
International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V6I3P113

Eureka Vision Publication | Volume 6, Issue 3, 78-84, 2025

Original Article

AI-Augmented Software Architecture: Autonomous Refactoring

with Design Pattern Awareness

Mohan Siva Krishna Konakanchi
Independent Researcher.

Received On: 12/07/2025 Revised On: 31/07/2025 Accepted On: 31/08/2025 Published On: 27/09/2025

Abstract - The maintenance of legacy software systems

presents a significant and escalating challenge in software

engineering, characterized by high costs, technical debt, and
resistance to modernization. This paper introduces an

innovative AI-augmented framework for the autonomous

refactoring of these systems. Our approach is uniquely

centered on the identification of architectural anti-patterns, or

”code smells,” and the subsequent application of appropriate,

well-established design patterns to resolve them. The core

of our contribution is a hybrid AI model that synergizes

Graph Neural Networks (GNNs) for structural code analysis

and Transformer-based language models for semantic

understanding and code generation. To facilitate collaborative

model improvement without compromising proprietary

codebases, we propose a novel federated learning framework.
This framework is underpinned by a trust metric system that

ensures integrity and accountability by weighting

contributions from participating silos based on their

performance, data distribution, and historical reliability.

Furthermore, we address the critical trade-off between model

performance and the need for human-understandable outputs

by introducing a methodology to quantify and optimize the

balance between refactoring efficacy and explainability. We

present a comprehensive experimental design and a discussion

of hypothetical results, demonstrating our framework’s

potential to significantly reduce cyclomatic complexity and
improve software maintainability metrics compared to

traditional and baseline automated refactoring tools. Our work

charts a course toward more intelligent, secure, and

transparent software maintenance paradigms.

Keywords - Software Refactoring, Artificial Intelligence,

Design Patterns, Federated Learning, Explainable AI, Legacy

Systems, Software Architecture.

1. Introduction
Legacy software systems are both the backbone and the

bane of modern enterprises. While they encapsulate decades of

in- valuable business logic, they are also fraught with

architectural decay, brittleness, and resistance to change [1].

The process of manual refactoring restructuring existing

computer code without changing its external behavior is a

cornerstone of agile development and software maintenance.

However, when applied to large-scale legacy systems, it

becomes a prohibitively expensive, time-consuming, and error-
prone endeavor [2]. The expertise required to understand

monolithic codebases and correctly apply architectural

remedies like design patterns is scarce, creating a significant

bottleneck in enterprise modernization efforts. The advent of

Artificial Intelligence (AI), particularly in the domain of deep

learning and natural language processing, has opened new

frontiers for automating complex software engineering tasks.

Current automated refactoring tools are largely rule-based,

capable of performing simple, localized transformations (e.g.,

”Extract Method”) but lack the con- textual awareness to

undertake complex, architectural-level restructuring [3]. They

cannot, for instance, identify a set of disparate, tightly-coupled
classes and recognize the opportunity to refactor them into a

Strategy or Factory Method pattern. This requires a deeper,

more holistic understanding of code’s structure, semantics, and

intenta challenge well-suited for modern AI. This paper posits

a paradigm shift from simple automated refactoring to AI-

augmented architectural evolution. We pro- pose a framework

that autonomously refactors legacy systems by not just

identifying localized ”code smells,” but by understanding the

architectural anti-patterns they signify and strategically

applying corrective design patterns. Our approach is threefold,

addressing the core challenges of intelligence, collaboration,
and trust:

 An Intelligent Refactoring Core: We introduce a

hybrid AI model that combines the strengths of Graph

Neural Networks (GNNs) to parse the structural graph

of the code (e.g., Abstract Syntax Tree, Control Flow

Graph) and a Transformer-based Large Language

Model (LLM) to comprehend code comments,

variable names, and overall semantics. This dual-

pronged approach enables the model to identify

complex anti-patterns and generate high-quality,

contextually appropriate refactored code based on a

learned repository of design patterns.

