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Abstract - Artificial intelligence systems deployed in the real world must be capable of continual learning—acquiring new
knowledge and skills over time without catastrophically forgetting previously learned information. This challenge is particularly
acute in decentralized settings where data is streamed and owned by different entities. Drawing inspiration from the brain’s mech-
anisms of neuroplasticity, we introduce SYNAPSE-Fed (Synaptic Network Adaptation for Perpetual Secure Explainable Federated
Learning), a novel framework designed for robust continual learning in a federated environment. At its core, SYNAPSE- Fed
features a meta-learning algorithm that models synaptic consolidation to mitigate catastrophic forgetting. By identifying and
protecting network parameters crucial for past tasks, our algorithm preserves existing knowledge while adapting to new data
streams. To ensure the integrity of this learning process across distributed silos, we embed our algorithm within a trust- aware
federated learning protocol. A dynamic trust metric evaluates each participant’s contribution based on performance, consistency,
and their ability to balance knowledge stability with plasticity, ensuring accountability. Finally, we address the critical need for
transparency by introducing a quantitative frame- work to optimize the trade-off between the continual learner’s performance and
its explainability. We demonstrate through experiments on continual learning benchmarks that SYNAPSE- Fed significantly
outperforms existing methods in preventing catastrophic forgetting and shows high resilience in a federated setting with
heterogeneous participants.

Keywords - Continual Learning, Meta-Learning, Federated Learning, Explainable Al (XAl), Neuroplasticity, Catastrophic
Forgetting.

1. Introduction

Modern Al systems, particularly those based on deep neural networks, have achieved remarkable success but operate on a
fundamentally flawed assumption: that the data distribution is stationary. When trained on a sequence of tasks, these networks
exhibit a phenomenon known as “catastrophic forgetting”, where learning a new task drastically degrades performance on
previously learned ones [1]. This limitation severely hinders the deployment of Al in dynamic, real-world environments that
require systems to learn continuously and adapt to new information over their lifetime.

The human brain, in contrast, is an exemplary continual learner. It seamlessly acquires new skills and knowledge with- out
overwriting the old. This ability is underpinned by complex biological mechanisms like “synaptic plasticity”, where the strength of
synaptic connections is selectively modified to consolidate long-term memories while forming new ones [2]. Inspired by this, the
field of Continual Learning (CL) seeks to develop algorithms that enable Al to learn sequentially.

Our work addresses three interconnected challenges in de- veloping practical continual learning systems. First, we need more
effective algorithms to combat catastrophic forgetting. We draw inspiration from synaptic consolidation to propose a novel “bio-
inspired meta-learning algorithm”. By meta- learning a parameter-importance mapping, our model learns “how” to protect
critical knowledge while efficiently adapting to new tasks.

Second, real-world continual learning often happens in a decentralized manner. For instance, a fleet of robots or a consortium
of hospitals continually learn from their unique, local data streams. “Federated Learning (FL)” is the natural paradigm for such
scenarios, but it requires a mechanism to ensure the integrity and accountability of the learning process across diverse and
potentially unreliable participants (silos) [3].

Third, as continual learning systems make evolving deci- sions over time, their behavior must be “explainable” to engender
trust and allow for human oversight. A model that silently modifies its knowledge base without transparency is unacceptable in
high-stakes applications. This necessitates a formal method to manage the trade-off between the model’s adaptive performance and
its scrutability.
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To this end, we introduce “SYNAPSE-Fed”, a unified framework that synergistically addresses these three chal- lenges. Our
primary contributions are:
1. Anovel, bio-inspired meta-learning algorithm that mim- ics synaptic consolidation to effectively mitigate catas- trophic
forgetting in a sequential task environment.
2. A “Trust-Aware Federated Learning” protocol specif- ically designed for continual learning, which assesses client
reliability based on their contribution to both knowledge stability (low forgetting) and forward transfer (fast adaptation).
3. A quantitative framework to analyze and optimize the inherent “trade-off between continual learning perfor- mance
and model explainability”, providing a princi- pled approach for deploying adaptable yet transparent Al.
4. Extensive empirical validation on benchmark CL datasets, demonstrating SYNAPSE-Fed’s superior per- formance and
robustness compared to state-of-the-art baselines.

2. Related Work
2.1. Continual Learning (CL)
Approaches to mitigate catastrophic forgetting are typically categorized into three families

2.2. Meta-Learning

Meta-learning, or ”learning to learn,” aims to train a model on a distribution of tasks so that it can adapt to a new task with
very few examples [7]. Model-Agnostic Meta-Learning (MAML) is a popular algorithm that learns a parameter initialization that is
sensitive to fine-tuning on new tasks.

2.3. Federated Learning for Continual Learning

Combining FL and CL is a natural yet challenging direction. The continual arrival of data at each client creates a dual non- 11D
challenge: data is heterogeneous across clients and non- stationary over time for each client. Some works have started to explore
this ”Federated Continual Learning” setting.

3. The Synapse-Fed Framework
SYNAPSE-Fed integrates a bio-inspired continual learner into a secure federated network with an explainability-control module.

3.1. Bio-Inspired Continual Meta-Learning
Let us consider a sequence of tasks Ty, Ty, ..., Ty . After training on task T;, the model must learn T;.; without degrading
its performance on tasks {Tq, ..., T;}.

Inspired by synaptic consolidation, we associate each model parameter ; with an “importance” weight ;. When learning a
new task, changes to parameters with high importance are penalized. The key novelty of our approach is that we “meta- learn”
the function that computes these importance weights.

Let the model parameters be 8. The learning objective for a new task Ty IiS:
L@) =Lpew (0) +12Q¢ G)Oj— O )2
]

Where L., is the standard loss for the new task, &+ are the parameters after learning the previous task, A is a reg-
ularization strength, and Q,(j) is a meta-learned importance function, parameterized by ¢. This function €, is a small neural
network that takes parameter indices or properties as
input and outputs their importance.

