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Abstract - The maintenance of legacy software systems 

presents a significant and escalating challenge in software 

engineering, characterized by high costs, technical debt, and 
resistance to modernization. This paper introduces an 

innovative AI-augmented framework for the autonomous 

refactoring of these systems. Our approach is uniquely 

centered on the identification of architectural anti-patterns, or 

”code smells,” and the subsequent application of appropriate, 

well-established design patterns to resolve them. The core 

of our contribution is a hybrid AI model that synergizes 

Graph Neural Networks (GNNs) for structural code analysis 

and Transformer-based language models for semantic 

understanding and code generation. To facilitate collaborative 

model improvement without compromising proprietary 

codebases, we propose a novel federated learning framework. 
This framework is underpinned by a trust metric system that 

ensures integrity and accountability by weighting 

contributions from participating silos based on their 

performance, data distribution, and historical reliability. 

Furthermore, we address the critical trade-off between model 

performance and the need for human-understandable outputs 

by introducing a methodology to quantify and optimize the 

balance between refactoring efficacy and explainability. We 

present a comprehensive experimental design and a discussion 

of hypothetical results, demonstrating our framework’s 

potential to significantly reduce cyclomatic complexity and 
improve software maintainability metrics compared to 

traditional and baseline automated refactoring tools. Our work 

charts a course toward more intelligent, secure, and 

transparent software maintenance paradigms. 

 

Keywords - Software Refactoring, Artificial Intelligence, 

Design Patterns, Federated Learning, Explainable AI, Legacy 

Systems, Software Architecture. 

 

1. Introduction 
Legacy software systems are both the backbone and the 

bane of modern enterprises. While they encapsulate decades of 

in- valuable business logic, they are also fraught with 

architectural decay, brittleness, and resistance to change [1]. 

The process of manual refactoring restructuring existing 

computer code without changing its external behavior is a 

cornerstone of agile development and software maintenance. 

However, when applied to large-scale legacy systems, it 

becomes a prohibitively expensive, time-consuming, and error-
prone endeavor [2]. The expertise required to understand 

monolithic codebases and correctly apply architectural 

remedies like design patterns is scarce, creating a significant 

bottleneck in enterprise modernization efforts. The advent of 

Artificial Intelligence (AI), particularly in the domain of deep 

learning and natural language processing, has opened new 

frontiers for automating complex software engineering tasks. 

Current automated refactoring tools are largely rule-based, 

capable of performing simple, localized transformations (e.g., 

”Extract Method”) but lack the con- textual awareness to 

undertake complex, architectural-level restructuring [3]. They 

cannot, for instance, identify a set of disparate, tightly-coupled 
classes and recognize the opportunity to refactor them into a 

Strategy or Factory Method pattern. This requires a deeper, 

more holistic understanding of code’s structure, semantics, and 

intenta challenge well-suited for modern AI. This paper posits 

a paradigm shift from simple automated refactoring to AI-

augmented architectural evolution. We pro- pose a framework 

that autonomously refactors legacy systems by not just 

identifying localized ”code smells,” but by understanding the 

architectural anti-patterns they signify and strategically 

applying corrective design patterns. Our approach is threefold, 

addressing the core challenges of intelligence, collaboration, 
and trust: 

 An Intelligent Refactoring Core: We introduce a 

hybrid AI model that combines the strengths of Graph 

Neural Networks (GNNs) to parse the structural graph 

of the code (e.g., Abstract Syntax Tree, Control Flow 

Graph) and a Transformer-based Large Language 

Model (LLM) to comprehend code comments, 

variable names, and overall semantics. This dual-

pronged approach enables the model to identify 

complex anti-patterns and generate high-quality, 

contextually appropriate refactored code based on a 

learned repository of design patterns. 

 A Secure Collaborative Learning Framework: 

Improving such a sophisticated model requires diverse 

data. However, enterprise code is a sensitive, 

proprietary asset that cannot be shared in a central 
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repository. To overcome this, we propose a trust 

metric-based federated learning (FL) framework. This 

allows multiple organizations to collaboratively train a 

global refactoring model on their local, private 

codebases. Model updates, not raw code, are shared. 

Our novel trust metric ensures the integrity of the 
global model by weighting contributions based on 

their quality, mitigating the impact of malicious or 

low-quality participants. 

