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Abstract - The rapid expansion of safety-critical signals from last-mile delivery fleets introduces possibilities and constraints to 

existing real-time risk mitigation strategies. The legacy data lake approach, committed to batch processing, and disjointed IoT 

telematics frameworks, often cannot deliver low-latency, audit-trail-ready, insights for driver distraction detection, accident 

avoidance, and regulatory compliance or investigation. Our paper develops an integrated Edge-to-Lakehouse    design that 
combines in-vehicle preprocessing, streaming ingestion, ACID-compliant storage, and integration with a feature store. We present 

issues in current practice that limit addressing safety risk including limited uptake of AI-enabled safety pipelines, lack of real-time 

analytics, heterogeneity, schema drift, lack of auditability, and limited observability and propose a longitudinal system design that 

seeks to remedy these issues. The methodology deliberately partitions workloads to limit cloud resource usage while balancing 

latency and cost and include guidance for handling evolved schemas and longitudinal lineage metadata. Operational observability 

is incorporated as a design principle. Evaluation metrics will include end-to-end latency, feature freshness, predictive / prescriptive 

model performance (e.g. AUC / F1), and pipeline reliability across all workflows. We propose a system for predictive and 

prescriptive safety analytics that move fleets beyond descriptive dashboard technologies to do more proactive safety accident 

management. 

 

Keywords - Last-Mile Delivery, Fleet Safety, Edge Computing, Lakehouse Architecture, Data Pipelines, Big Data, Ai Analytics, 
Driver Monitoring. 

 

1. Introduction 
Last-mile delivery fleets operate under intense pressure to minimize delivery times while ensuring driver and passenger safety. 

The dual mandate for fleet managers is made increasingly complicated by the number of driver and vehicle signals available from 

telematics, CAN bus, DMS (driver monitoring systems), in-cabin video feeds, GPS, and environmental sensors. Each of these 

sources can provide sensors yield insights into risky driving behaviors such as harsh braking, lane deviation, distraction, or fatigue. 
Despite the promising potential of converting high-frequency source data into operational outcomes, it has been acknowledged that 

gathering and converting the raw data stream still poses challenges. 

 

The traditional fleet management ecosystem continues to impose heavily batch-based data lakes or independent telematics 

dashboards that fall short of supporting real-time inference, causal attribution, or regulatory auditability. Recent research reports 

that despite the large adoption of telematics and DMS, adoption of advanced AI-enabled safety analytics may still be limited to the 

commercial fleet sector. For example, in P. Visconti et al. (2025) [1], the authors have documented a large-scale increase in in-cab 

monitoring of drivers and safety system deployment while not yet working towards an integrated predictive safety system. Forms 

of systematic evidence in DMS and AI in transportation safety further agree to note there are gaps in operational need, suggesting 

the need for normative and predictive practice in mitigating risk W. Ding et al. (2023) [2]. There is a clear dis-joint between the 

growth of safety data priority, and practice against the readiness of technical infrastructure related to fleet data pipelines. Emerging 
paradigms such as edge computing and Lakehouse architecture including Delta Lake and Apache Iceberg provide exciting 

opportunities to remove longstanding obstacles related to fleet safety analytics. These paradigms can facilitate low-latency 

computation of features at the edge along with scalable, ACID-compliant analytical backends.  

 

While promising, we still need to address several integration and operational issues. We need to ensure we can quantify 

latency benefits and freshness of features, to maintain responsiveness in the safety-critical pathway. The incorporation of 

heterogeneous signals compounds temporal differences through schema drift which will require robust data harmonization plans. 

The ability to trace and audit alerts within compliance frameworks is not optional, particularly for regulation purposes. Also, it is 

important to integrate observability in real-time into the data pipeline, to detect and mitigate silent failures. This paper describes the 

design of, and empirical assessment of, an Edge-to-Lakehouse    pipeline with AI post-processing catered for fleet safety analytics 

in the last-mile. We will address these issues with a systemic architecture and empirical investigation. 
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Figure 1. Data Pipeline 

 

2. Related Work 
Recent studies in connected vehicles and intelligent transportation systems (ITS) have considered edge computing to offload 

safety-related requirements X. Zhou et al 2023 [3], streaming architectures for urban mobility, and the combination of AI-based 

telematics in commercial fleets A. Selvaraj et al 2023 [4]. While each study demonstrates the viability of real-time analytics, most 

studies remain demonstrations of use case scenarios, pre-proof of concepts, or apply to a narrow scope of the data pipeline (i.e. 

sensor fusion or route optimization). Industry commercial platforms like Samsara, Netradyne, and Geotab evidence cloud based 

dashboards but cannot not provide schema evolution management, or lineage tracking, or a customer-facing shared observability. 

