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Abstract - Time series forecasting (TSF) is key to decision-making in finance, retail, supply chain management, healthcare, 

climate among others where accurate predictions inform resource allocation, risk management and strategic planning. While 

traditional statistical models such as ARIMA handle linear dependencies, they fail to capture the nonlinear and multivariate 

complexities of modern datasets. Deep learning models such as RNNs, LSTMs, GRUs, CNNs, and Transformers, have 

advanced forecasting accuracy by capturing temporal patterns and cross-variable interactions. However, these models are 

static and unable to adapt dynamically to regime shifts, shocks or evolving trends once trained. In addressing this gap, deep 
reinforcement learning (DRL) offers adaptivity by treating forecasting as sequential decision-making where agents iteratively 

refine predictions through reward feedback. Attention mechanisms further enhance interpretability and accuracy by 

highlighting critical time steps and features. This white paper critically reviewed DL and DRL models for multivariate TSF and 

evaluated their application in finance, retail, supply chains, climate forecasting and healthcare using research studies and 

datasets. Case studies demonstrate that attention-LSTM and Transformer variants outperform traditional deep models while 

hybrid DRL–DL approaches achieve greater adaptability. A proposed hybrid architecture integrates attention-based 

forecasting with DRL agents to combine predictive accuracy, adaptive learning, and interpretability. Although challenges on 

data, model structure and tasks remain, the approach has the potential to transform TSF into adaptive and decision-support 

systems across domains. 
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I. Introduction 
In many industries such as finance, retail, supply chain, healthcare and climate, time series forecasting (TSF) is a critical 

tool for estimating future values based on recorded historical data of their relevance (Arushana et al., 2024). Precisely, time 

series are used to study how certain measures like air pollution data, electricity consumption or ozone concentration evolve over 

time. Accurate forecasts enable informed decision-making in terms of predicting stock prices, product demands, weather 

patterns, patient vitals, or energy loads (Casolaro et al., 2023). With accurate forecasting, businesses and organisations can make 
effective decisions, maximise resource utilisation and develop effective strategies. According to Thota (2025), TSF mainly relies 

on traditional statistical models like exponential smoothing and Auto Regressive Integrated Moving Average (ARIMA). 

However, these models struggle with non-linear and complex, large multidimensional datasets. In recent years, Madhulatha and 

Ghori (2025) observed that deep learning models specifically Recurrent Neural Networks (RNNs) and their variants Long Short-

Term Memory (LSTM) and Gated Recurrent Units (GRUs) have contributed immensely to TSF by capturing complex temporal 

dependencies with superior accuracy. However, even these latest deep learning models are trained in static supervised manner 

and lack mechanisms to adapt their predictions as new data arrives or conditions change (Madhulatha & Ghori, 2025). This is a 

significant limitation in dynamic environments where statistical properties change over time. Figure 1 below summarises 

classical and advanced deep learning models for TSF. 

 

 
Figure 1. Advanced TSF Methods (Andres, 2023) 
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Due to limitations of deep learning models above, scholars have proposed deep reinforcement learning (DRL) which 

promises to introduce adaptivity into forecasting models. In DRL, an agent learns to make decisions through trial-and-error 

interactions with an environment and guided by reward feedback (Moreira et al., 2020). If forecasting is treated as sequential 

decision-making problem, learning agent can iteratively update its forecasting strategy based on reward signals such as forecast 

accuracy. Apart from DRL models, attention-based mechanisms represent another breakthrough in sequence modelling that 

could further enhance forecasting. By allowing neural networks to focus on the most relevant parts of input sequence, Zhang et 
al. (2024) noted that attention models have improved performance in natural language processing and vision tasks and is 

increasingly applied in TSF. Transformer architectures which rely entirely on self-attention have achieved incredible results in 

many forecasting benchmarks as they can capture long-range dependencies effectively (Vaswani, 2017).  

