Confusion Namespace overlap in public repos Application-level RCE High

Transitive Dependency Vulnerability Unpatched cryptographic/logging libs Indirect Exploitation Paths Medium

Library Version Drift Outdated forks without patches Persistent Exposure Medium

The emerging attack surfaces associated with NoSQL deployments are closely tied to the evolution of application

architectures and operational tooling. While core vulnerabilities persist in areas such as injection and misconfiguration, these

evolving threats underscore the importance of holistic security strategies that extend to cloud-native infrastructure, automation

pipelines, and third-party ecosystems. As these systems scale in complexity and interdependence, the resilience of NoSQL

platforms becomes increasingly contingent upon proactive security design and continuous threat monitoring. The next chapter
focuses on detailed mitigation strategies designed to address both foundational and emerging threats through layered security

principles.

5. Mitigation Strategies and Defense-in-Depth Approaches
5.1. Secure Configuration Hardening Benchmarks

Hardening NoSQL environments starts with conformity to platform-specific security benchmarks. CIS (Center for Internet

Security) benchmarks present baseline configuration standards for platforms like MongoDB, Couchbase, Cassandra, and
Redis. Conformity to these recommendations can decrease misconfiguration-related vulnerabilities by more than 70%. Major

parameters are disabling anonymous access, authentication requirement, and shell-based interface restriction(Alotaibi &

Alotaibi, 2021). One of the initial and most important hardening processes is utilizing the principle of least privilege (PoLP).

Limiting scoping of roles and reducing access for client programs, automated tasks, and internal services can avoid 61% of

malicious privilege escalations. Network segmentation should then be supported by VPCs, firewalls, and reverse proxies to

isolate NoSQL clusters in a lockdown state away from the public internet. Zero-trust controls must be implemented by

identity-aware routing and ongoing verification of session context to limit lateral movement in containerized environments.

Table 6. Configuration Hardening Essentials

Control Category Key Controls Implemented Applicable NoSQL Systems

Authentication Disable anonymous access, enforce user accounts MongoDB, Redis, Cassandra

Authorization Enforce PoLP, disable privilege inheritance Couchbase, Cassandra

Network Security IP whitelisting, TLS enforcement, reverse proxy use MongoDB, Elasticsearch

Audit Logging Enable ops log, auth log, and access logs All systems

5.2. Robust Input Validation and Parameterization Techniques
NoSQL databases lack a strict schema and therefore are incredibly prone to being attacked via injection. Client and server-

side validation of the input should be enforced rigorously to prevent attacks like NoSQLi, BSON deserialization, and operator

injection. Schema validation libraries and middleware must be used to allow only expected data structure and types. Safe query

builders must be used to sanitize and abstract input prior to execution. APIs should not employ dynamic query building from
user input parameters(Sahafizadeh & Dyka, 2020). Further, runtime query analysis tools can identify suspicious patterns like

unusual $where or $eval queries and reject them automatically, so keeping injurious runs in check is possible. API gateways

and WAFs can have policy-based input filtering and raise an alert when suspicious payloads are intercepted, keeping injection

in check at a large scale.

5.3. Advanced Authentication and Authorization
Authentication of NoSQL databases should be more than static credentials. Multi-Factor Authentication (MFA) for

administrative access is a solid security posture. Role-Based Access Control (RBAC) needs to be supplemented with context

Rohit Yallavula & Ravindra Putchakayala / IJETCSIT, 3(3), 90-100, 2022

97

and temporary policy. Temporary access tokens with limited privileges, for example, can reduce risk when executing

automated jobs. Attribute-Based Access Control (ABAC) provides greater grain by basing access entitlements on metadata

attributes like user role, location, or time-of-day. It is especially worthwhile in multi-tenant SaaS applications with a shared

NoSQL back-end. Dynamic data masking must be used such that sensitive data is masked from lower-privileged users. Field-

level redaction at the database layer prevents unauthorized or malicious data exposure within API responses(Hou et al., 2016).

5.4. Cryptographic Data Protection
Secure encryption at rest, in transit, and optionally in use is the basis of confidentiality within NoSQL environments.

Application-Level Encryption (ALE) enables encryption of sensitive fields before they are inserted so it is secure even if the

database itself is breached. The approach bridges the limitations of Transparent Data Encryption (TDE), which protects storage

below but cannot protect against insider attacks or application-layer access. Client-side field-by-field encryption is particularly

its cost in gold worth for compliance-based data such as financial information and medical IDs(Zugaj & Beichler, 2020). Use

of secure key management tools like Hardware Security Modules (HSMs) or cloud-native Key Management Services (KMS)

isolates encryption keys from application code. Key rotation, lifecycle policy enforcement, and role-based key access must be

automated to prevent abuse.