 A Quantifiable Explainability-Performance 

Balance: The ”black box” nature of AI is a significant 

barrier to adoption in mission-critical software 

engineering tasks. A developer will not accept a 

complex architectural change without understanding 

the rationale. We intro- duce a framework to 

quantify and navigate the trade-off between the 

performance of the refactoring (e.g., improvement in 

software metrics) and the explainability of the AI’s 
decision-making process. This allows organizations to 

tune the system to their desired level of autonomy 

versus human oversight. 

 

By addressing these three pillars, this work aims to 

lay the groundwork for a new generation of intelligent 

tools that can actively participate in the lifecycle of complex 

soft- ware systems, not merely as passive assistants, but as 

active collaborators in architectural improvement. The 

remainder of this paper details the theoretical underpinnings, 

proposed methodology, experimental validation strategy, and 
potential impact of this AI-augmented approach. 

 

2. Related Work 
Our research is situated at the confluence of several do- 

mains: automated software refactoring, AI for software 

engineering (AI4SE), federated learning, and explainable AI 

(XAI). 

 

2.1. Automated Software Refactoring 

The field of automated refactoring has a rich history. 

Initial tools, such as the original Refactoring Browser for 

Smalltalk, focused on providing semi-automated support for 

developers [4]. Modern IDEs like IntelliJ IDEA and Eclipse 

have integrated a suite of powerful, but largely pre-

programmed, refactoring operations. These tools excel at 

syntactic transformations but fall short of architectural 

improvements. Research has explored more advanced 

techniques. Search- based software engineering (SBSE) has 
been used to find optimal sequences of refactoring operations 

to improve soft- ware metrics like coupling and cohesion [5]. 

However, these approaches often suffer from a vast search 

space and may produce solutions that are technically optimal 

but semantically nonsensical to a human developer. Other 

works have used machine learning to suggest refactoring 

opportunities. For example, several studies have trained 

classifiers to detect specific code smells like ”God Class” or 

”Long Method” [6], but they typically stop at detection and do 

not propose concrete, pattern-based solutions. Our work moves 

beyond mere detection to autonomous, pattern-aware code 

generation. 

 

2.2. AI for Code Generation and Understanding 

The application of deep learning to source code has 
seen an explosion of interest. Models like OpenAI’s Codex 

[7] and DeepMind’s AlphaCode [8], built on the Transformer 

architecture, have demonstrated astonishing capabilities in 

generating functionally correct code from natural language 

descriptions. These models treat code as a sequence of tokens, 

effectively leveraging the”naturalness” of software [9]. In 

parallel, Graph Neural Networks (GNNs) have emerged as a 

powerful tool for learning from graph-structured data, which is 

a natural representation for source code (e.g., ASTs, CFGs) 

[10]. GNNs can capture complex structural dependencies that 

are lost in a purely sequential representation. Our hybrid 

approach is novel in its explicit combination of these two 
modalities using GNNs for structure and Transformers for 

semantics to create a more holistic code understanding required 

for architectural refactoring. 

 

2.3. Federated Learning in Software Engineering 

Federated Learning (FL) was introduced by Google as a 

means to train models on decentralized data, such as on mobile 

devices, without centralizing the data itself [11]. Its application 

in software engineering is nascent but promising. Researchers 

have proposed using FL for tasks like defect prediction and 

code completion, where training data (i.e., source code) is 
distributed across different organizations and cannot be shared 

[12]. A key challenge in FL is handling statistical heterogeneity 

and ensuring the quality of client updates. The standard 

FedAvg algorithm, for instance, weights client contributions 

simply by the size of their local dataset. Our work introduces 

a more sophisticated aggregation strategy based on a multi- 

faceted trust metric, which is crucial for a high-stakes domain 

like software refactoring where malicious or poor-quality 

updates could have disastrous consequences. 

 

2.4. Explainable AI (XAI) for Code 

As AI models become more integrated into the software 
development lifecycle, their transparency becomes paramount. 

The field of XAI aims to develop methods for explaining 

the predictions of complex models. In the context of AI4SE, 

techniques like LIME and SHAP have been adapted to explain 

the outputs of models for tasks like vulnerability detection by 

highlighting the lines of code that most influenced a prediction 

[13]. However, explaining a generative task like refactoring is 

more complex than explaining a classification. The explanation 

must not only identify *what* in the input code triggered 

the change but also *why* the generated code is a valid 

and desirable transformation. Our proposed framework for 
quantifying the explainability-performance trade-off is a step 

towards creating tunable, ”glass-box” systems that can provide 

rationales for their architectural suggestions, fostering trust and 

collaboration with human developers. 
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3. Proposed AI-Augmented Refactoring 

Framework 
We propose a comprehensive framework, named ArchAI- 

tect, designed to autonomously refactor legacy systems. The 

framework is composed of three interconnected modules: the 

Core Refactoring Engine, the Trust-based Federated Learn- ing 

Module, and the Explainability-Performance Optimization 

Module. 
 