 

Against this background, this whitepaper critically explores how DRL combined with attention-based neural architectures can 

enhance TSF. The research is guided by the following key objectives;  

 To identify various deep learning and DRL models for multivariate TSF;  

 To evaluate the performance of deep learning architectures, DRL models and attention based models using real-world 

case examples from financial, retail, climate and healthcare domains; 

 To design a hybrid architecture that integrates attention mechanisms into DRL models for multivariate TSF.  

 

2. Problem Statement  
According to Oluwagbade (2025), the main challenge when analysing time-series data is its forecasting of future values 

based on past measurements. While modern deep learning methods have greatly improved forecasting accuracy over classical 

models, they often operate as one-shot predictors that do not adapt once trained. In practical scenarios, time series data can 

exhibit regime shifts, sudden shocks, or evolving patterns (market crashes, demand surges, climate anomalies). No matter how 

complex a static model is, it may fail under such changing conditions because its parameters are fixed after training (Arushana 

et al., 2024). The lack of iterative refinement based on new data presents key limitation. For instance, an LSTM trained on past 
data will continue to make the same errors if underlying pattern changes, unless it is retrained from scratch which is costly and 

slow for real-time applications To address these issues, DRL introduces feedback loop between predictions and outcomes. By 

formulating forecasting as sequential decision problem, an RL agent can receive a reward for each prediction (Smith, 2021). 

For example, a reward could be a forecast error so that higher reward corresponds to lower error.  

 

The agent’s goal is then to maximize cumulative reward that aligns with minimizing forecast error over time. Unlike 

traditional training, the agent continues to learn during deployment, updating its policy as new rewards come in. This enables 

adaptive learning where the model can correct itself and improve in the face of evolving data patterns. Research studies in 

financial forecasting have shown the promise of this approach. For instance, the hybrid LSTM-DQN model by Madhulatha and 

Ghori (2025) learned to adjust its predictions in response to real-time market fluctuations thus yielding significantly lower 

error than pure LSTM and other non-adaptive models. However, integrating DRL into forecasting is non-trivial. Designing the 
state representation, action space, and reward function requires care as the agent must effectively perceive time series history 

(state) and output forecasts or related decisions (actions) in a way that leads to meaningful learning as shown in figure 1 

(Terven, 2025). Besides, DRL are sample-inefficient and can be unstable when issues like balancing exploration versus 

exploitation arise. These challenges call for adoption of attention mechanisms that can help focus DRL agent’s capacity on the 

most informative parts of large multivariate input, potentially reducing noise, improving learning efficiency and interpretability 

(Ke, 2020).  

 
Figure 2. components of DRL (Terven, 2025) 
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3. Review of Deep learning and DRL models for TSF 
3.1. Deep learning Models 

Existing research have explored several categories of deep learning models for TSF. Here, a few prominent DL models are 

explored and how they can be applied to forecasting. 

 

3.1.1. Recurrent Neural Networks (RNNs) 

RNNs aim to explore relations between current time series and past ones. Accordingly, RNN maintains hidden state that 

evolves over time and is updated based on current input and previous state (Casolaro et al., 2023). However, simple RNNs suffer 

from vanishing and exploding gradients when modelling long sequences. This challenge is addressed by Long short‑term 

memory (LSTM) and gated recurrent unit (GRU) networks which introduces gating mechanisms that regulate the flow of 

information. Alzubaidi et al. (2021) noted that LSTM cells contain input, output and forget gates while GRUs use update and 

reset gates to reduce parameters and training time. Bidirectional variants (Bi‑LSTM) process data in forward and backward 

directions to capture past and future context. These RNNs have wide applications in time‑series forecasting in finance, energy 
and other sectors.  

 

3.2. Convolutional Neural Networks  
As noted by Alzubaidi et al. (2021), CNNs are associated with image processing but have been adapted for time series by 

applying one dimensional convolutions across temporal and variable dimensions. CNNs capture local patterns, robust to noise 

and can be efficient because convolutional filters are shared across time. However, standard CNNs have difficulty modelling 

non stationary signals and long term dependencies (Bu & Cho, 2020). As with RNNs, attention mechanisms and residual 

connections can mitigate these issues. Some CNN models apply multiple convolutions across different variables and use cross-

channel attention to weight each feature (Liu & Wang, 2024). Point-wise and patch-wise convolutional attention strategies have 

been proposed to reduce complexity in transformer models thus highlighting the interplay between CNNs and attention. 