 A Secure Collaborative Learning Framework:

Improving such a sophisticated model requires diverse

data. However, enterprise code is a sensitive,

proprietary asset that cannot be shared in a central

Mohan Siva Krishna Konakanchi / IJETCSIT, 6(3), 78-84, 2025

79

repository. To overcome this, we propose a trust

metric-based federated learning (FL) framework. This

allows multiple organizations to collaboratively train a

global refactoring model on their local, private

codebases. Model updates, not raw code, are shared.

Our novel trust metric ensures the integrity of the
global model by weighting contributions based on

their quality, mitigating the impact of malicious or

low-quality participants.

 A Quantifiable Explainability-Performance

Balance: The ”black box” nature of AI is a significant

barrier to adoption in mission-critical software

engineering tasks. A developer will not accept a

complex architectural change without understanding

the rationale. We intro- duce a framework to

quantify and navigate the trade-off between the

performance of the refactoring (e.g., improvement in

software metrics) and the explainability of the AI’s
decision-making process. This allows organizations to

tune the system to their desired level of autonomy

versus human oversight.

By addressing these three pillars, this work aims to

lay the groundwork for a new generation of intelligent

tools that can actively participate in the lifecycle of complex

soft- ware systems, not merely as passive assistants, but as

active collaborators in architectural improvement. The

remainder of this paper details the theoretical underpinnings,

proposed methodology, experimental validation strategy, and
potential impact of this AI-augmented approach.

2. Related Work
Our research is situated at the confluence of several do-

mains: automated software refactoring, AI for software

engineering (AI4SE), federated learning, and explainable AI

(XAI).

2.1. Automated Software Refactoring

The field of automated refactoring has a rich history.

Initial tools, such as the original Refactoring Browser for

Smalltalk, focused on providing semi-automated support for

developers [4]. Modern IDEs like IntelliJ IDEA and Eclipse

have integrated a suite of powerful, but largely pre-

programmed, refactoring operations. These tools excel at

syntactic transformations but fall short of architectural

improvements. Research has explored more advanced

techniques. Search- based software engineering (SBSE) has
been used to find optimal sequences of refactoring operations

to improve soft- ware metrics like coupling and cohesion [5].

However, these approaches often suffer from a vast search

space and may produce solutions that are technically optimal

but semantically nonsensical to a human developer. Other

works have used machine learning to suggest refactoring

opportunities. For example, several studies have trained

classifiers to detect specific code smells like ”God Class” or

”Long Method” [6], but they typically stop at detection and do

not propose concrete, pattern-based solutions. Our work moves

beyond mere detection to autonomous, pattern-aware code

generation.

2.2. AI for Code Generation and Understanding

The application of deep learning to source code has
seen an explosion of interest. Models like OpenAI’s Codex

[7] and DeepMind’s AlphaCode [8], built on the Transformer

architecture, have demonstrated astonishing capabilities in

generating functionally correct code from natural language

descriptions. These models treat code as a sequence of tokens,

effectively leveraging the”naturalness” of software [9]. In

parallel, Graph Neural Networks (GNNs) have emerged as a

powerful tool for learning from graph-structured data, which is

a natural representation for source code (e.g., ASTs, CFGs)

[10]. GNNs can capture complex structural dependencies that

are lost in a purely sequential representation. Our hybrid

approach is novel in its explicit combination of these two
modalities using GNNs for structure and Transformers for

semantics to create a more holistic code understanding required

for architectural refactoring.

2.3. Federated Learning in Software Engineering

Federated Learning (FL) was introduced by Google as a

means to train models on decentralized data, such as on mobile

devices, without centralizing the data itself [11]. Its application

in software engineering is nascent but promising. Researchers

have proposed using FL for tasks like defect prediction and

code completion, where training data (i.e., source code) is
distributed across different organizations and cannot be shared

[12]. A key challenge in FL is handling statistical heterogeneity

and ensuring the quality of client updates. The standard

FedAvg algorithm, for instance, weights client contributions

simply by the size of their local dataset. Our work introduces

a more sophisticated aggregation strategy based on a multi-

faceted trust metric, which is crucial for a high-stakes domain

like software refactoring where malicious or poor-quality

updates could have disastrous consequences.

2.4. Explainable AI (XAI) for Code

As AI models become more integrated into the software
development lifecycle, their transparency becomes paramount.