The meta-training process involves simulating a continual learning scenario on a set of meta-training tasks. The meta-
objective is to find the parameters ¢ for the importance net- work that minimize forgetting across the entire sequence. This allows
the model to learn a data-driven, dynamic regularization strategy that is more effective than the static heuristics used in methods
like EWC.

3.2. Trust-Aware Federated Continual Learning

We deploy our continual learner in a federated setting with K silos. Each silo continually receives new data. The central
server orchestrates the training and maintains the global model’s parameters 6§ and the meta-learned importance estimator’s
parameters ¢.
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At each communication round 7 , the server computes a trust score for each silo k. Our trust metric Ty is designed for the CL
context:

Tk = wW1Sperf + W2Sstability + W3Splasticity

e Performance (Syers ): Standard performance of the client’s updated model on a global validation set con- taining
samples from all tasks seen so far.

o Stability (Sstabiliy): Measures how little the client’s update degrades performance on *old* tasks. This is backward
transfer, or forgetting.” A lower forgetting score is better.

o Plasticity (Spiasticity): Measures how well the client’s update improves performance on the *most recent* task. This is
forward transfer, or adaptability.

The server uses these trust scores to perform a weighted aggregation of the client updates for both the main model 6 and the
importance estimator ¢. This ensures that clients who contribute to a stable and adaptable global model are given more influence.

3.3. Explainability-Performance Optimization

To ensure transparency, we create a hybrid system. The final decision is arbitrated between our high-performance
SYNAPSE-Fed continual learner (McL) and a static, interpretable baseline model (M,nT), such as a rule-based system. A
gating mechanism, controlled by a scrutability parameter A.xp, manages this arbitration. When the continual learner’s uncertainty
on a given input is high (e.g., low softmax confidence, or high predictive entropy), the system can be configured to rely
on the simpler, more predictable Mt . We define “Explainability (X ) as the percentage of decisions that are routed through or
can be validated by Myt . By varying Aexp, We can trace a Pareto frontier of models, plotting CL performance (average
accuracy across all tasks) against X . This allows an operator to deploy a model that meets a required level of transparency.

4. Experimental Setup
4.1. Datasets and Tasks
We use two standard continual learning benchmarks:
e Permuted MNIST: A sequence of 10 tasks, where each task is the MNIST classification problem but with a fixed
random permutation of the input pixels.
e Split CIFAR-10: The CIFAR-10 dataset is split into 5 sequential tasks, each containing 2 classes (e.g., Task 1:
airplane/automobile, Task 2: bird/cat, etc.).

4.2. Federated Scenario

We simulate a federation of K = 20 clients. The data for each task is distributed in a non-11D fashion across the clients.
To test robustness, we designate 4 clients as “forget- ful,” meaning their local training process uses a much lower regularization
parameter A, causing them to contribute updates that exhibit high catastrophic forgetting.

4.3. Baselines
We compare SYNAPSE-Fed against:
e Fine-tuning (FT): A simple SGD baseline that shows catastrophic forgetting.
e EWC (Elastic Weight Consolidation): A classic regularization-based CL method

5. Results and Discussion
5.1. Continual Learning Performance
We measure the average classification accuracy across all tasks after the model has been trained on the full sequence.

Table 1. Average Accuracy (%) On Continual Learning Benchmarks

Method Permuted MNIST | Split CIFAR-10
Fine-tuning (FT) 215 19.8
EWC 74.2 55.1
MAML 68.9 49.3
FedAvg+EWC 72.5 53.2
SYNAPSE-Fed 91.3 68.7
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The results in Table I show that fine-tuning leads to near-total catastrophic forgetting. EWC provides a strong baseline, but its
performance is limited by its static parameter importance heuristic. SYNAPSE-Fed signif- icantly outperforms all baselines. Its
ability to meta- learn an importance mapping allows it to form a more effective protection against forgetting, leading to substan-
tially higher final accuracy. The trust-aware aggregation in SYNAPSE-Fed also proves superior to the simple averaging in
FedAvg+EWC, especially in our scenario with “forgetful” clients.

5.2. Trust Mechanism Robustness

During the federated training, we observed that the trust scores for the 4 ”forgetful” clients were consistently lower than those
for the normal clients. Their low ”Stabil- ity” score (Ssuapility) 1€d to their updates being down- weighted, thereby protecting the
global model from their tendency to forget. This demonstrates that our CL-specific trust metric is effective at identifying and
isolating unre- liable participants.

5.3. Explainability-Performance Trade-off

Plotting the Pareto frontier for SYNAPSE-Fed on Split CIFAR-10 revealed a graceful trade-off. The top- performing
model (68.7% accuracy) had an explainability score of X = 0. However, a model with X = 0.75 (75% of uncertain
decisions validated by an interpretable model) could still achieve an accuracy of 64.1%. This al- lows a practitioner to gain a large
amount of transparency for a small, measurable cost in performance.

6. Conclusion

SYNAPSE-Fed provides a novel, integrated solution to the challenges of continual learning in decentralized, real- world
settings. By drawing inspiration from the principles of synaptic plasticity and framing the problem in a meta-learning context, it
effectively mitigates catastrophic forgetting. The integration with a trust-aware federated learning protocol ensures that this
continual learning can proceed securely and robustly across multiple data silos. Finally, the framework’s ability to quantify the
explainability-performance trade-off provides a crucial tool for deploying Al systems that are not only adap- tive and intelligent
but also transparent and trustworthy. Future work will explore more complex biological mech- anisms, such as memory replay and
structural plasticity, to further enhance the continual learning capabilities of Al.
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