3.1. Core Refactoring Engine: A Hybrid GNN-Transformer 

Model 

The heart of ArchAItect is a novel hybrid deep learning 

model designed to understand code with high fidelity. The 

engine operates in a two-stage process: Anti-Pattern Identifi- 

cation and Pattern-based Code Generation. 

 

3.1.1. Stage 1: Anti-Pattern Identification:  

The goal of this stage is to identify regions of code 

(”smells”) that are symptomatic of deeper architectural anti-

patterns. 

 Multi-Modal Code Representation: For a given 

code- base, we first construct a multi-modal 

representation. 

o Structural Graph: We parse the source code to 

generate an Abstract Syntax Tree (AST) and a 

Program Dependence Graph (PDG). These 

graphs are combined into a single, rich graph 

representation where nodes represent code 

elements (classes, methods, variables) and edges 

represent syntactic and control/data flow 

dependencies. 
o Semantic Sequence: The raw code, including 

com- ments, is tokenized into a sequence, 

preserving the natural language information 

embedded within it. 

 Hybrid Encoder: The two representations are fed 

into a dual-stream encoder. 

o A Graph Neural Network (GNN) encoder, 

specif- ically a Graph Attention Network (GAT) 

[14], operates on the structural graph. The GAT 

learns to assign importance weights to different 

nodes in its neighborhood, allowing it to capture 
complex structural relationships indicative of 

anti-patterns the ”Strategy” pattern, the decoder 

will generate code that extracts different 

algorithms into separate strategy classes and 

modifies the original class to act as a context like 

high coupling or low cohesion. 
o A Transformer-based Encoder (e.g., a pre-

trained model like CodeBERT [15]) operates on 

the token sequence. This captures the semantic 

context, such as misleading variable names or 

comments that are out of sync with the code’s 

function. 

 Fusion and Classification: The output embeddings 

from the GNN and Transformer are fused using an 

attention mechanism. This fused representation is then 

passed to a classification head that identifies the 

type of anti-pattern (e.g., ”God Class,” ”Spaghetti 

Code,” ”Feature Envy”) and localizes it to the 

specific nodes in the graph. 
 

3.1.2. Stage 2: Pattern-Based Code Generation:  

Once an anti- pattern is identified, the engine must 

generate the refactored code by applying a suitable design 

pattern. 

 Design Pattern Selection: A policy network, trained 

via reinforcement learning, takes the fused anti-

pattern representation as input and selects the most 

appropriate design pattern from a predefined library 

(e.g., Strategy, Factory, Singleton, Observer). The 

reward function for the RL agent is based on 

predicted improvements in software quality metrics. 

 Generative Transformer Decoder: The selected 

design pattern and the representation of the smelly 

code are fed into a Transformer-based decoder. 

This decoder is architecturally similar to models like 

GPT and is trained to generate the refactored code 

token by token. It is conditioned on the original code 

and the target pattern, ensuring that the transformation 

is contextually correct and functionally equivalent. 

For example, if a ”God Class” is identified, and the 

policy network selects the ”Strategy” pattern, the 

decoder will generate code that extracts different 
algorithms into separate strategy classes and modifies 

the original class to act as a context. 

 

The entire model is trained end-to-end on a large dataset 

of ”before-and-after” code examples, where legacy code with 

known anti-patterns has been manually refactored by expert 

developers into pattern-compliant forms. 

 

3.2. Trust-Based Federated Learning Module 

To continually improve the Core Refactoring Engine with 

diverse data from multiple organizations (silos) without cen- 
tralizing proprietary code, we propose a federated learning 

framework with a novel trust-based aggregation mechanism. 

Let N be the number of participating silos. In each com- 

munication round t, a subset of silos is selected. Each selected 

silo k trains the global model wt on its local data Dk to 

obtain a local model update ∆wk. The central server then 

aggregates these updates to form the new global model wt+1. 