The field of XAI aims to develop methods for explaining

the predictions of complex models. In the context of AI4SE,

techniques like LIME and SHAP have been adapted to explain

the outputs of models for tasks like vulnerability detection by

highlighting the lines of code that most influenced a prediction

[13]. However, explaining a generative task like refactoring is

more complex than explaining a classification. The explanation

must not only identify *what* in the input code triggered

the change but also *why* the generated code is a valid

and desirable transformation. Our proposed framework for
quantifying the explainability-performance trade-off is a step

towards creating tunable, ”glass-box” systems that can provide

rationales for their architectural suggestions, fostering trust and

collaboration with human developers.

Mohan Siva Krishna Konakanchi / IJETCSIT, 6(3), 78-84, 2025

80

3. Proposed AI-Augmented Refactoring

Framework
We propose a comprehensive framework, named ArchAI-

tect, designed to autonomously refactor legacy systems. The

framework is composed of three interconnected modules: the

Core Refactoring Engine, the Trust-based Federated Learn- ing

Module, and the Explainability-Performance Optimization

Module.

3.1. Core Refactoring Engine: A Hybrid GNN-Transformer

Model

The heart of ArchAItect is a novel hybrid deep learning

model designed to understand code with high fidelity. The

engine operates in a two-stage process: Anti-Pattern Identifi-

cation and Pattern-based Code Generation.

3.1.1. Stage 1: Anti-Pattern Identification:

The goal of this stage is to identify regions of code

(”smells”) that are symptomatic of deeper architectural anti-

patterns.

 Multi-Modal Code Representation: For a given

code- base, we first construct a multi-modal

representation.

o Structural Graph: We parse the source code to

generate an Abstract Syntax Tree (AST) and a

Program Dependence Graph (PDG). These

graphs are combined into a single, rich graph

representation where nodes represent code

elements (classes, methods, variables) and edges

represent syntactic and control/data flow

dependencies.
o Semantic Sequence: The raw code, including

com- ments, is tokenized into a sequence,

preserving the natural language information

embedded within it.

 Hybrid Encoder: The two representations are fed

into a dual-stream encoder.

o A Graph Neural Network (GNN) encoder,

specif- ically a Graph Attention Network (GAT)

[14], operates on the structural graph. The GAT

learns to assign importance weights to different

nodes in its neighborhood, allowing it to capture
complex structural relationships indicative of

anti-patterns the ”Strategy” pattern, the decoder

will generate code that extracts different

algorithms into separate strategy classes and

modifies the original class to act as a context like

high coupling or low cohesion.
o A Transformer-based Encoder (e.g., a pre-

trained model like CodeBERT [15]) operates on

the token sequence. This captures the semantic

context, such as misleading variable names or

comments that are out of sync with the code’s

function.

 Fusion and Classification: The output embeddings

from the GNN and Transformer are fused using an

attention mechanism. This fused representation is then

passed to a classification head that identifies the

type of anti-pattern (e.g., ”God Class,” ”Spaghetti

Code,” ”Feature Envy”) and localizes it to the

specific nodes in the graph.

3.1.2. Stage 2: Pattern-Based Code Generation:

Once an anti- pattern is identified, the engine must

generate the refactored code by applying a suitable design

pattern.

 Design Pattern Selection: A policy network, trained

via reinforcement learning, takes the fused anti-

pattern representation as input and selects the most

appropriate design pattern from a predefined library

(e.g., Strategy, Factory, Singleton, Observer). The

reward function for the RL agent is based on

predicted improvements in software quality metrics.

 Generative Transformer Decoder: The selected

design pattern and the representation of the smelly

code are fed into a Transformer-based decoder.

This decoder is architecturally similar to models like

GPT and is trained to generate the refactored code

token by token. It is conditioned on the original code

and the target pattern, ensuring that the transformation

is contextually correct and functionally equivalent.

For example, if a ”God Class” is identified, and the

policy network selects the ”Strategy” pattern, the

decoder will generate code that extracts different
algorithms into separate strategy classes and modifies

the original class to act as a context.

The entire model is trained end-to-end on a large dataset

of ”before-and-after” code examples, where legacy code with

known anti-patterns has been manually refactored by expert

developers into pattern-compliant forms.