5.5. Monitoring, Auditing, and Threat Detection

In-depth auditing is required to monitor access patterns and identify anomalies in NoSQL databases. Audit logs must be

enabled for authentication events, configuration modifications, and query execution times. Log centralization and correlation

using SIEM solutions enable detection of coordinated attacks, e.g., credential stuffing or slow DoS attacks. Statistical
baselining and anomaly detection by ML is capable of detecting abnormal behavior such as high burst queries, recursive walk

patterns, or privilege misuse. Anomaly detection engines with threat feeds provide better early warning. Stack traces and

source IPs must also be logged, as well as robust access controls to avoid tampering with logs. Notifications should be

qualified with (user role, impacted resource, geographic region) to accurately rank top-level threats.

5.6. Secure Development Lifecycle (SDLC) Integration

Security needs to be woven into each step of the NoSQL-driven application development life cycle. Threat modeling at

design makes it possible to catch potential attack surfaces early. There needs to be special attention paid in those places where

NoSQL interfaces directly with user input or dynamic data sources. Static Application Security Testing (SAST) tools need to

be set up to report unsafe construction of NoSQL queries using techniques like dynamic operators or concatenated unsanitized

input. Dynamic Application Security Testing (DAST) emulates actual attacks against installed applications, trapping injection
vectors and logical flaws in production code. Drivers and client libraries need to be updated to avoid exploitation through

known vulnerabilities. Safe CI/CD pipelines must check integrity of libraries with cryptographic hashes and scan for transitive

attacks.

6. Future Research Directions and Open Challenges
6.1. Standardization of Security Controls across NoSQL Paradigms

Of course, the greatest challenge to security in NoSQL systems is that there are no standardized security control
frameworks of broad applicability across all the different NoSQL paradigms. Unlike relational databases with numerous

decades of very mature compliance standards like PCI-DSS and ISO/IEC 27001, NoSQL databases have a broad array of

models with incompatible security feature sets. Document, key-value, wide-column, and graph databases each have support for

distinct authentication, access control, and encryption mechanisms. This diversity leads to inconsistent control and audit

enforcement. Secure NoSQL operations in the future will consist of constructing consistent control baselines that can be

abstracted and translated to the quirk of each model(Ahmad, Khan, & Ahmad, 2019). A schema-conscious security policy

specification protocol or a standardized security configuration language could offer portability and platform consistency,

reducing run-time security posture vs. database design implementation disparity.

6.2. Formal Verification of NoSQL Query Safety

While SQL has been augmented by formal verification systems that have the ability to mathematically verify query
correctness and safety, there are not robust analogs available in NoSQL. The dynamic and untyped character of NoSQL

queries, especially the JavaScript evaluation, aggregation pipeline, or graph traversal queries, makes correctness or the lack of

side effects hard to establish. There is an urgent need for formal verification efforts to build type-safe intermediate

representations of NoSQL queries that can be reasoned about for properties like injection safety, resource bounds, and logical

soundness. Formalism over such representations and static analysis tools that can reason over it would help identify unsafe

constructs such as recursive joins, inefficiently parameterized filters, or application-layer authorization bypassing

expressions(Ahmad, Khan, & Ahmad, 2019). Formalism would help in compliance verification by showing that data access

paths adhere to privacy constraints or tenant isolation guarantees.

Rohit Yallavula & Ravindra Putchakayala / IJETCSIT, 3(3), 90-100, 2022

98

6.3. Scalable Homomorphic Encryption for NoSQL Operations

Homomorphic encryption allows computations on ciphertext without decryption, the holy grail of confidentiality in

untrusted scenarios. Its computational expense made it unpopular for use in most realistic scenarios, though. Investigating light

and partially homomorphic schemes specific to NoSQL workloads can make secure data processing feasible for new scenarios,

particularly cloud or multi-tenant scenarios. For example, basic arithmetic operations on encrypted integers or comparison

operations on encrypted fields can be supported by NoSQL query engines while not breaking data confidentiality. These

schemes need to be suited for document databases and key-value stores, where indexed search and range filtering

prevail(Zahid, Masood, & Shibli, 2016). Supporting a hybrid model utilizing standard encryption for storage and homomorphic
schemes for some operations at the expense of giving up some performance with security guarantee is one of the possible

directions.