Instead of the standard FedAvg, we propose FedTrust, where 

the aggregation is: 

 

         ∑
      

∑        
 
   

 

   

   
  

Here, τk ∈ [0, 1] is the **Trust Metric** for silo k. It is a 

composite score calculated as: 
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Where α + β + γ = 1. The components are: 

 Performance (Pk): After a local model update is re- 

ceived, the server evaluates its performance on a 

small, public validation dataset. The performance 
score is pro- portional to the improvement the update 

provides on this benchmark. This discourages low-

quality or intentionally poisoned updates. 

 Contribution Congruence (Ck): This measures the 

sim- ilarity of a silo’s update to the aggregated global 

update. The intuition is that honest participants 

working on a sim- ilar problem should produce model 

updates that are not wild outliers. We measure this 

using the cosine similarity between the update vector 

∆wk
t and the average update vector. This helps to 

down-weight participants who may be training on 

drastically different data distributions or who have 
faulty training processes. 

 Reputation (Rk): This is a historical component. A 

silo’s reputation is an exponentially decaying moving 

average of its trust scores from previous rounds. This 

ensures that consistently reliable participants are 

favored over erratic ones. 

 

This FedTrust mechanism makes the collaborative 

learning process more robust, secure, and fair, ensuring the 

integrity of the powerful refactoring model. 

 

3.3. Explainability-Performance Optimization Module 

For ArchAItect to be adopted, its recommendations must 

be scrutable. We introduce a framework for quantifying and 

managing the inherent trade-off between the performance of 

a refactoring and its explainability. 

 

3.3.1. Quantifying Performance (P):  

The performance of a refactoring operation is measured by a 

weighted sum of changes in standard software quality metrics. 

Let Mbefore and Mafter be the sets of metrics for the code 

before and after refactoring. The performance score P is: 

  ∑  

 

        (      )         (       )  

 

Metrics include: 

 Cyclomatic Complexity: A measure of the number 

of linearly independent paths through the code. Lower 

is better. 

 Coupling between Objects (CBO): Measures the 

num- ber of classes a given class is coupled to. Lower 

is better. 

 Lack of Cohesion in Methods (LCOM): Measures 

how well methods in a class are related to each other. 

Lower is better. 

 Maintainability Index (MI): An aggregate score cal- 

culated from lines of code, cyclomatic complexity, 
and Halstead volume. Higher is better. 

 

3.3.2. Quantifying Explainability (X):  

Explainability is quan- tified by the model’s ability to provide 

a clear rationale for its transformation. We propose a metric 

based on two factors: 

 Input Saliency: Using a model-agnostic technique 
like LIME, we identify the minimal set of input code 

tokens (the”critical smell”) that, if altered, would 

change the model’s refactoring decision. A smaller, 

more contiguous set of tokens leads to a higher 

explainability score, as the rationale is more focused. 

 Transformation Justification: The model is trained 

to co-generate a natural language justification 

alongside the refactored code. This justification is 

evaluated against a human-written gold standard using 

metrics like ROUGE and BLEU. The justification 

should explain which pattern was chosen and why 
(e.g.,”Applied Strategy pattern to decouple algorithms 

for payment processing from the main Invoice class, 

reducing coupling and improving extensibility.”). 

 

3.3.3. The X-P Pareto Front:  

The model can be tuned to prioritize either explainability 

or performance. For instance, a more complex model might 

achieve higher performance gains but be harder to explain. By 

training a family of models with different regularization 

parameters or architectural constraints, we can plot a Pareto 

front in the X-P space. This allows an organization to select a 

model that aligns with its risk tolerance and operational 
policies. For example, a highly regulated industry might 

choose a model with higher X and lower P, ensuring that all 

architectural changes are fully transparent and auditable, even 

if they are less aggressive. 

 

4. Experimental Design 
To validate the efficacy of the ArchAItect framework, we 

propose a comprehensive set of experiments using publicly 

available, open-source Java projects known for containing 

significant technical debt. 

 

4.1. Dataset Curation 

We will construct a dataset from two primary sources: 

 RefactoringMiner 2.0 Dataset: This dataset contains 

thousands of real-world refactoring operations mined 

from the commit histories of popular Java projects on 

GitHub [16]. We will filter this dataset to focus on 

instances where refactoring operations correspond to 
the implementation of specific design patterns. This 

will form the supervised training data for the core 

engine. 