Arushana et al. (2024) summarized deep learning models as shown in table 1 below. 
 

Table 2. Comparison of Advanced Deep Learning Models for Time Series Forecasting 

Method Description Strengths Limitations 

RNN Recurrent Neural Networks 

that handle sequential data 

by maintaining a hidden 

state. 

Suitable for dynamic datasets, 

captures temporal and long-term 

dependencies. 

Faces issues with vanishing 

gradients problem, issues 

with long-term dependencies, 

high computational cost. 

ES-RNN Exponential Smoothing 

RNN, a hybrid model 

combining traditional 
exponential smoothing 

methods with RNNs for 

enhanced performance. 

Leverages strengths of both 

traditional and deep learning 

methods, improves accuracy and 
robustness. Effectively captures 

seasonal and trend components. 

Challenges in 

hyperparameter tuning. 

LSTM Advanced type of RNN 

designed to learn long-term 

dependencies using special 

gates. 

Addresses vanishing gradient 

problem, capable of learning long-

term dependencies. 

Computationally intensive, 

requires high-capacity 

resources. 

Attention-LSTM Attention-based LSTM 

model that improves 

efficiency and forecasting 

accuracy by incorporating 

attention mechanisms. 

Sequence forecasting with long time 

steps. Nonlinearity and long memory 

of time series data. 

Higher computational cost 

than basic LSTM. Large 

number of parameters. 

CNN-LSTM Hybrid model combining 

Convolutional Neural 
Networks (CNN) and LSTM 

to leverage spatial and 

temporal dependencies. 

Captures both spatial and temporal 

features, enhances forecasting 
accuracy. 

High error rate. Less reliable. 

GRU Simplified version of LSTM 

with fewer gates, designed to 

achieve similar performance 

with less computational 

complexity. 

Efficient, less computationally 

intensive than LSTM, capable of 

handling long-term dependencies. 

Capturing long-term 

dependencies, but not as 

effectively as LSTM. 

Attention-GRU Attention-based GRU model 

that improves efficiency and 

forecasting accuracy by 

Improves long-range dependency 

capture. 

Higher computational cost 

than basic GRU. 
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incorporating attention 

mechanisms. 

Transformer Attention-based model 

initially developed for 

natural language processing, 

captures long-range 

dependencies without 

recurrence. 

Self-attention — past instances 

influence future outcomes. Efficient, 

captures long-range dependencies, 

balances relevance of input sequence 

segments. 

High computational cost. 

Difficulty in capturing 

temporal dynamics. 

Overfitting. Impractical for 

real-world scenarios. 

Hybrid Models Combines statistical and 
deep learning techniques 

(e.g., ARIMA + LSTM, 

LSTM + CNN, Transformer 

+ RNN). 

Leverages strengths of multiple 
methods, enhances accuracy. Better 

interpretability. More robust to noise 

and missing data. 

Complexity in model design, 
risk of overfitting. 

 

3.3. Deep Reinforcement Learning 

Terven (2025) highlights that DRL formalises sequential decision making as an agent interacts with environment to maximise 

reward. The environment is typically modelled as Markov decision process defined by states, actions, transition probabilities and 

reward functions. Key DRL models are discussed as follows;  

 

3.3.1. Deep Q-Network (DQN) 

Value-based DRL method where neural network learns by estimating expected reward (Q-value) of taking each action in a 
given state (Terven, 2025). Usually, DQN is used for discrete action spaces. In forecasting contexts, one approach is to discretize 

forecast outcomes or decisions and use DQN to pick best option. For example, DQN can be used to decide among a set of 

predictive models or to issue categorical predictions such as predicting if demand will rise, fall, or stay flat. In case study on 

currency exchange forecasting, Madhulatha and Ghori (2025) used LSTM to predict the next exchange rate and DQN agent took 

an action based on that prediction such as adjusting forecast or making trading decision. Thereafter, the agent received a reward 

based on the subsequent market movement. This LSTM-DQN hybrid agent was able to iteratively improve its policy thus 

achieving higher prediction accuracy than other baseline models. The authors reported the hybrid model is significantly better 

than CNN or RNN on the same data. Such results underscore that adding reinforcement learning layer on top of deep sequence 

models can enhance accurate predictions.  

