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Abstract - In this paper, we introduce a novel framework for processing SQL queries directly over encrypted financial data using 

homomorphic encryption (HE). Our solution preserves data confidentiality without sacrificing essential SQL operations, including 

SELECT, WHERE, SUM, and AVG, all performed on encrypted columns. Unlike traditional approaches that rely on trusted 

execution environments or secure multiparty computation, our method ensures that data remains encrypted throughout the entire 

query lifecycle at rest, in transit, and during computation. We present a prototype implementation and evaluate its performance 

using realistic financial datasets. The results demonstrate a practical balance between computational overhead and data privacy, 

offering a promising foundation for secure, privacy-preserving analytics in cloud-based financial systems. 

 
Keywords - Homomorphic encryption, privacy-preserving computation, encrypted SQL processing, financial data security, secure 
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1. Introduction 
The rapid digitization of the financial sector has led to the exponential growth of sensitive data stored and processed in cloud-

based systems. Banks, insurance providers, fintech startups, and regulatory bodies now rely heavily on distributed infrastructures to 
manage transactional records, risk assessments, and client analytics. However, this shift has introduced critical challenges related 

to data privacy, especially when data is offloaded to third-party cloud services. With rising incidents of data breaches, regulatory 

mandates like GDPR, and growing customer expectations regarding privacy, it is imperative to ensure that financial data remains 

protected not only at rest and in transit, but also during computation [1], [8]. 

 

Conventional techniques for secure data processing such as secure multiparty computation (SMPC) and trusted execution 

environments (TEEs) have demonstrated potential, but suffer from limitations including high communication costs, trusted 

hardware assumptions, and vulnerabilities to side-channel attacks [3], [4], [9]. These approaches often fall short when applied to 

large-scale financial data processing where SQL remains the dominant query language. Furthermore, traditional encryption 

schemes, while effective at securing storage and communication, require decryption for processing there by exposing sensitive data 

during query execution. 

 
Recent advancements in homomorphic encryption (HE) have made it possible to perform meaningful computations on 

encrypted data without ever decrypting it [2], [5], [6]. Fully homomorphic encryption (FHE) schemes like BFV and CKKS have 

matured to the point where basic arithmetic and comparison operations can be executed efficiently on cipher texts. This 

breakthrough has laid the groundwork for building privacy-preserving query processors capable of supporting SQL semantics [7], 

[10], [12]. 

 

However, the integration of homomorphic encryption with structured query languages remains an underexplored area. Most 

existing systems either support a limited set of operations or are not optimized for the characteristics of financial data. In particular, 

financial institutions demand precise arithmetic (e.g., summation of account balances), efficient filtering (e.g., transactions above a 

threshold), and aggregation over large volumes of records tasks that challenge the performance boundaries of current HE schemes 

[11], [13], [14]. 
 

2. Related Work 
2.1. Secure Multi-Party Computation (SMPC) and TEE Approaches 

Secure Multi-Party Computation (SMPC) has emerged as a foundational cryptographic method to enable collaborative 

computation over private inputs without revealing them to participating parties. While effective in theory, SMPC protocols often 

incur significant communication and computation overhead, particularly when applied to database operations at scale [3], [9]. 

Techniques such as ABY3 have been proposed to bridge the gap between performance and privacy, but their adoption in financial 
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systems remains limited due to high latency and infrastructure complexity [4]. Trusted Execution Environments (TEEs), like Intel 

SGX, provide a hardware-based alternative by executing code in secure enclaves. Although TEEs have shown promise for secure 

SQL query execution [1], they have been repeatedly shown to be vulnerable to side-channel attacks, rollback threats, and 

limitations in memory isolation [8]. Moreover, the trust model associated with TEEs does not meet the zero-trust requirements 

increasingly demanded in cloud-based financial services. 

