
International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V5I3P108

Eureka Vision Publication | Volume 5, Issue 3, 79-89, 2024

Original Article

Software Supply Chain Security: Policy, Tooling, and Real-

World Incidents

Sunil Anasuri1, Guru Pramod Rusum2

1,2Independent Researcher, USA.

Abstract - The security of the software supply chain has become one of the most pronounced issues in contemporary

computing, especially under open-source ecosystems, where the interdependencies of global software and a surge of

cyberattacks against software producers are prevalent. In contrast to classical cybersecurity methodology, which focuses on

end-user protection, software supply chain security is concerned with the risks introduced by the actual software development,

packaging, distribution, and deployment processes. This paper presents a detailed discussion of the security of software supply

chains, examining three major areas: policy frameworks, tooling developments, and real-life attacks that have informed our

current security mechanisms. We examine standards, government initiatives and specialized compliance requirements that

have emerged to help reduce risk relating to the supply chain. The paper then discusses the new tools and frameworks,

including SBOM (Software Bill of Materials), SLSA (Supply Chain Levels for Software Artefacts), and in-toto frameworks, as

well as static/dynamic code analysis solutions and container security measures. Lastly, we discuss several real-world events,

including the SolarWinds, Log4Shell, Codecov, and dependency confusion campaigns, that demonstrate how attackers exploit

software supply chains. We generalize this experience gained by proposing a supply chain security maturity measurement

process that considers layered defense methods, zero-trust software, and continuous monitoring approaches in an

organization. In performing our analysis, we can show that compromises in supply chains tend to be rooted in three key

vectors of failure: (1) unseen transparency in dependencies, (2) a lack of policy means, and (3) under-implemented automated

security tooling. We argue for a confluence model that focuses on both policy-based compliance and the implementation of

automated tooling, as demonstrated by case studies of previous incidents. Given the findings, the rationale is that

organizations that implement proactive strategies like SBOM generation, dependencies monitoring, and quality cryptographic

signing mitigate attacks from over 70% of their exposure using conventional strategies. This study is critical, considering that

although technical tooling is vital, the final performance of the security chain of supply will depend on policies, the

accountability of parties, and global synergy. We end with directions of future AI-driven threat intelligence and automated

patch management, as well as cross-border regulatory harmonization, as the key enablers of securing software supply chains

tomorrow

Keywords - Software supply chain, cybersecurity, SBOM, SLSA, SolarWinds, dependency confusion, in-toto, zero trust

software, security policy.

1. Introduction
The implementation of open-source libraries, cloud-native designs, and distributed DevOps pipelines has driven the

worldwide software landscape to new records. This has accelerated innovation, lowered development costs, and increased

inter-industry collaboration. The same features that double the functionality of modern software development to be agile and

scalable have also introduced new vulnerabilities. [1-3] Most applications today have thousands of third-party dependencies,

several of which are maintained by volunteer-driven open-source communities with scarce means of security. Consequently,

the attackers have increasingly turned their interests to overtly invading systems to exploit the trust relationships within the

software supply chain. Rather than exploiting a single system, adversaries address the weak points of the production pipeline,

including compromised build environments, malicious uploads from package repositories, or tainted software updates, which

then propagate to thousands of downstream consumers. Supply chain attacks, such as SolarWinds, Log4Shell, and Dependency

Confusion, have just proven the systemic risks that supply chain attacks could pose. Compromising just one component can

affect governments, critical infrastructure, and enterprises around the world. This dynamic threat environment suggests that

enhanced governance, visibility into software development, and robust security tools are necessary to protect not only the

finished software product but also all phases of software creation and distribution.

1.1. Evolution of Software Supply Chain Security

 Early Focus on Perimeter Defence: The initial weeks of software security centred on the external aspects of systems

and software security, specifically firewalls, intrusion detection, and network monitoring. Organizations presumed

that with the protection of the external layers on their infrastructure, internal systems and programs would be safe.

Nevertheless, this model overlooked the risks associated with third-party use and upstream software dependencies,

leaving the supply chain largely unchecked.

Sunil Anasuri1 & Guru Pramod Rusum / IJETCSIT, 5(3), 79-89, 2024

80

 Shift toward Dependency Management: Dependency management has come into focus in security as more open-

source software and package ecosystems have become popular. Integration was made easier by tools such as package

managers, which also came with the risk of applications being dragged in vulnerable or even malicious dependencies.