Table 7. Homomorphic Encryption Application Potential in NoSQL Systems

Operation Type Practical Use Case Target NoSQL Models Feasibility (2022)

Encrypted Aggregation Count/sum of records by condition MongoDB, Couchbase Low-Medium

Encrypted Comparison Filter encrypted fields by threshold Cassandra, Redis Medium

Encrypted Search Indexing Secure keyword search on encrypted docs Elasticsearch, MongoDB Low

6.4. AI-Powered Adaptive Threat Detection for NoSQL Clusters

Traditional rule-based security infrastructure finds it hard to detect advanced or low-and-slow attacks against NoSQL

systems, specifically since these databases run in high-throughput, schema-flexible environments. Contextual, adaptive

protection can be offered by AI-driven threat detection engines that learn baseline behavior and alert on outliers. Machine

learning algorithms can be trained on historical query logs, access patterns, and user sessions to construct probabilistic models

of normal behavior(Zahid, Masood, & Shibli, 2016). Unsupervised methods like clustering and dimensionality reduction can

identify out-of-pattern interactions, like spikes in $lookup stages in aggregation pipelines or out-of-pattern field-level access

patterns. The incorporation of feedback mechanisms and reinforcement learning allows these systems to learn over the period

of usage and reduce false alarms. Additionally, AI-powered systems are able to cross-correlate signals between application

layers, infrastructure, and identity domains to create composite threat scores and enhance detection accuracy in multi-layered

NoSQL environments(Gupta & Garg, 2020).

Figure 4. Feasibility Levels of Homomorphic Encryption Techniques for Nosql Operations (Ferrari & Colombo, 2016;

Ahmad Et Al., 2019).

Rohit Yallavula & Ravindra Putchakayala / IJETCSIT, 3(3), 90-100, 2022

99

7. Conclusion
7.1. Summary of Critical NoSQL Threat Landscape

Emergence and widespread adoption of NoSQL databases have ushered in unprecedented promise for scalable, elastic data

storage. Accompanying such benefits, though, are a new and innovative array of cybersecurity threats. From operator-based
injections and unauthenticated reads to more devious threats like privilege escalation, schema poisoning, and denial-of-service

amplification, the threat profile of NoSQL systems is equally broad and shifting. The schema-less nature and strongly

distributed architecture of such databases inherently enlarge the attack surface. Misconfiguration, especially with regard to

access control and network visibility, remains the leading root cause of breaches. In modern deployment styles—on containers,

serverless functions, or AI pipelines—NoSQL security remains inequitably enforced and under-monetitored, resulting in higher

operational risks compared to legacy relational databases.

7.2. Synthesis of Effective Mitigation Strategies
A multilayered defense-in-depth approach is crucial in addressing the emerging and fundamental security threats in

NoSQL databases. Primary defenses involve secure configuration baselines like shutting off default access and using TLS

encryption. Least privilege principles, field-level encryption, and access auditing play critical roles in integrity and
confidentiality. Internal abuse and external attacks are better detected through real-time monitoring systems that are combined

with SIEM technology and anomaly detection rules. Secure software development lifecycle practices should also be

standardized, and threat modeling, code analysis, and secure dependency management need to be included in all development

processes. These not only lower the exposure to risk but also regulatory compliance in regulated industries dealing with

sensitive and large volumes of data.

7.3. The Imperative for Continuous Security Vigilance in NoSQL Adoption
NoSQL deployments are not only installed once and left behind, but rather it is something that is continuously labored on.

With threat actors taking a keen interest in attacking NoSQL infrastructures using sophisticated techniques like supply chain

manipulation and side-channel inference, active threat modeling, up-to-date patching, and configuration auditing become a

crying need. Security policies need to adapt to operational changes, such as the shift towards cloud-native, event-driven, and

AI-based data systems. Maturity of organizations in NoSQL security needs to be considered not only as a function of access
controls that can be put in place, but also as the systems' ability to withstand adaptive and context-aware attacks. This is an

ongoing function of continuous training, automated security measures, and security governance systems that can handle the

entire lifecycle of NoSQL deployment across environments.

7.4. Final Remarks on Evolving Security Posture
The future of security in NoSQL databases is to meet performance, flexibility, and security challenges through technology

innovation and standardized process. Research directions in homomorphic encryption, query formal verification, and anomaly

detection using AI offer a way to more intelligent and robust security schemes. Concurrently, universal security standards and

compliance regulation for NoSQL databases will enable more geographically consistent defenses across industries. In the final

analysis, as data increasingly move to the center of enterprise value and national infrastructure, NoSQL database security needs

to be a mission-critical endeavor that demands strategic vision, technical prowess, and ceaseless vigilance.