3.2. Trust-Based Federated Learning Module

To continually improve the Core Refactoring Engine with

diverse data from multiple organizations (silos) without cen-
tralizing proprietary code, we propose a federated learning

framework with a novel trust-based aggregation mechanism.

Let N be the number of participating silos. In each com-

munication round t, a subset of silos is selected. Each selected

silo k trains the global model wt on its local data Dk to

obtain a local model update ∆wk. The central server then

aggregates these updates to form the new global model wt+1.

Instead of the standard FedAvg, we propose FedTrust, where

the aggregation is:

 ∑

∑

Here, τk ∈ [0, 1] is the **Trust Metric** for silo k. It is a

composite score calculated as:

Mohan Siva Krishna Konakanchi / IJETCSIT, 6(3), 78-84, 2025

81

Where α + β + γ = 1. The components are:

 Performance (Pk): After a local model update is re-

ceived, the server evaluates its performance on a

small, public validation dataset. The performance
score is pro- portional to the improvement the update

provides on this benchmark. This discourages low-

quality or intentionally poisoned updates.

 Contribution Congruence (Ck): This measures the

sim- ilarity of a silo’s update to the aggregated global

update. The intuition is that honest participants

working on a sim- ilar problem should produce model

updates that are not wild outliers. We measure this

using the cosine similarity between the update vector

∆wk
t and the average update vector. This helps to

down-weight participants who may be training on

drastically different data distributions or who have
faulty training processes.

 Reputation (Rk): This is a historical component. A

silo’s reputation is an exponentially decaying moving

average of its trust scores from previous rounds. This

ensures that consistently reliable participants are

favored over erratic ones.

This FedTrust mechanism makes the collaborative

learning process more robust, secure, and fair, ensuring the

integrity of the powerful refactoring model.

3.3. Explainability-Performance Optimization Module

For ArchAItect to be adopted, its recommendations must

be scrutable. We introduce a framework for quantifying and

managing the inherent trade-off between the performance of

a refactoring and its explainability.

3.3.1. Quantifying Performance (P):

The performance of a refactoring operation is measured by a

weighted sum of changes in standard software quality metrics.

Let Mbefore and Mafter be the sets of metrics for the code

before and after refactoring. The performance score P is:

 ∑

 () ()

Metrics include:

 Cyclomatic Complexity: A measure of the number

of linearly independent paths through the code. Lower

is better.

 Coupling between Objects (CBO): Measures the

num- ber of classes a given class is coupled to. Lower

is better.

 Lack of Cohesion in Methods (LCOM): Measures

how well methods in a class are related to each other.

Lower is better.

 Maintainability Index (MI): An aggregate score cal-

culated from lines of code, cyclomatic complexity,
and Halstead volume. Higher is better.

3.3.2. Quantifying Explainability (X):

Explainability is quan- tified by the model’s ability to provide

a clear rationale for its transformation. We propose a metric

based on two factors:

 Input Saliency: Using a model-agnostic technique
like LIME, we identify the minimal set of input code

tokens (the”critical smell”) that, if altered, would

change the model’s refactoring decision. A smaller,

more contiguous set of tokens leads to a higher

explainability score, as the rationale is more focused.

 Transformation Justification: The model is trained

to co-generate a natural language justification

alongside the refactored code. This justification is

evaluated against a human-written gold standard using

metrics like ROUGE and BLEU. The justification

should explain which pattern was chosen and why
(e.g.,”Applied Strategy pattern to decouple algorithms

for payment processing from the main Invoice class,

reducing coupling and improving extensibility.”).

3.3.3. The X-P Pareto Front:

The model can be tuned to prioritize either explainability

or performance. For instance, a more complex model might

achieve higher performance gains but be harder to explain. By

training a family of models with different regularization

parameters or architectural constraints, we can plot a Pareto

front in the X-P space. This allows an organization to select a

model that aligns with its risk tolerance and operational
policies. For example, a highly regulated industry might

choose a model with higher X and lower P, ensuring that all

architectural changes are fully transparent and auditable, even

if they are less aggressive.

4. Experimental Design
To validate the efficacy of the ArchAItect framework, we

propose a comprehensive set of experiments using publicly

available, open-source Java projects known for containing

significant technical debt.