Very few works look at reals world fleet scenarios measuring explicitly latency, freshness, and compliance readiness.  

 

This lack of research motivates the proposed architecture, involving an architecture agnostic design that incorporates expected 

systems - streaming, edge, and Lakehouse computing into a whole system design focused on safety analytics. 

 

3. Gaps in Current Fleet Safety Analytics 
Even though last-mile fleets produce a wealth of driver and fleet signals, current data pipelines do not provide timely, reliable 

insights on safety. Our review of the literature and survey of industry observations reveals several important gaps: 

 

3.1. Limited Use of AI Safety Data Pipelines. 

While telematics and DMS technology are becoming more widely available, many commercial fleets continue to use simple, 

legacy GPS tracking or basic telematics or dashcams as their primary source of safety analysis, with very limited integration of AI 

safety analytics. 
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3.2. Poor Real-Time and Feature Freshness. 

As identified by W. Liang et al. (2023), standard batch-type data lakes are "woefully inadequate" for high-velocity streaming 

workloads. Fleets report delays in converting raw telematics or DMS raw events to actionable safety insights. Few empirical 

studies have quantified the gains from bringing feature engineering closer to the edge, leaving fleet operators in doubt about the 

correct architecture decisions. 

 

3.3. Heterogeneity, Schema Drift, Data Quality Issues. 

Signals are collected from sensors (such as CAN/OBD-II, DMS/OMS, IMU, camera, etc.), and the schemas are continuously 

changing. After a firmware update or replacement of a sensor, it is common for some features to be missing or the sensor data to be 

backward-incompatible. Relatively few production systems automatically reconcile the events arriving late or mark corrupted. 

 

3.4. Scalability and Resource Constraints At The Edge. 
Running advanced ML feature extraction or inference at the edge is sometimes limited by memory constraints, compute, and 

bandwidth. So far, the research has not converged on best practices for determining how much workload should be executed on 

edge devices (vs. the cloud) while minimizing cost. 

 

3.4.1. Lack of Auditability and Compliance-Ready Traceability. 

Safety-critical alerts (like indicating distraction or harsh braking) often do not provide transparent lineage to the originating 
sensor data. In regulatory situations, such as those required for driver drowsiness detection in EU GSR, without the ability to prove 

the provenance of the alerts, readiness for compliance is compromised. 

 

3.4.2. Insufficient Pipeline Observability and Monitoring. 

Most of the existing works do focus on validated ML accuracy metrics (e.g., AUC, F1), but don't focus upon the overall 

systems metrics (e.g., latency drift, event loss, or schema violations). Sometimes pipelines go silent in production and safety 

insights become unreliable. 

 

3.5. Motivation for Edge-to-Lakehouse    Analytics 

The observable gaps presented above compel a holistic Edge-to-Lakehouse    architecture that integrates edge preprocessing, real-

time streaming, and open table formats. This architecture can provide: 

 Lower latency and fresher features by pushing the pre-processing to the organized data on or closer to the vehicle. 

 Schema evolution management using ACID primed table formats (Delta Lake, Apache Iceberg). 

 Audit ready traceability by establishing metadata lineage and late event correction. 

 Operational observability by streaming metrics (lag, freshness) and pipeline monitoring dashboards. 

 Scalable adoption through modular edge-cloud partitioning in a cost vs accuracy relationship. 

 

If these gaps can be addressed, fleets can transition from merely reporting safety information in descriptive telematics 

dashboards to producing predictive and prescriptive safety analytics by measuring return on investment (ROI). 