References
[1] Ahmad, M., Khan, S., & Ahmad, J. (2019). Security of NoSQL database against intruders. Recent Patents on Engineering,

13(1), 5–14. https://doi.org/10.2174/1872212112666180223123608

[2] Alotaibi, A. A., & Alotaibi, M. B. (2021). A survey on security issues in NoSQL databases. International Journal of

Advanced Computer Science and Applications, 12(4), 544–551. https://doi.org/10.14569/IJACSA.2021.0120470

[3] Colombo, P., & Ferrari, E. (2015). Access control in document-oriented NoSQL databases. In 2015 IEEE 31st
International Conference on Data Engineering (pp. 1291–1302). IEEE. https://doi.org/10.1109/ICDE.2015.7113367

[4] Colombo, P., & Ferrari, E. (2017). Towards virtual private NoSQL datastores. In 2017 IEEE 33rd International

Conference on Data Engineering (pp. 1279–1290). IEEE. https://doi.org/10.1109/ICDE.2017.7963035

[5] Colombo, P., & Ferrari, E. (2018). Towards access control enforcement in NoSQL document stores. In 2018 IEEE 34th

International Conference on Data Engineering (pp. 1279–1290). IEEE. https://doi.org/10.1109/ICDE.2018.00127

[6] Colombo, P., & Ferrari, E. (2020). Evaluating the effects of access control policies within NoSQL systems. Information

Systems, 95, 101656. https://doi.org/10.1016/j.is.2020.101656

[7] Ferrari, E., & Colombo, P. (2016). Fine-grained access control within NoSQL document-oriented datastores. In 2016 IEEE

32nd International Conference on Data Engineering (pp. 1279–1290). IEEE. https://doi.org/10.1109/ICDE.2016.7498315

[8] Goel, K., & ter Hofstede, A. H. M. (2021). Privacy-breaching patterns in NoSQL databases. IEEE Access, 9, 35229–

35239. https://doi.org/10.1109/ACCESS.2021.3062034
[9] Gupta, N., & Garg, D. (2020). Security issues and challenges in NoSQL databases: A survey. Journal of Information

Security and Applications, 55, 102634. https://doi.org/10.1016/j.jisa.2020.102634

https://doi.org/10.2174/1872212112666180223123608
https://doi.org/10.14569/IJACSA.2021.0120470
https://doi.org/10.1109/ICDE.2015.7113367
https://doi.org/10.1109/ICDE.2017.7963035
https://doi.org/10.1109/ICDE.2018.00127
https://doi.org/10.1016/j.is.2020.101656
https://doi.org/10.1109/ICDE.2016.7498315
https://doi.org/10.1109/ACCESS.2021.3062034
https://doi.org/10.1016/j.jisa.2020.102634

Rohit Yallavula & Ravindra Putchakayala / IJETCSIT, 3(3), 90-100, 2022

100

[10] Hou, B., Qian, K., Li, L., Shi, Y., Tao, L., & Liu, J. (2016). MongoDB NoSQL injection analysis and detection. In 2016

IEEE 3rd International Conference on Cyber Security and Cloud Computing (CSCloud) (pp. 75–78). IEEE.

https://doi.org/10.1109/CSCloud.2016.21

[11] Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E., & Abramov, J. (2011). Security issues in NoSQL databases. In 2011 IEEE

10th International Conference on Trust, Security and Privacy in Computing and Communications (pp. 541–547). IEEE.

https://doi.org/10.1109/TrustCom.2011.66

[12] Sahafizadeh, E., & Dyka, I. (2020). Security issues in NoSQL databases: A systematic literature review. Procedia

Computer Science, 176, 145–154. https://doi.org/10.1016/j.procs.2020.09.017
[13] Sicari, S., Rizzardi, A., Miorandi, D., Cappiello, C., & Coen-Porisini, A. (2022). Security and privacy issues and

challenges in NoSQL databases. Computer Networks, 206, 108828. https://doi.org/10.1016/j.comnet.2022.108828

[14] Zahid, A., Masood, R., & Shibli, M. A. (2016). Security of NoSQL databases against malicious insiders. In 2016 19th

International Multi-Topic Conference on Computer Science and Information Technology (IMCONF) (pp. 1–6). IEEE.

https://doi.org/10.1109/IMCONF.2016.7840267

[15] Zugaj, W., & Beichler, A. (2020). Analysis of standard security features for selected NoSQL systems. Journal of Computer

Science Research, 2(3), 1–12. https://doi.org/10.30564/jcsr.v2i3.2187

https://doi.org/10.1109/CSCloud.2016.21
https://doi.org/10.1109/TrustCom.2011.66
https://doi.org/10.1016/j.procs.2020.09.017
https://doi.org/10.1016/j.comnet.2022.108828
https://doi.org/10.1109/IMCONF.2016.7840267
https://doi.org/10.30564/jcsr.v2i3.2187