4.1. Dataset Curation

We will construct a dataset from two primary sources:

 RefactoringMiner 2.0 Dataset: This dataset contains

thousands of real-world refactoring operations mined

from the commit histories of popular Java projects on

GitHub [16]. We will filter this dataset to focus on

instances where refactoring operations correspond to
the implementation of specific design patterns. This

will form the supervised training data for the core

engine.

 Qualitas Corpus: This is a curated collection of Java

systems used for software engineering research. We

will use tools like SonarQube and Checkstyle to

identify projects with a high density of known code

smells and anti-patterns. These projects will serve as

Mohan Siva Krishna Konakanchi / IJETCSIT, 6(3), 78-84, 2025

82

the testbed for evaluating the end-to-end refactoring

performance.

The curated dataset will consist of pairs of (smelly code,

refac- tored code, design pattern label, natural language

justification).

4.2. Baselines and Evaluation Metrics

We will compare the performance of ArchAItect against

several baselines:

 No-Op Baseline: The original, un-refactored code.

 Rule-Based Tool: An open-source, automated

refactoring tool like JDeodorant, which uses

predefined rules to detect smells and suggest

refactorings.

 Ablation Study 1 (Transformer-only): A version of

our core engine with the GNN component removed,
to evaluate the contribution of structural information.

 Ablation Study 2 (GNN-only): A version of our core

engine with the Transformer component removed, to

evaluate the contribution of semantic information.

 The primary evaluation will be based on the software

quality metrics defined in the previous section

(Cyclomatic Complex- ity, CBO, LCOM, MI).

Additionally, we will measure:

 Functional Equivalence: We will run the project’s

orig- inal test suite on the refactored code. The

percentage of passing tests is a critical measure of
correctness.

 Human Evaluation: Experienced software architects

will be asked to rate the quality, readability, and

appropriate- ness of the generated refactorings on a

Likert scale.

4.3. Experiment 1: Core Refactoring Engine Performance

This experiment will evaluate the core engine’s ability

to correctly identify anti-patterns and generate high-quality,

pattern-based refactorings on the test set from the Qualitas

Corpus. We will measure the percentage change in software

quality metrics and compare it against the baselines. We
hypothesize that ArchAItect will achieve significantly greater

improvements in metrics like CBO and LCOM, which reflect

architectural quality.

4.4. Experiment 2: Federated Learning Simulation

We will simulate the FedTrust framework by partitioning the

training dataset among 20 simulated client silos. We will

introduce heterogeneity in two ways:

 Data Heterogeneity: Different silos will have

different distributions of anti-patterns (e.g., some with

mostly ”God Classes,” others with ”Data Clumps”).

 Behavioral Heterogeneity: We will designate 10% of

the silos as malicious or faulty. Malicious silos will

attempt to poison the global model by submitting

deliberately corrupted updates. Faulty silos will

submit noisy updates due to simulated

hardware/software issues.

We will compare the convergence speed and final model

accuracy of FedTrust against standard FedAvg and FedProx.

We hypothesize that FedTrust will converge faster and to a
better final performance level by effectively identifying and

down-weighting the contributions of the malicious/faulty silos.

4.5. Experiment 3: Mapping the Explainability-Performance

Frontier

In this experiment, we will train multiple variants of the

Core Refactoring Engine. One variant will be a very large,

complex model optimized purely for performance (P-Max).

Another will be a smaller model with architectural constraints

(e.g., a shallower GNN) and a regularization term in its loss

function that penalizes non-sparse input attributions, designed

to maximize explainability (X-Max). By interpolating between
these two extremes, we will train a series of models and

plot their scores on the P and X axes. This will generate the

empirical Pareto front, visually demonstrating the trade-off and

allowing a user to select a model that fits their needs.

5. Hypothetical Results and Discussion
While the experiments have not yet been conducted, we

anticipate a set of results that would strongly validate our

proposed framework. This section outlines these expected

outcomes and discusses their implications.

5.1. Expected Outcome of Experiment 1

We expect ArchAItect to outperform all baselines signifi-

cantly. A hypothetical results table is shown in Table I.

Table 1. Hypothetical Improvement In Software Metrics

Model % A CYCLO

COMP.