 

4. Methodology 
4.1. System Design Principles 

The pipeline design put forth below is based on four design principles which respond directly to the gaps noted above:  

 Latency-Aware Partitioning: making sure feats offering millisecond response (ex. alerts for harsh braking) are calculated 

at the edge, while long-horizon analytics (ex. trends of driver fatigue) can be conditioned at the cloud. 

 Schema Evolution Resiliency: embracing contract-driven ingestion to allow for firmware updates and/or sensor changes 

without halting the service. 

 Traceability and Auditability: constituting a pathway for metadata for lineage tracing from capture point as an audit log 
for compliance and explainability. 

 Operational Observability: providing streaming-native metrics to monitor pipeline health, such as lag, completeness or 

event, and violating schema rates.  

 

These principles improve upon existing telematics dashboards by making safety insights both actionable and defensible in an 

operational context and for regulation reporting. 
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Figure 2. Edge to Lakehouse Pipeline with Dual Path And Lineage Hooks 

 

Figure2. Edge-to-Lakehouse    pipeline showing edge preprocessing, streaming ingestion with schemas, real-time ETL with 

dual paths (low-latency and high-fidelity), Lakehouse storage, feature store, and visualization/ops with lineage & observability 

hooks. 

 

4.2. Edge Preprocessing and In-Vehicle Signal Handling 

Edge devices installed in vehicles offer the preliminary data processing stage. It is feasible to sample raw signals from devices like 
the CAN bus, DMS/OMS, GPS, accelerometers, and cameras at rates of 10 Hz to 100 Hz. To alleviate potential congestion across 

the network, low-complexity feature extraction may occur in situ. Some examples include the following: 

 Computing jerk and lateral acceleration to flag aggressive driving characteristics. 

 Identifying outcome markers of distraction or drowsiness from DMS frame sequences. 

 Compressing continuous data streams into summary windows (e.g., 5 seconds). 

 

Sensemaking strategies deployed within a local buffered architecture (with retry logic) mitigate the challenges of intermittent 

cellular connectivity, which is especially problematic in dense urban delivery zones. After many years of using batch uploads, it is 

worth noting that this streaming-first model significantly reduces latency between event and insight. Unlike batch uploads common 

in legacy telematics [1]. 

 

4.3. Streaming Ingestion Layer 

The preprocessed events are sent using the lightweight protocols of MQTT, Kafka over (gRPC) to the central ingestion tier. 

Each message is serialized as per schema contracts, such as Apache Avro and Protocol Buffers (Protobuf) that enforce type 

consistency and enable backward compatibility while updates to firmware occur.    

 

Watermarking and event-time processing strategies are used to accommodate any out-of-order or delayed arrivals A. Award, et 

al. (2019) [6]. This enables the analysis of late arriving safety signals, such as camera frames received late due to bandwidth 

throttling, while preserving the accuracy of the analysis. Similarly, ingestion adds lineage metadata to each record, providing clear 

information about the sensor ID, precision of the timestamps and firmware version from which the data was produced. 

 

4.4. Real-Time Transformation and Feature Computation 
The ingestion stream feeds into a distributed stream processing framework such as Apache Flink or Spark Structured Streaming. 

Two complementary dataflows are maintained: 

 Low-Latency Path: executes sliding-window computations for immediate risk detection (e.g., number of lane departures 

within 30 seconds). Alerts generated here are dispatched to operations dashboards within sub-second targets. 

 High-Fidelity Path: persists richer, lossless event data for longitudinal analyses such as weekly driver behavior scoring or 

predictive maintenance models. 

 

Unlike prior single-pipeline systems that prioritize either batch or stream [3], the dual-path approach explicitly balances 

operational responsiveness with analytical depth. Observability metrics (stream lag, throughput variance, schema mismatches) are 

continuously logged to detect silent degradation. 
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4.5. Lakehouse Storage and Schema Evolution Management 

The data processed will be stored using an open format for tables (Delta Lake, Apache Iceberg) so that ACID compliance is 

guaranteed, and time travel queries are possible. Partitioning by vehicle, by fleet, and by event time, enables querying across 

millions of events per day efficiently. A common challenge in a connected fleet is schema evolution, where over-the-air updates 

have modified sensor payloads. This update means that we can introduce new fields into a versioned schema while still being 

backward compatible so that this evolution does not cause disruption downstream to feature extraction. The availability of 
evolution-aware storage is limited among commercial fleets. N. Janssen, et al. (2024) [7] 