 

3.3.2. Policy-Gradient and Actor-Critic Methods (PPO, A3C)  

Policy-based DRL algorithms well-suited for continuous or high-dimensional action spaces which aligns with forecasting 
real-valued quantities. Proximal Policy Optimization (PPO) and Advantage Actor-Critic (A3C) have been considered for 

problems like algorithmic trading where the agent outputs continuous buy and sell signals based on time series inputs (Terven, 

2025). The continuous-action setting of policy-gradient methods is a natural fit for predicting quantities. One challenge, 

however, is training stability where algorithms like PPO are often preferred for their robustness in training which could be 

beneficial when learning from noisy time series. 

 

3.3.3. Deep Recurrent Q-Learning (DRQN) 

Variant of DQN integrates an LSTM into Q-network to allow the agent to maintain an internal state and handle partial 

observability in sequential data (Chen et al., 2024). This is useful for time series with long memory as LSTM can carry 

information from prior time steps when estimating Q-values. In water flow runoff forecasting, DRQN has predicted reservoir 

releases by observing rainfall-runoff time series through combining LSTM’s sequence modelling with Q-learning’s decision-
making (Amin, 2024). 

 

Terven (2025) provided summarized overview of DRL models and their usefulness in TSF as shown in table 2 below. 

 

Table 2. Comparison of Deep Reinforcement Learning (DRL) Models for Time Series Forecasting 

DRL Model Core Idea Use in Time Series 

Forecasting 

Advantages Limitations 

DQN & Variants 

(Double, Dueling, 

Rainbow) 

Value-based learning via 

Q-function 

approximation 

Discrete decision 

forecasting (finance: 

buy/sell; supply chain: 

stock levels) 

Stable, well-tested; 

strong in discrete 

domains 

Poor for continuous 

actions; needs 

discretization 

Policy Gradients 

(REINFORCE) 

Directly parameterize 

policy and optimize with 

gradient ascent 

Continuous control 

forecasting (e.g., 

adjusting time-varying 

demand levels) 

Handles continuous 

spaces naturally 

High variance, low 

sample efficiency 

Actor–Critic (A2C, Combines value learning Parallelized multivariate Reduces variance; Sensitive to 
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A3C) (critic) and policy 

optimization (actor) 

forecasting tasks (real-

time retail, traffic flow) 

efficient parallelism hyperparameters 

PPO (Proximal 

Policy Optimization) 

On-policy with clipped 

objective for stability 

Healthcare, retail, energy 

demand prediction 

Stable, robust, 

industry-adopted 

Slower per iteration 

DDPG (Deep 

Deterministic Policy 

Gradient) 

Deterministic policy for 

continuous action spaces 

High-dimensional 

forecasting (multi-factor 

energy/climate models) 

Effective in 

continuous, high-

dim spaces 

Brittle, tuning-

sensitive 

Hierarchical RL 

(Option-Critic, 

FeUdal) 

Decomposes tasks into 

subtasks/policies 

Multi-scale forecasting 

(short vs. long horizon 

trends) 

More interpretable, 

reusable skills 

Complex credit 

assignment 

Evolutionary 
Strategies (ES, 

CMA-ES) 

Black-box optimization 
of policy parameters 

Hyper parameter tuning, 
irregular forecasting tasks 

Parallelizable, 
gradient-free 

Sample-inefficient, 
resource-intensive 

 

4. Performance Evaluation of Deep Learning and DRL with Attention Based Mechanisms in Real-

World Forecasting Applications 
This section compares performance of deep learning, DRL and attention-based models using publicly available datasets 

and empirical research in finance, retail and supply chain, climate and healthcare are evaluated.  