 Qualitas Corpus: This is a curated collection of Java 

systems used for software engineering research. We 

will use tools like SonarQube and Checkstyle to 

identify projects with a high density of known code 

smells and anti-patterns. These projects will serve as 
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the testbed for evaluating the end-to-end refactoring 

performance. 

 

The curated dataset will consist of pairs of (smelly code, 

refac- tored code, design pattern label, natural language 

justification). 
 

4.2. Baselines and Evaluation Metrics 

We will compare the performance of ArchAItect against 

several baselines: 

 No-Op Baseline: The original, un-refactored code. 

 Rule-Based Tool: An open-source, automated 

refactoring tool like JDeodorant, which uses 

predefined rules to detect smells and suggest 

refactorings. 

 Ablation Study 1 (Transformer-only): A version of 

our core engine with the GNN component removed, 
to evaluate the contribution of structural information. 

 Ablation Study 2 (GNN-only): A version of our core 

engine with the Transformer component removed, to 

evaluate the contribution of semantic information. 

 The primary evaluation will be based on the software 

quality metrics defined in the previous section 

(Cyclomatic Complex- ity, CBO, LCOM, MI). 

Additionally, we will measure: 

 Functional Equivalence: We will run the project’s 

orig- inal test suite on the refactored code. The 

percentage of passing tests is a critical measure of 
correctness. 

 Human Evaluation: Experienced software architects 

will be asked to rate the quality, readability, and 

appropriate- ness of the generated refactorings on a 

Likert scale. 

 

4.3. Experiment 1: Core Refactoring Engine Performance 

This experiment will evaluate the core engine’s ability 

to correctly identify anti-patterns and generate high-quality, 

pattern-based refactorings on the test set from the Qualitas 

Corpus. We will measure the percentage change in software 

quality metrics and compare it against the baselines. We 
hypothesize that ArchAItect will achieve significantly greater 

improvements in metrics like CBO and LCOM, which reflect 

architectural quality. 

 

4.4. Experiment 2: Federated Learning Simulation 

We will simulate the FedTrust framework by partitioning the 

training dataset among 20 simulated client silos. We will 

introduce heterogeneity in two ways: 

 Data Heterogeneity: Different silos will have 

different distributions of anti-patterns (e.g., some with 

mostly ”God Classes,” others with ”Data Clumps”). 

 Behavioral Heterogeneity: We will designate 10% of 

the silos as malicious or faulty. Malicious silos will 

attempt to poison the global model by submitting 

deliberately corrupted updates. Faulty silos will 

submit noisy updates due to simulated 

hardware/software issues. 

 

We will compare the convergence speed and final model 

accuracy of FedTrust against standard FedAvg and FedProx. 

We hypothesize that FedTrust will converge faster and to a 
better final performance level by effectively identifying and 

down-weighting the contributions of the malicious/faulty silos. 

 

4.5. Experiment 3: Mapping the Explainability-Performance 

Frontier 

In this experiment, we will train multiple variants of the 

Core Refactoring Engine. One variant will be a very large, 

complex model optimized purely for performance (P-Max). 

Another will be a smaller model with architectural constraints 

(e.g., a shallower GNN) and a regularization term in its loss 

function that penalizes non-sparse input attributions, designed 

to maximize explainability (X-Max). By interpolating between 
these two extremes, we will train a series of models and 

plot their scores on the P and X axes. This will generate the 

empirical Pareto front, visually demonstrating the trade-off and 

allowing a user to select a model that fits their needs. 

 

5. Hypothetical Results and Discussion 
While the experiments have not yet been conducted, we 

anticipate a set of results that would strongly validate our 

proposed framework. This section outlines these expected 

outcomes and discusses their implications. 

 

5.1. Expected Outcome of Experiment 1 

We expect ArchAItect to outperform all baselines signifi- 

cantly. A hypothetical results table is shown in Table I. 

 

Table 1. Hypothetical Improvement In Software Metrics 

Model % A CYCLO 

COMP. 