 

2.2. Homomorphic Encryption in Database Systems 

Homomorphic encryption (HE), particularly Fully Homomorphic Encryption (FHE), enables computation directly on 

encrypted data. Schemes such as BFV and CKKS have made it feasible to perform operations like addition, multiplication, and 

even approximate comparison without decrypting the data [2], [5], [6]. Researchers have explored integrating HE into database 

engines, leading to the development of encrypted query processors capable of handling simple aggregate queries [7], [10]. Several 

studies have demonstrated the application of HE in domains such as healthcare and IoT, but adapting these techniques to financial 

databases poses unique challenges, such as precision requirements, high-volume queries, and complex filtering conditions [11], 

[14]. The financial sector's demand for exact arithmetic and efficient real-time analytics has motivated research into more efficient 

HE implementations, including ciphertext indexing, packed encoding, and hybrid models with ORAM [12], [13]. 

 

2.3. Limitations of Existing SQL-over-HE Proposals 

Despite the growing interest in secure database computation, few systems have successfully integrated expressive SQL 
capabilities with homomorphic encryption in a manner suitable for financial applications. Most existing solutions support only 

basic queries or rely on restricted data types [7], [11]. Efforts like CryptDB provide partial encryption support for SQL but require 

trusted components and do not operate fully homomorphically [9]. 

 

Recent advancements such as HE Query and privacy-aware SQL-as-a-service engines have made progress toward general-

purpose SQL processing over cipher texts [15], [16]. However, these systems are still in early experimental stages, and 

performance benchmarks suggest that real-world deployment at financial scale remains a work in progress [17]. The lack of 

optimized translation from SQL to homomorphic circuits, and the limited support for operations like JOIN or nested queries, 

continue to restrict practical use [10], [18]. Our work advances the field by building on these foundations, offering a more complete 

and optimized HE-based SQL engine tailored specifically to the needs of financial institutions. 

 

3. System Architecture 
3.1. System Model 

The system consists of three core components: a client, a cloud server, and a homomorphic encryption (HE) backend based on 

the CKKS and BFV schemes. 

 Client: The client encrypts SQL query parameters and submits them to the server. Upon receiving homomorphically 

computed ciphertext results, it decrypts and interprets them locally. All key material remains on the client side, ensuring 

the server has no decryption capabilities. 

 Server: Hosts the encrypted database and executes homomorphic computations directly on ciphertexts. It operates 

without access to plaintext or secret keys. The server evaluates homomorphic circuits generated from SQL queries. 

 HE Library: Implements the underlying cryptographic primitives using libraries like Microsoft SEAL or HElib. The 

CKKS scheme is used for approximate arithmetic (e.g., averages), while BFV is used for exact integer operations (e.g., 

counts and sums). Ciphertext packing and batching optimizations are applied to improve throughput. 

 

3.2. Threat Model 
We adopt an honest-but-curious adversarial model, where the server follows the protocol but may attempt to infer sensitive 

information. 

 

Security guarantees include: 

Encryption at rest: 

                            

 Where mi is a financial record and Encpk denotes encryption under the public key. 

 Encryption in transit: Encrypted queries and responses are transmitted over TLS, and data remains in HE format. 

 Encryption during computation: The server performs computations such that: 

       {  }          (m1,m2,…..mn)) 

ensuring no intermediate decryption. 
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3.3. SQL Query Components Supported 

We represent the condition as: 

SELECT if f(mi)=ReLU(mi−t) 

 

Where t is the encrypted threshold and ReLU(x)≈max⁡(0,x) is approximated by low-degree polynomials P(x) for compatibility 

with HE schemes like CKKS: 

      
   √    

 
 

or through approximated step functions: 

     
 

      
 

 

3.4. Aggregate Functions 

For sum and average over encrypted columns: 

Let c1,c2,…,cn be ciphertexts of encrypted values m1,m2,…,mn Then: 

Encrypted Sum: Csum=c1⊕c2⊕⋯⊕cn 

In CKKS: 

Encrypted AVG: Cavg=
 

 
 Csum 

 
Where scalar division is done via plaintext multiplication using the HE library's evaluator. 

 

3.5. Equality/Inequality Operations 

f(mi,t)=1−approx((mi−t)2) 

 

Approximating: 

Equality(x,y)≈e−α(x−y)2
 

 

This is efficiently implemented in BFV or CKKS via degree-2 or degree-4 polynomial approximations. 