 

4.1. Finance  
Forecasting stock prices has been difficult due to high volatility and noisy signals. Pan et al. (2024) argues that traditional 

models like ARIMA and GARCH capture linear dependencies but fail to incorporate sentiment and complex interactions. This 

was exemplified by Alharbi et al. (2025) who found that attention-based LSTM models significantly outperform ARIMA for 

exchange rate and stock price prediction by capturing non-linear temporal dependencies. In the same context, Du and Shen 

(2024) explored DRL method using Q-learning combined convolutional neural networks and sentiment analysis from social 

media to predict Chinese stock prices. The model processed historical closing prices, volumes and comment texts and the DRL 

agent produced trading actions that achieved superior returns on two test sets compared with traditional methods and other 

deep learning model. Results showed that DRL variants like DRQNs provided better results than classic Q-learning because 

they could handle sequential data.  

 

4.2. Retail and Supply Chain 

In retail, demand forecasting is a time-series problem due to variations in seasonality, promotions and external factors. In a 
study by Gu et al. (2022), attention-LSTM showed strong performance on supply chain demand data which supports 

operational decision-making with accuracy better than more complex hybrid models. Precisely, the attention component 

enabled the model to pinpoint key past demand like recent spikes or seasonal events that should inform the next prediction. 

This model has been applied in retail sales forecasting (to capture promotions or holidays effects) and in supply chain for 

inventory demand (focusing on recent changes in demand trends) (Bhuiyan et al., 2025). Accordingly, attention models not 

only boost accuracy but also yield insights. Overall, attention-LSTM architectures generally outperform plain LSTMs on 

multivariate time series where certain observations have outsized importance on the forecast. 

 

4.3. Climate and environmental forecasting 

Climate systems exhibit spatiotemporal dependencies across multiple scales. Standard time-series models struggle to 

integrate spatial heterogeneity and dynamic interactions among variables like temperature, precipitation and land use. A recent 
deep learning approach for climate resilience combines graph neural networks (GNNs) with spatiotemporal attention (Chen & 

Dong, 2025). The model learns dynamic graphs which represents interactions between climate variables and regions, and uses 

attention to focus on relevant spatial–temporal dependencies. Multi-task learning helps in predicting short- and long-term 

outcomes, enabling early warning of extreme events. The authors note that transformers and attention mechanisms such as the 

Temporal Fusion Transformer provide global and local interpretability, addressing the limitations of RNNs. In hydrology 

application, Pölz et al. (2024) compared Transformer versus LSTM to forecast karst spring water discharge. They found that 

for a spring with long memory and slow dynamics, the Transformer achieved significantly better accuracy than the LSTM 

(about 9% lower error on average). However, on spring with very short-term response, the LSTM slightly outperformed the 

Transformer by approximately 4% error difference. This indicates that Transformers outperform when long-range 

dependencies are present but may fail to automatically win on every dataset if the data is limited. 

 

4.4. Healthcare 
Forecasting patient trajectories is critical for early detection of deterioration and personalised treatment. Forghani and 

Forouzanfar (2024) used Transformer-based model to forecast heart rate from ECG data and compared it to LSTM. From the 

findings, Temporal Fusion Transformer achieved 3.8 beats/min predicting heart rate 2 minutes ahead as compared to 4.3 

beats/min with LSTM. The Transformer not only had lower error but also trained faster and captured subtle patterns in heart 
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rate variability that LSTM missed. On this account, it can be deduced that in complex biomedical signals, the ability to attend 

to long-term patterns like circadian rhythms or accumulated sleep debt effects gave Transformers an edge. 

 

Additionally, the Digital Twin–Generative Pretrained Transformer (DT-GPT) leverages large language models to forecast 

patient health trajectories without requiring data imputation or normalisation (Makarov et al., 2025). DT-GPT outperformed 

other models on datasets covering non-small cell lung cancer, intensive care unit stays and Alzheimer’s disease thus reducing 
scaled mean absolute error by 1.3–3.4%. Overall, the interpretability of attention weights in transformers helps clinicians 

understand which variables drive model predictions. 