At this stage, organizations started introducing the patch management process, monitoring the dependencies more

thoroughly; however, most practices were inconsistent, and most of the vulnerabilities were unidentified as

organizations could not see the activity.

 Emergence of SBOMs and Transparency: The increasing number of high-profile claims, such as Heartbleed (2014)

and Log4Shell (2021), has fueled the necessity for greater transparency in software composition. This resulted in the

development of the Software Bill of Materials (SBOM), which offered a standardized list of all the constituents of a

software product. Governments, especially via the U.S. Executive Order 14028, have started to require the adoption of

SBOM to enhance accountability and traceability in the software supply chain.

 Zero-Trust and Secure Build Pipelines: The industry has shifted to a zero-trust model for software development, as

attackers have increasingly targeted build environments and CI/CD pipelines. The resultant evolution led to the

introduction of SLSA (Supply Chain Levels for Software Artefacts) and verification tools, such as in-toto, to verify

artefact integrity. With the implementation of cryptographic signing, provenance verification, and continuous

monitoring, organizations started to view each software lifecycle step as a potential attack and thus needed to be

validated.

 Integration of Governance and Global Standards: Currently, the practice of supply chain security is characterised

by the integration of governance, policies, and technical controls. Organization-specific standards like NIST SP 800 -

161, ISO/IEC 27036 and ENISA guidelines offer systematic methods that can help the organization to pave the way

to best practices. Meanwhile, tooling ecosystems have reached a state of maturity that can automate compliance,

vulnerability scanning, and artefact verification. This has been supplemented by a transition from patch-based, post-

hoc application security to a proactive, comprehensive security strategy, where policy enforcement, tooling, and inter-

industry interaction coincide to mitigate systematic threats.

Figure 1. Evolution of Software Supply Chain Security

1.2. Problem Statement

Among the most urgent problems in securing the modern software supply chain is the lack of end-to-end visibility over the

entire development and deployment cycle. Companies have a growing reliance on complex ecosystems of third-party

packages, open-source libraries, and vendor-provided packages, most of which have minimal verification. [4,5] Such

dependencies are frequently based upon unverified repositories or are supported by small groups with little resources to tend to

security issues. Such dependence brings in a tremendous level of uncertainty since weaknesses or malicious code installed in

such components could potentially not be discovered until they are actually being utilized. To add to this problem is the

extensive use of libraries that have passed their due date in terms of production. Developers have often emphasized

functionality and release speed at the cost of maintaining continued updates, and therefore may continue to use legacy

components well beyond the time that known vulnerabilities are announced. These delays create the opportunity to perform

attacks on well-deployed but poorly maintained software packages, compromising large-scale systems, as in the case of the

Log4Shell example.

Along with third-party risks, many organisations continue to use closed-source build methods that conceal key phases of

software development. Without open and auditable build pipelines, the integrity of artefacts can hardly be ensured, and it is

practically impossible to be certain that no tampering has occurred to the software during compilation or packaging. Such

obscurity breeds blind spots in the estimation of risk, and institutions are not adequately equipped to measure the actual

Sunil Anasuri1 & Guru Pramod Rusum / IJETCSIT, 5(3), 79-89, 2024

81

exposure of their systems. As demonstrated by the SolarWinds attack, a single breach in the build environment can escalate

into a systemic issue affecting thousands of downstream customers. All these challenges highlight the need for mechanisms

that can provide constant visibility, enforce policy, and integrate security tooling into the development pipeline at all possible

layers. In the absence of such measures, organizations are susceptible to advanced threat actors who prey upon blind spots

throughout the software delivery chain.

2. Literature Survey
2.1. Policies and Standards

Cybersecurity Supply Chain Risk Management (C-SCRM) has been a new trend over the past couple of years, where a

number of policies and standards have influenced best practices. [6-9] NIST Special Publication 800-161 also offers detailed

guidance on the need to manage the supply chain cybersecurity risk, with an important thrust on governance, risk analysis, and

supplier and third-party channels control. Executive Order in the U.S. became a turning point because it obliged the

implementation of a Software Bill of Materials (SBOM) to enhance transparency of the software components and minimizing

the risk of concealed vulnerabilities.