% Δ 

CBO 

% Test 

Pass 

Rule-Based 

Tool 

-15% -10% 99.8% 

Transformer-
only 

-22% -18% 98.5% 

GNN-only -18% -25% 98.2% 

ArchAItect -41% -38% 99.5% 

 

These results would indicate several key findings. First, 

the substantial improvement shown by ArchAItect over the 

rule- based tool would demonstrate the power of a learning-

based approach for complex architectural tasks. Second, the 

superior performance of the full ArchAItect model 

compared to its ablation variants would confirm our 

hypothesis that both struc-tural (from GNN) and semantic 

(from Transformer) informa-tion are crucial for high-quality 

refactoring. The slightly lower test pass rate compared to the 

rule-based tool is expected, as generative models can 
occasionally introduce subtle bugs; however, a rate of 99.5% 

would be highly acceptable, with the remaining failures being 
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flagged for human review. 

 

5.2. Expected Outcome of Experiment 2 

In the federated learning simulation, we expect the 

FedTrust algorithm to demonstrate superior robustness. We 

would plot the global model’s accuracy on a held-out test set 
over com- munication rounds. We anticipate that the curve for 

FedAvg would show high variance and slower convergence 

due to the influence of the malicious clients. FedTrust, 

however, would quickly assign low trust scores to these clients, 

effectively ignoring their updates and leading to a smoother 

and faster convergence to a higher final accuracy. This would 

validate the trust metric as an effective mechanism for securing 

col- laborative AI development in a decentralized environment. 

 

5.3. Expected Outcome of Experiment 3 

The experiment mapping the X-P frontier would produce a 

classic Pareto curve. The P-Max model might achieve a 45% 
reduction in cyclomatic complexity but have a low explainabil- 

ity score (e.g., 0.4/1.0), with saliency maps that are diffuse and 

hard to interpret. Conversely, the X-Max model might only 

achieve a 25% reduction in complexity but have an excellent 

explainability score (e.g., 0.9/1.0), providing concise, human- 

readable justifications for its actions. The curve between these 

points would present a range of viable models, empowering 

users to make an informed decision. This result would be a 

significant contribution, moving the conversation about AI in 

software engineering from a binary ”trust it or not” to a more 

nuanced discussion about risk and transparency management. 
 

5.4. Implications and Limitations 

The successful validation of these hypotheses would have 

profound implications. It would demonstrate the feasibility 

of creating AI partners that can actively manage and reduce 

technical debt in legacy systems, a task that currently con- 

sumes a vast amount of developer time. The federated learning 

approach would provide a scalable and secure blueprint for 

building ever-smarter models by pooling knowledge from 

across the industry without compromising intellectual prop- 

erty. However, we acknowledge several limitations. The func- 

tional equivalence check is limited by the quality of the 
existing test suite; a codebase with poor test coverage could 

have bugs introduced that go undetected. Furthermore, our 

model’s ”creativity” is limited by the design patterns it has 

been trained on. It cannot invent a novel architectural solution. 

Finally, the human element remains critical. The ultimate goal 

is not to replace human architects but to augment their 

capabilities, allowing them to focus on higher-level strategic 

decisions while the AI handles the complex and tedious work 

of architectural implementation and maintenance. 

 

6. Conclusion and Future Work 
This paper has introduced ArchAItect, a novel AI- 

augmented framework for the autonomous refactoring of 

legacy software systems through the intelligent application of 

design patterns. Our core contributions are threefold: a hybrid 

GNN-Transformer model for deep code understanding and 

generation, a trust-metric-based federated learning framework 

(FedTrust) for secure collaborative model training, and a quan- 

titative approach to managing the trade-off between refactoring 

performance and explainability. Through a detailed 

experimental design, we have outlined a clear path to 
validating our approach. We hypothesize that ArchAItect will 

dramatically outperform existing rule-based and unimodal AI 

systems in improving architectural quality metrics while 

maintaining functional equivalence. We further expect our 

FedTrust mechanism to prove resilient to malicious actors in a 

decentralized setting, and our X-P framework to provide a 

practical tool for tuning model behavior to organizational 

needs. 

 

This research represents a significant step towards a future 

where AI acts as a co-pilot in the entire software lifecycle, not 

just in code completion, but in the complex, creative, and 
critical task of software architecture. Future work will focus 

on several key areas. First, we plan to expand the library of 

design patterns and anti-patterns that the model recognizes. 

Second, we aim to incorporate a human-in-the-loop feedback 

mechanism, where the model can learn from corrections made 

by human developers. Third, we will explore the extension 

of this framework to other programming languages beyond 

Java. Ultimately, we believe that AI-augmented software ar- 

chitecture holds the key to finally and effectively managing 

the ever-growing challenge of technical debt, enabling the next 

generation of software innovation. 
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