 

5. Proposed hybrid architecture integrating attention mechanisms and DRL 
To fully exploit the strengths of deep learning and DRL, a hybrid architecture that integrates attention-based forecasting 

module with DRL agent for multivariate TSF and decision-making is a proposed. The design emphasises interpretability and 

modularity and can be adapted to various sectors such as retail, climate, environment, energy and health. The proposed 
architecture comprises three components as shown in figure 3 below. First, an attention-based forecasting module ingests 

historical series, static covariates (demographics, customer attributes), and dynamic covariates (weather, calendars), 

transforming them into embeddings. Models like TFT or Informer variants deploy multi-head attention to capture long-range 

dependencies and highlight critical time steps and variables. This module outputs probabilistic multi-step forecasts along with 

interpretable attention weights. Second, DRL agent receives the forecasted trajectories and current state of the system. Using 

algorithms like PPO or DQN, the agent selects actions such as order quantities, energy dispatch, or treatment plans. Attention 

layers within the policy network further refine focus on salient aspects of the state. Third, the environment evolves based on 

the agent’s actions and returns rewards aligned with domain goals (profit, service levels, patient outcomes). Forecasting and 

control can be trained sequentially or jointly, with reinforcement signals refining both. Overall, this integration leverages 

supervised forecasting accuracy, DRL’s adaptive decision-making, and attention’s interpretability, though challenges remain in 

computational efficiency, differentiable joint training, and reward design.  
 

 
Figure 3. Proposed hybrid structure (Author) 

 

6. Challenges and Future Research Directions 
While deep learning and DRL with attention architectures have shown promise for time-series forecasting, several 

challenges remain. Kong et al. (2025) categorised the challenges into data-related, model structure and task-related issues as 

shown in figure 3 below. 

 Data-related issues: can arise from mining data, anomalous data, noise data and data privacy leakage (Kong et al., 

2025). High-quality, labelled time-series data are needed for training complex models. Models like DT-GPT 

demonstrate that transformers can handle missing data without imputation but further research is needed to generalise 
these techniques (Cheng et al., 2025). Also, forecasting models may introduce biases or amplify inequalities in 

healthcare or financial services. future researchers should ensure fairness and privacy preservation through techniques 

like differential privacy, federated learning or fairness constraints.  

 Model structure issues: can arise from non-interpretability, non-continuity and computing resource (Kong et al., 

2025). Attention weights provide some interpretability, but they do not necessarily correspond to causal importance. 

Future researchers should combine attention with causal inference or counterfactual analysis to provide more 

meaningful explanations.  

 Task-related issues: can arise from parallel computing and variable types. Kong et al. (2025) argues that parallel 
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computing in TSF faces challenges of resource constraints, scalability limits, high GPU costs and inefficiency in 

achieving real-time online forecasting which future researchers should address using DRL models and attention 

mechanisms   

 

 
Figure 4. Challenges for TSF (Kong et al., 2025) 

 

7. Conclusion 
As seen above, TSF is a major concern with far-reaching implications across finance, supply chains, climate science and 

healthcare. Deep learning models like RNNs, CNNs, transformer-based architectures and emerging DRL variants have 

dramatically advanced the state of the art by learning complex temporal patterns and cross-variable interactions. Arguably, 
attention mechanisms enable models to focus on relevant features and time steps thus improving accuracy and interpretability. 

DRL extends these advances by enabling agents to convert forecasts into actions that maximise long-term reward. Case studies 

across finance, retail and supply chain, climate, and healthcare demonstrate that combining attention-based forecasting with 

DRL leads to significant improvements over traditional approaches.  

 

The proposed hybrid architecture integrates an attention‑based forecasting module with DRL agent to create modular 

pipeline that can be adapted to various domains. While challenges exist, future researchers can overcome these obstacles 

through innovations in model design, training strategies and ethical guidelines. Overall, researchers can build intelligent 

systems that not only predict the future but also make informed decisions for businesses and society at large.  
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