For inequality: 

                           
 

Where σ(x)= 
 

      is approximated with low-degree polynomials suitable for HE. 

 

 
Figure 1. Homomorphic Encryption for Private SQL Queries 
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4. Methodology 
4.1. Homomorphic Encryption Scheme 

Our system employs a leveled homomorphic encryption (HE) scheme to enable secure and efficient SQL query execution on 

encrypted financial datasets. Depending on the nature of the computation, we utilize either the CKKS scheme for approximate 

arithmetic or the BFV scheme for exact integer computations. CKKS is particularly well-suited for financial analytics involving 

averages, ratios, and floating-point metrics, where approximate precision is acceptable [6], [11]. On the other hand, BFV is used in 

queries involving discrete values such as transaction counts or salary sums, where exact arithmetic is critical [5], [13]. 

 

The encryption pipeline begins with the generation of a public-private key pair. The client uses the public key to encrypt the 

data and query parameters, while the private key is retained for decryption. Bootstrapping is not required for many practical 

workloads, as we operate under a leveled encryption setting with pre-allocated depth based on query complexity. The system 

includes logic to track the noise budget, a parameter inherent to HE schemes that grows with homomorphic operations and limits 

circuit depth [4]. To minimize noise accumulation and ciphertext growth, we employ relinearization and modulus switching 
techniques where supported by the library backend (e.g., Microsoft SEAL or PALISADE) [1], [7]. 

 

4.2. Query Translation 

To enable SQL operations over encrypted data, we developed a query translation module that compiles SQL statements into 

HE-compatible arithmetic circuits. The translation layer parses incoming queries and maps standard SQL operators (SELECT, 

WHERE, SUM, AVG) to a set of predefined encrypted operators that perform the equivalent homomorphic computations. One key 

design choice in the system is the encrypted data layout. We explored both row-wise and column-wise data encoding strategies. In 

the row-wise layout, each ciphertext encodes all fields for a single record, which simplifies filter conditions involving multiple 

attributes but increases ciphertext count. In contrast, the column-wise format uses ciphertext packing to encode many values of a 

single column into a single ciphertext using the SIMD capabilities of CKKS and BFV. This latter format enables efficient 

vectorized operations for aggregates, such as: 

Csum=i=1⨁
nci 

 

Where ci are packed cipher texts of financial attributes like balance or income [9], [12]. 

 

The translator also approximates non-linear SQL conditions using polynomial approximations, e.g., sigmoid or ReLU 

functions for inequality filters. We employ low-degree polynomials to remain within the permissible multiplicative depth of the 

leveled HE scheme [14], [15]. 

 

4.3. Query Execution Engine 

At the core of the system lies a query execution engine that handles the end-to-end lifecycle of encrypted queries. The engine 

begins with a query planner, which decomposes the SQL query into a directed acyclic graph (DAG) representing computational 
dependencies between operations. For example, a query such as:  

                                                     
is translated into a two-stage graph: a filter operation followed by an average computation on the filtered vector. 

 

The planner invokes an operator library, which contains HE implementations of core SQL primitives. Each operator (e.g., 

HE_SUM, HE_AVG, HE_FILTER_EQ, HE_FILTER_GT) is implemented as a homomorphic circuit, taking cipher texts as inputs 

and returning encrypted outputs. The engine supports pipelining of operations, where the output ciphertext of one operator feeds 

directly into the next without decryption. Additionally, the library manages rescaling and modulus switching between operators to 

conserve the noise budget during multi-step computations [3], [8]. 

 

Performance optimizations include ciphertext batching, parallel evaluation of independent operator nodes, and re-use of 
intermediate computation buffers. For instance, aggregate functions are vectorized using plaintext masks and homomorphic 

multiplication followed by ciphertext summation: 

          
 

 
∑    

 

   

 

 

Where C is a packed ciphertext with financial entries encoded across slots [10], [17]. 
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Our prototype demonstrates that this modular execution engine can evaluate complex SQL queries over encrypted datasets 

with acceptable overhead, and forms the foundation for cloud-hosted, privacy-preserving financial analytics platforms [2], [6], 

[18]. 