 

4.6. Feature Store Integration and Model Serving 

Both the low-latency and high-fidelity data paths will provide an online/offline Feature Store. Online features will support 

serving real-time ML models (e.g., predicting the risk of a near-miss), and offline features will support the iterative retraining and 

evaluation cycle. Freshness SLAS will also guarantee that events captured on the edge will propagate to the model serving layer in 

seconds. Models will also be monitored for drift (e.g., changing distributions of driver distractions over time-of-day). Retraining 

pipelines will be initiated when model drift exceeds allowable thresholds - all of this (and more) is aligned with the MLOps best 

practices discussed by M. R. Pulicharla (2019) [8]. 

 

4.7. Visualization and Compliance-Oriented Dashboards 

The final presentation layer translates analytic outputs into operator-facing dashboards. Key visualizations include: 

 Geospatial risk heatmaps for urban accident hotspots. 

 Sankey diagrams linking distraction - near-miss  - collision events. 

 Cohort analyses comparing safety scores across driver groups. 

 

Unlike generic BI dashboards, these visualizations include provenance links to the originating raw signals, allowing fleet 

operators and regulators to verify the evidence behind alerts. This compliance-ready orientation is an underexplored area in 

transportation analytics C. Bogart, et at. (2025) [9]. 

 

5. Evaluation Metrics 
To validate the effectiveness of the proposed Edge-to-Lakehouse    pipeline, we adopt a multi-dimensional evaluation 

framework that balances system performance, predictive model accuracy, and operational reliability. 

 

5.1. System-Level Metrics 

 End-to-End Latency (ms): Measures the delay between an in-vehicle signal (e.g., harsh braking) and its appearance in the 

safety dashboard. 

 Feature Freshness (s): Captures how current the features are at the time of model inference, aligned with real-time SLA 

targets (typically <5s). 

 Throughput (events/sec): Tracks sustained ingestion capacity under variable workloads. 

 Cost per 1k Events (USD): Evaluates economic sustainability of pipeline deployment. 

 

These metrics are aligned with standard practices in stream processing evaluations.  

 

5.2. Model Performance Metrics 

 Area Under ROC Curve (AUC): Indicates model’s discriminative power in predicting near-miss versus safe trips. 

 F1 Score: Balances false positives and false negatives, particularly important for safety interventions. 

 Precision-Recall Curve: Evaluates model utility under imbalanced datasets, common in collision prediction A. A. Khan, et 

at. (2023) [10]. 

 

5.3. Operational Reliability Metrics 

 Lineage Completeness (%): Proportion of alerts that can be traced back to original raw signals. 

 Schema Violation Rate (per million events): Frequency of schema drift occurrences undetected by ingestion contracts. 

 Mean Time to Drift Detection (MTDD): Average time to identify pipeline degradation or model drift. 

 Such operational metrics are rarely reported in fleet safety literature, but are emphasized in production ML systems 

research E. Breck, et at. (2017) [11]. 
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6. Results & Discussion 
6.1. Experimental Setup 

We conducted a simulated fleet-scale data ingestion (10,000 events/sec) with a combination of telematics and driver 

monitoring signals. We assessed our edge devices (Jetson Nano, 4GB) against a cloud-only pipeline (AWS EC2). The Lakehouse 

backend utilized Delta Lake on Databricks with partitioning by vehicle and day. Models were tested for near-miss prediction, 

including LSTM and XGBoost model. 

 

 
Figure 3. Near-Miss Event Flow Diagram 

 

Figure 3.Near-miss event flow diagram. Arrows denote relative flow proportions from ―Distraction Events‖ and ―Harsh 
Maneuvers‖ to ―Near-Miss/No Near-Miss,‖ and onward to ―Collision/Avoided Incident.‖ Use alongside a table listing exact 

percentages 

 

6.2. Key Findings 

 
Figure 4. Pipeline Performance: Cloud-Only Vs Edge- Lakehouse 

 

Figure 4.Pipeline performance comparison between a cloud-only baseline and the proposed Edge-Lakehouse design. Bars 

report median end-to-end latency and feature freshness lag (seconds) from the experimental setup. 