% Δ

CBO

% Test

Pass

Rule-Based

Tool

-15% -10% 99.8%

Transformer-
only

-22% -18% 98.5%

GNN-only -18% -25% 98.2%

ArchAItect -41% -38% 99.5%

These results would indicate several key findings. First,

the substantial improvement shown by ArchAItect over the

rule- based tool would demonstrate the power of a learning-

based approach for complex architectural tasks. Second, the

superior performance of the full ArchAItect model

compared to its ablation variants would confirm our

hypothesis that both struc-tural (from GNN) and semantic

(from Transformer) informa-tion are crucial for high-quality

refactoring. The slightly lower test pass rate compared to the

rule-based tool is expected, as generative models can
occasionally introduce subtle bugs; however, a rate of 99.5%

would be highly acceptable, with the remaining failures being

Mohan Siva Krishna Konakanchi / IJETCSIT, 6(3), 78-84, 2025

83

flagged for human review.

5.2. Expected Outcome of Experiment 2

In the federated learning simulation, we expect the

FedTrust algorithm to demonstrate superior robustness. We

would plot the global model’s accuracy on a held-out test set
over com- munication rounds. We anticipate that the curve for

FedAvg would show high variance and slower convergence

due to the influence of the malicious clients. FedTrust,

however, would quickly assign low trust scores to these clients,

effectively ignoring their updates and leading to a smoother

and faster convergence to a higher final accuracy. This would

validate the trust metric as an effective mechanism for securing

col- laborative AI development in a decentralized environment.

5.3. Expected Outcome of Experiment 3

The experiment mapping the X-P frontier would produce a

classic Pareto curve. The P-Max model might achieve a 45%
reduction in cyclomatic complexity but have a low explainabil-

ity score (e.g., 0.4/1.0), with saliency maps that are diffuse and

hard to interpret. Conversely, the X-Max model might only

achieve a 25% reduction in complexity but have an excellent

explainability score (e.g., 0.9/1.0), providing concise, human-

readable justifications for its actions. The curve between these

points would present a range of viable models, empowering

users to make an informed decision. This result would be a

significant contribution, moving the conversation about AI in

software engineering from a binary ”trust it or not” to a more

nuanced discussion about risk and transparency management.

5.4. Implications and Limitations

The successful validation of these hypotheses would have

profound implications. It would demonstrate the feasibility

of creating AI partners that can actively manage and reduce

technical debt in legacy systems, a task that currently con-

sumes a vast amount of developer time. The federated learning

approach would provide a scalable and secure blueprint for

building ever-smarter models by pooling knowledge from

across the industry without compromising intellectual prop-

erty. However, we acknowledge several limitations. The func-

tional equivalence check is limited by the quality of the
existing test suite; a codebase with poor test coverage could

have bugs introduced that go undetected. Furthermore, our

model’s ”creativity” is limited by the design patterns it has

been trained on. It cannot invent a novel architectural solution.

Finally, the human element remains critical. The ultimate goal

is not to replace human architects but to augment their

capabilities, allowing them to focus on higher-level strategic

decisions while the AI handles the complex and tedious work

of architectural implementation and maintenance.

6. Conclusion and Future Work
This paper has introduced ArchAItect, a novel AI-

augmented framework for the autonomous refactoring of

legacy software systems through the intelligent application of

design patterns. Our core contributions are threefold: a hybrid

GNN-Transformer model for deep code understanding and

generation, a trust-metric-based federated learning framework

(FedTrust) for secure collaborative model training, and a quan-

titative approach to managing the trade-off between refactoring

performance and explainability. Through a detailed

experimental design, we have outlined a clear path to
validating our approach. We hypothesize that ArchAItect will

dramatically outperform existing rule-based and unimodal AI

systems in improving architectural quality metrics while

maintaining functional equivalence. We further expect our

FedTrust mechanism to prove resilient to malicious actors in a

decentralized setting, and our X-P framework to provide a

practical tool for tuning model behavior to organizational

needs.

This research represents a significant step towards a future

where AI acts as a co-pilot in the entire software lifecycle, not

just in code completion, but in the complex, creative, and
critical task of software architecture. Future work will focus

on several key areas. First, we plan to expand the library of

design patterns and anti-patterns that the model recognizes.