The ENISA Guidelines on the supply chain risk in Europe emphasise a holistic approach to risk management in the supply

chain and promote the assessment of dependencies, the building of trust in supply chain partners, and resilience based on

contractual and technical safeguards. The international standard that secures supplier relationships globally is ISO/IEC 27036,

with a focus on risk considerations at various phases of procurement and life cycle management. These policies and standards,

in sum, establish a basis for regulating the risk of systems in progressively sophisticated software environments.

2.2. Tooling Ecosystem

An effective tooling environment has been developed to assist organisations in recording supply chain security methods.

Standardized software inventories, CycloneDX creates encrypted Bom generators like CycloneDX and SPDX, which can

produce standardized software inventories that enable organizations to better understand and manage vulnerabilities that exist

within software component inventories. The SLSA (Supply-chain Levels for Software Artifacts) Framework introduces

successively higher levels of guarantees on the integrity of software, and by doing so, enables organizations to provide secure

build pipelines and reduce the risks due to tampering.

As a complement, in-toto offers a model to prove the integrity of software artefacts by capturing cryptographic phases in

the software development lifecycle, building provenance and accountability. Moreover, vulnerability scanning is vitally

important in the use of static and dynamic analysis tools, which enable the organization to identify holes in code and running

applications. These tools have become increasingly important in forming confidence in software supply chains through

integration into Continuous Integration/Continuous Deployment (CI/CD) environments.

2.3. Notable Incidents

The security of the software supply chain is of utmost importance, as some high-profile incidents have revealed. The

example of SolarWinds proves that built systems are devastating when they are compromised because malicious code inserted

into the Orion platform affected more than 18,000 organizations, such as government agencies and Fortune 500 companies.

The vulnerability associated with the incident further highlighted that popular open-source components pose a significant

security risk, as an exploit of the Log4j library impacted millions of systems globally and necessitated swift action to address.

Meanwhile, later in the same year, the Codecov security incident demonstrated the danger of hacked CI pipelines: an attacker

inserted a script into the software build, which extracted sensitive information from customer environments. An attack similar

to the previous ones occurred in April 2021 and is known as Dependency Confusion, in which attackers used package

namespaces to trick organisations (such as Microsoft, Apple, and others) into downloading malicious dependencies instead of

the actual internal packages. All of these attacks provide an overall picture of how attack vectors against the software supply

chain are becoming increasingly varied and how they can create far-reaching, sprawling effects on digital infrastructure

worldwide.

3. Methodology

Figure 2. Research Framework

Sunil Anasuri1 & Guru Pramod Rusum / IJETCSIT, 5(3), 79-89, 2024

82

3.1. Research Framework

 Policy Compliance: The first layer aims to align organisational use practices with the rules and regulations of

cybersecurity. [10-12] This covers compliance with standards like NIST SP 800-161, the Executive Order 14028, the

ENISA guidelines and the ISO/IEC 27036. Balancing the risk of suppliers and their management, compliance

monitoring, and contract signings during the procurement process are other well-established policies in the system of

governance. This layer sets the stage for securing the supply chain by establishing criteria for what must be carried to

a certain level before the technical measures can become effective.

 Tooling Integration: The second layer focuses on the use and acknowledgement of security tools throughout the

software development lifecycle. This means producing and controlling SBOMs via compatible regimes, such as

CycloneDX or SPDX, the implementation of the SLSA framework of software integrity, and the utilisation of

solutions, including in-toto, to verify artifacts. Also, the ability to detect vulnerabilities is enhanced by the use of

static and dynamic analysis tools deployed into CI/CD pipelines. The right tooling integration can automate not only

compliance but also enable real-time insight into the risks upstream and downstream in the supply chain.

 Incident Response Readiness: The third tier readies institutions to react fast and efficiently to supply chain security

breaches. Lessons learned (e.g., SolarWinds, Log4Shell, or Dependency Confusion), this layer is concerned with

proactive monitoring, clear response playbooks, and recurring incident rehearsals. Through the integration of threat

intelligence and communication procedures, the organizations will be in a position to limit harm, uphold confidence

among the stakeholders, and initiate recovery at a faster rate. Such preparedness also means the effect can be less

severe despite the exploitation of the vulnerabilities.

3.2. Flowchart of Supply Chain Security Methodology

Figure 3. Flowchart of Supply Chain Security Methodology

 Inputs: The methodology commences with the identification of major inputs, which entail the organizational

requirements, regulatory standards, the supplier data and software components utilized in development. These inputs

give the fundamental knowledge requirements of risk assessment and ensure that any further steps of the process are

based on verified and timely dependencies, policies and compliance requirements.