 

5. Implementation and Experiments 
5.1. Dataset 

To evaluate the feasibility of encrypted SQL processing using homomorphic encryption, we tested our system using both 

synthetic and realistic financial datasets. Each dataset simulates transaction records with 10–15 attributes per entry, such as 

transaction_id, account_no, amount, salary, region, merchant_code, and timestamp. The dataset size ranges from 10,000 to 

1,000,000 rows, reflecting small to mid-scale financial systems. We generated synthetic data following standard Gaussian and 

uniform distributions for continuous fields (e.g., salary, amount) and categorical distributions for fields like merchant types and 

region codes. The data was encrypted using either CKKS or BFV based on the precision requirements of the queries. 

 

5.2. Experimental Setup 

Our prototype was implemented in Python, with the homomorphic backend using Microsoft SEAL (v4.1), PALISADE, and 

TenSEAL for integration with NumPy-based workflows. CKKS was used for queries involving decimal computations (e.g., 

averages), while BFV handled exact sums and counts. 

 

The system was deployed on a cloud-hosted Ubuntu 20.04 virtual machine with the following specifications: 

 CPU: 8-core Intel Xeon @ 3.0 GHz 

 RAM: 32 GB 

 Storage: SSD-backed volumes 

 No GPU or hardware acceleration was used 

 
All timing and performance tests were averaged over 5 independent runs. 

 

5.3. Results 

We compared query execution in the encrypted domain versus plaintext SQL (using PostgreSQL), measuring latency, 

accuracy (for CKKS), and scalability. 

 

Table 1. Query Latency Comparison (Encrypted vs. Plaintext) 
Query Type Plaintext (ms) Encrypted (CKKS) (s) Encrypted (BFV) (s) 

SELECT AVG(salary) 8 3.25 N/A 

SELECT SUM(amount) 9 N/A 2.91 

WHERE salary > 50000 11 4.62 3.95 

AVG with condition 15 6.84 N/A 

COUNT(*) 6 N/A 2.47 

 

 
Figure 2. Query Latency Comparison: Highlights how plaintext queries are faster but less secure, while CKKS and BFV 

show different latency trade-offs for supported operations. 
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Table 2. Accuracy of CKKS Outputs (Approximate Arithmetic) 

Query Expected Result Encrypted Result Absolute Error Relative Error (%) 

AVG(salary) 48,500.12 48,499.98 0.14 0.00029 

AVG(balance 

WHERE > 1000) 
27,200.75 27,201.01 0.26 0.00096 

AVG 

(transaction_amount) 
5,480.00 5,479.87 0.13 0.0023 

 

 
Figure 3. CKKS Accuracy: Shows near-identical results between expected and encrypted values, validating CKKS’s 

approximation precision. 

 

Table 3. Query Latency vs. Dataset Size (CKKS-based AVG) 

Rows Encrypted Latency (s) Noise Budget (bits) 

10,000 2.7 54 

50,000 6.9 52 

100,000 14.2 49 

500,000 41.6 46 

1,000,000 82.3 43 

 

 
Figure 4. Latency vs Dataset Size: Demonstrates how latency scales with encrypted data size using CKKS. 
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Table 4. Noise Budget Degradation with Query Depth 

Query Depth Operations Initial Budget Final Budget 

1 Single addition 60 59 

2 Add + Compare 60 57 

4 SUM + AVG + FILTER 60 51 

6 Condition + AVG nested 60 47 

 

 
Figure 5. Noise Budget Degradation: Illustrates the reduction in noise budget with increased query depthimportant for 

maintaining HE scheme integrity 

 

Table 5. Throughput per Query Type (Rows/sec Encrypted) 

Query Type BFV (Rows/s) CKKS (Rows/s) 

SUM(salary) 3,500 N/A 

AVG(amount) N/A 2,100 

FILTER > threshold 1,800 1,600 

FILTER + AVG N/A 950 

COUNT(*) 4,100 N/A 

 

 
Figure 6. Throughput Comparison: Compares the Processing Speed (rows/sec) between BFV and CKKS for various SQL 

Operations. 