Second, we aim to incorporate a human-in-the-loop feedback

mechanism, where the model can learn from corrections made

by human developers. Third, we will explore the extension

of this framework to other programming languages beyond

Java. Ultimately, we believe that AI-augmented software ar-

chitecture holds the key to finally and effectively managing

the ever-growing challenge of technical debt, enabling the next

generation of software innovation.

References
[1] M. A. L. Broda, ”The Challenge of Legacy Systems,”

IEEE Software, vol. 12, no. 1, pp. 56-65, Jan. 1995.

[2] W. F. Opdyke, ”Refactoring: A Program Restructuring Aid

in Designing Object-Oriented Application Frameworks,”

Ph.D. dissertation, Dept. of Computer Science, University
of Illinois at Urbana-Champaign, 1992.

[3] M. Fowler, ”Refactoring: Improving the Design of

Existing Code,” Addison-Wesley Professional, 2nd ed.,

2018.

[4] J. Brant and D. Roberts, ”Refactoring in Smalltalk,” in

Technology of Object-Oriented Languages and Systems

(TOOLS 23), 1997, pp. 209-220.

[5] M. Harman and B. F. Jones, ”Search-based software

engineering,” Information and Software Technology, vol.

43, no. 14, pp. 833-839, 2001.

[6] F. A. Fontana, M. V. Ma¨ntyla¨, A. V. Zaytsev, and I. S.
Zanoni, ”A large- scale empirical study on the quality of

code smell detection tools,” ACM Transactions on

Software Engineering and Methodology (TOSEM), vol.

25, no. 4, pp. 1-45, 2016.

[7] M. Chen et al., ”Evaluating Large Language Models

Trained on Code,” arXiv preprint arXiv:2107.03374,

2021.

[8] Y. Li et al., ”Competition-Level Code Generation with

AlphaCode,” Science, vol. 378, no. 6624, pp. 1092-1097,

Mohan Siva Krishna Konakanchi / IJETCSIT, 6(3), 78-84, 2025

84

2022.

[9] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu,

”On the natural- ness of software,” in Proceedings of the

34th International Conference on Software Engineering

(ICSE), 2012, pp. 837-847.

[10] M. Allamanis, M. Brockschmidt, and M. Khademi,
”Learning to Rep- resent Programs with Graphs,” in

International Conference on Learning Representations

(ICLR), 2018.

[11] H. B. McMahan, E. Moore, D. Ramage, S. Hampson,

and B. A. y Arcas, ”Communication-Efficient Learning

of Deep Networks from Decentralized Data,” in

Proceedings of the 20th International Conference on

Artificial Intelligence and Statistics (AISTATS), 2017.

[12] M. F. P. da Silva, ”Federated Learning for Software

Defect Prediction,” in 2021 IEEE/ACM 1st Workshop on

AI Engineering - Software Engineering for AI (WAIN),

pp. 83-86.
[13] S. M. Lundberg and S.-I. Lee, ”A Unified Approach to

Interpreting Model Predictions,” in Advances in Neural

Information Processing Systems (NIPS), 2017, pp. 4765-

4774.

[14] P. Velicˇkovic´, G. Cucurull, A. Casanova, A. Romero, P.

Lio`, and Y. Bengio, ”Graph Attention Networks,” in

International Conference on Learning Representations

(ICLR), 2018.

[15] Z. Feng et al., ”CodeBERT: A Pre-Trained Model for

Programming and Natural Languages,” in Findings of the

Association for Computational Linguistics: EMNLP 2020,
pp. 1536-1547.

[16] N. Tsantalis, A. Chaikalis, and A. Chatzigeorgiou,

”RefactoringMiner 2.0,” IEEE Transactions on Software

Engineering, vol. 44, no. 8, pp. 746-772, Aug. 2018.

[17] D. Riehle and T. Zu¨llighoven, ”A pattern language for

tool construction and integration based on the pipes and

filters architecture,” in Pattern Languages of Program

Design 2, Addison-Wesley, 1996, pp. 253-264.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, ”Design

Patterns: El- ements of Reusable Object-Oriented

Software,” Addison-Wesley, 1995.