 Policy Layer: The policy layer acts as the basis for ingraining adherence to international and regional cybersecurity

recommendations, i.e., NIST SP 800-161, Executive Order 14028, ENISA guidelines and ISO / IEC 27036. This step

characterizes governance arrangements, contracting relationships with suppliers and compliance milestones.

Institutionalizing such needs will lead to organizations having an understanding of what secure supply chain practices

entail.

 Tooling Layer: The tooling layer is the foundation that interprets policy needs into technical implementation

controls. It comprises the creation and verification of SBOM and the use of the SLSA framework to achieve software

integrity, engage with the in-toto to verify the artifacts, and carry out vulnerability scanning with static and dynamic

scanning tools. CI/CD automation enables these measures to be continuously driven through the pipelines, decreasing

human supervision while increasing the scalability of the process.

Sunil Anasuri1 & Guru Pramod Rusum / IJETCSIT, 5(3), 79-89, 2024

83

 Monitoring: The integration of tools can only be followed by continuous monitoring to oversee the development of

threats and vulnerabilities. This stage involves monitoring supply chain operations in real-time, gathering threat

information and intelligence, and detecting and alerting to anomalies. Monitoring also involves conducting periodic

audits to ensure that the audits are being adhered to and that controls remain truly effective in combating the

dynamically changing attack vectors.

 Output: Secure Software: The end product of the methodology will then be a stronger and more reliable software

product. Strategy: The process aids software to be hardened against supply chain attacks by aligning organizational

inputs with robust policies, having robust implementation of tooling and close monitoring. This is a secure application

that reduces risk exposure, safeguards stakeholders, and enhances overall digital resilience.

3.3. Policy Enforcement Mechanisms

In converting the potentials of supply chain security standards to uniform organizational habits, an effective

implementation process of policy is required. [13-16] Among the most notable mechanisms are the implementation of the

Software Bills of Materials (SBOMs) that give a clear list of all the components being used in a software product. The

excluded, or unseen, libraries and dependencies introduced by third parties could be seen in organizations, ensuring proactive

patching due to the issuance of SBOMs throughout the acquisition and development activities. The threats related to the occult,

or outdated parts, are dictated by the absence of visibility. The translation of SBOM requirements into regulations, such as

those outlined in Executive Order 14028, enables suppliers and producers of software to be held responsible for documenting

and publishing the details of their components, to bolster trust and traceability throughout the supply chain.

Along with the adoption of SBOM is the philosophy of zero-trust software development pipelines that necessitates an

intense degree of verification at all phases of the build and deployment process. Whereas older paradigms of trust presuppose

that internal systems or developers can be trusted, the zero-trust paradigm models a system where constant authentication of

users, the signing of artefacts, and verification of provenance are enforced to limit the risks of insider attacks and tampering.

Through a combination of in-toto in artifacts verification and the SLSA framework used to verify software integrity,

organizations will be able to verify cryptographically every code commit, build process, and release artifact. Such a degree of

enforcement is not only effective in minimizing malicious code injection, as we have seen in the case of SolarWinds, but also

enforces end-to-end integrity in the context of modern CI/CD pipelines. Lastly, a regularly scheduled compliance audit is a

governance tool that confirms the effectiveness of policies and controls being implemented. This audit may be internal or

external and typically reviews supplier contracts, checks the accuracy of the SBOM, conducts a pipeline security control audit,

and assesses compliance at the standard level versus NIST SP 800-161 and ISO/IEC 27036. This is because with the periodic

audit performed, accountability is achieved, areas of weakness in enforcement are identified, and better steps are taken to

strengthen the security of the organization.

3.4. Tooling Integration

 Automated SBOM Generation in CI/CD: The ability to automatically generate a Software Bill of Materials

(SBOM) in CI/CD pipelines provides a full, correct inventory of what is in a piece of software as it would be

installed, every time that a piece of software is built. Tools such as CycloneDX and SPDX enable integration into

build processes to automatically record dependencies, their versions, and license types. Such automation eliminates

the potential for manual errors, enhances transparency, and ensures that all releases comply with regulatory

requirements, such as those outlined in Executive Order 14028. The integration of the SBOM generation with CI/CD

runs allows an organization to have a real-time view of the software composition, and it is important to identify

vulnerabilities in popular third-party libraries.