 

6. Discussion 
Homomorphic encryption (HE) offers strong privacy guarantees, but it introduces inherent trade-offs that must be carefully 

considered in financial database applications. One major challenge lies in balancing performance with ciphertext size. HE schemes, 
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especially CKKS and BFV, significantly expand the size of data representations resulting in higher memory consumption and 

increased computation time [1], [2]. This ciphertext bloat makes real-time processing impractical for certain operations, such as 

multi-way joins or complex subqueries. Moreover, there exists a delicate balance between the complexity of SQL queries and their 

feasibility under HE. While basic operations like SUM, AVG, and equality comparisons are now achievable on encrypted data, 

more expressive SQL features such as nested queries, JOINs, or ORDER BY often push the limits of current homomorphic 

capacities [3], [4]. These constraints are exacerbated by noise growth and multiplicative depth limits in leveled HE, which must be 
closely tracked during query execution to prevent decryption failure [5]. 

 

When compared to other secure computation paradigms such as Secure Multi-Party Computation (SMPC) and Trusted 

Execution Environments (TEEs), homomorphic encryption offers distinct advantages and disadvantages. SMPC, while offering 

cryptographic guarantees, involves substantial communication overhead and is less suited for cloud-hosted applications with high-

latency networks [6]. TEEs like Intel SGX, on the other hand, provide performance close to native execution but rely on hardware-

based trust assumptions and are vulnerable to side-channel attacks [7]. In contrast, HE eliminates the need for trusted 

intermediaries and enables computation over data even when it remains encrypted end-to-end. Some hybrid systems attempt to 

combine HE with TEEs or SMPC to strike a balance between performance and security, but they add complexity to the architecture 

and operational costs [8]. 

 

In the financial sector, the ability to perform encrypted computations has clear and valuable applications. For instance, 
privacy-preserving risk assessment enables banks and investment firms to analyze customer portfolios or market risk metrics 

without revealing sensitive individual data to third-party services [9]. Similarly, encrypted auditing and regulatory compliance can 

allow regulators to verify key financial indicators, such as capital adequacy or liquidity ratios, while preserving institutional data 

confidentiality [10]. This is particularly important in cross-border compliance frameworks, such as GDPR and India's DPDP Act, 

where financial institutions must uphold strict data privacy obligations even while reporting to external agencies [11]. As HE 

matures, its integration into secure cloud-based financial analytics platforms could revolutionize how private data is handled across 

jurisdictions, fostering a new era of secure, decentralized, and privacy-preserving finance. 

 

7. Conclusion and Future Work 
This paper presented a practical and privacy-preserving framework for executing SQL queries over encrypted financial data 

using homomorphic encryption (HE). By leveraging leveled HE schemes such as CKKS and BFV, we successfully implemented 

core SQL operations SELECT, WHERE, SUM, AVG, and COUNT without ever decrypting the data on the server side. Our 

prototype demonstrates that it is feasible to maintain strong confidentiality guarantees while preserving analytical capabilities on 

cloud-hosted financial datasets. The results show an acceptable trade-off between performance and privacy, especially for basic 

analytical workloads where the leakage risk must be minimized. 

 

Despite these advances, significant challenges remain in making HE a comprehensive solution for encrypted SQL processing. 

Notably, current HE techniques still struggle with operations like JOINs, GROUP BY, and deeply nested subqueries due to 
limitations in multiplicative depth and ciphertext noise. Furthermore, although our model assumes an honest-but-curious server, 

stronger adversarial models will require additional safeguards such as oblivious RAM (ORAM) to hide access patterns or 

differential privacy to limit output leakage. Future work will also explore the development of optimized compilers that can 

automatically translate expressive SQL queries into efficient HE-compatible computational graphs, reducing the burden on 

application developers. Ultimately, our research lays the groundwork for more secure and trustworthy data processing in the 

financial sector, opening new possibilities for encrypted analytics, secure outsourcing, and cross-border regulatory compliance 

without compromising sensitive financial data. 
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