 
6.2.1. Latency & Freshness: 

 Cloud-only baseline: median latency = 2.8s; feature freshness lag = 6.1s. 

 Edge-to-Lakehouse    pipeline: median latency = 1.2s; freshness lag = 3.5s. 

 Improvement: ~57% latency reduction and 43% improvement in freshness. 

 

6.2.2. Model Accuracy: 

 LSTM (edge-enhanced features): AUC = 0.95, F1 = 0.92. 

 XGBoost: AUC = 0.93, F1 = 0.88. 

 Results confirm benefit of fresher features, though accuracy gains plateau beyond ~5s freshness, consistent with findings 

in streaming ML. 
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6.2.3. Auditability & Observability: 

 Lineage completeness reached 100% (vs. ~70% in baseline), enabling compliance-ready traceability. 

 MTDD reduced from ~12 hours (baseline monitoring) to <1 minute with real-time observability hooks. 

 

6.2.4. Operational Costs: 

 Edge preprocessing reduced cloud ingestion bandwidth by 42%, lowering monthly cloud costs in simulation by ~18%. 

 

6.3. Discussion: Why This Makes a Difference 

The findings indicate that closing latency and observability gaps makes a quantifiable difference in the analysis of fleet safety. 

Although the gains in predictive accuracy are not large, the operational reliability improvements (lineage traceability and speed of 

drift detection) matter more in the regulatory and trust-building contexts than probabilistic accuracy. 

 

This work differed from prior research that only focused on accuracy in machine learning. The authors emphasize that a 

pipeline is only as reliable as its weakest operational component. This means that silent pipeline failures, schema drifts, or missing 

lineage will hamper even the best models in production. By embedding observability and compliance readiness into the pipeline 

architecture, this work provides a new angle that marries academic safety data research with deplorability in the world. 

 

 
Figure 5. Synthetic Geospatial Risk Heatmap 

 

Figure 5.Synthetic geospatial risk heatmap (tile grid). Darker tiles indicate higher relative risk intensity computed from simulated 

incident counts. 
 

7. Conclusion & Future Work 
7.1. Conclusion 

This study outlined and assessed an AI-augmented Edge-to-Lakehouse pipeline for last-mile fleet safety analytics. The results 

show that edge preprocessing and schema-aware ingestion can decrease the event-to-alert latency by more than 50%, improve 

freshness of features, and improve auditability. Additionally, adding lineage metadata and observability metrics can improve 

reliability and operational readiness of safety analytics pipelines. While model-level improvements in near-miss prediction were 
marginal, the ultimate contribution of the study is the demonstration of closing the gap between algorithmic performance, versus 

reliability for production. 

 

7.2. Broader Implications 

 For Industry: The proposed architecture offers a roadmap for commercial fleet operators to evolve beyond descriptive 

telematics dashboards into proactive safety management systems, with built-in compliance alignment. 

 For Regulators: Audit-ready traceability mechanisms may inform the design of data governance requirements in driver 

monitoring regulations (e.g., EU GSR). 

 For Researchers: Highlights the importance of studying system-level metrics alongside traditional ML accuracy, an area 

often neglected in academic ITS publications. 
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7.3. Future Work 

Future research should explore: 

 Causal Impact Evaluation: Using causal inference methods to rigorously measure the effectiveness of safety interventions 

triggered by the pipeline. 

 Multi-Objective Optimization: Extending the architecture to optimize not only for safety risk but also for fuel efficiency, 

emissions, and delivery ETA. 

 Federated Learning Across Fleets: Training shared models across multiple fleets without sharing raw data, preserving 

privacy while enhancing generalizability. 

 Benchmarking Frameworks: Establishing open benchmarks for latency, freshness, and lineage completeness, analogous to 

Machine learning Operation (MLOps) benchmarks in other domains A. Reuel, et at. (2024) [12]. 

 

By concentrating on these areas, a future study may be able to further enhance the bridge between safety A.I. research and 

operational deployment in fleets, while advancing both goal of accident reduction and trustworthiness in A.I. in transportation. 
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