 Vulnerability Scanners: Another important practical integration of tooling involves vulnerability scanning tools,

which can provide the best foreknowledge of vulnerabilities in both source code and runtime environments. Static

Application Security Testing (SAST) tools are used to check code against well-known vulnerabilities, and Dynamic

Application Security Testing (DAST) simulates attacks to find vulnerabilities that can be exploited. Deployed in

CI/CD pipelines, these scanners enable organisations to detect and address bugs as soon as possible, earlier in the

software development lifecycle, which significantly reduces the attack surface. Continuous scanning will also allow

more recently found vulnerabilities (including Log4Shell) to be matched up to currently deployed components using

SBOM data, allowing immediate responses and patches.

 Cryptographic Signing Using Sigstore: Cryptographic signing mechanisms, such as those enabled by Sigstore,

provide a means to establish confidence in the integrity and authenticity of software artefacts. Signatures of the

container images, binaries, and any other artefacts created by developers using cryptographic keys hosted on secure

identity providers can be verified through Sigstore, which simplifies and democratises the verification process. With

Sigstore included as part of the CI/CD pipeline, organizations can ensure that the release process can only result in

promoted verified artifacts, reducing the risk of artifact tampering and malicious replacement. This will directly

reduce supply chain attack vectors, including package namespace hijacking or build pipeline compromises, in that it

offers an immunizing chain of trust across the source to deployment path.

Sunil Anasuri1 & Guru Pramod Rusum / IJETCSIT, 5(3), 79-89, 2024

84

Figure 4. Tooling Integration

3.5. Risk Assessment Model

To systematically assess the security of software supply chains, we propose a quantitative Risk Assessment Model that

computes an aggregate risk score [17-19] based on the properties of individual software dependencies. The model can be stated

as:

In which 𝐷𝑖 is the dependency criticality, 𝑉𝑖 the known severity of the vulnerability, 𝐸𝑖 the exploitability factor and 𝑁 the

total number of dependencies within the software system. The formula gives a normalized metric of risk in the supply chain so

that the organization can focus its mitigation activities on objective and quantitative information. Dependency criticality () is

the first factor and involves assessing each individual component within the grand scheme of things. Deeply integrated,

mission-critical, and an essential component of core functionality are rated higher on the criticality scale than are optional or

peripheral modules. An example would be a widely used logging library like Log4j, which is a critical library since multiple

software systems use it. Lastly, the aggregated values can be normalized by the total number of dependencies to yield a relative

risk with which to compare the risks in projects of different sizes. This allows the organizations to focus remediation efforts on

large and complicated systems, while being fair in the risk assessment process.

All in all, the model offers a structured data-entry way of evaluating security risk to the supply chain and aids informed

decision-making in managing incidents and preventing them. The second metric, the severity of vulnerability (ÂŠ), is the

measurement of the potential impact of known vulnerabilities, which uses scoring models like the Common Vulnerability

Scoring System (CVSS). A high score of vulnerability, such as remote code execution vulnerabilities, can pose a huge risk

compared to less severe vulnerabilities like information disclosure vulnerabilities. This aspect means that the risk assessment

adopts the published guidelines for vulnerability assessment. The third aspect, exploitability (described as 𝐸 5650erigslovl

BureadroDA quote movement), takes into account the probability that it is possible to use a particular vulnerability in practice.

This encompasses factors such as the potential attacker's access to public exploits, the complexity of the assault's mechanisms,

and the existing activity of the attackers in personally weaponising the vulnerability. The inclusion of exploitability enables

this model to differentiate between conceptual risks as opposed to risks that give rise to direct threats.

4. Results and Discussion
4.1. Comparative Analysis

Table 1. Comparative Analysis

Approach Vulnerability Exposure (%) Incident Response Time (%)

Traditional security 85 72

Tooling 45 36

Policy + Tooling 25 12

Sunil Anasuri1 & Guru Pramod Rusum / IJETCSIT, 5(3), 79-89, 2024

85

Figure 5. Graph representing Comparative Analysis

 Traditional Security: Companies that adopt a purely traditional security strategy, including perimeter protection,

error-solving physical auditing, and in-between patching, were characterized by the highest exposure to

vulnerabilities, which was observed to be at 85%. These organizations lack supply chain-specific controls or

automation, resulting in a lack of visibility to third-party dependencies (72%) and, when events do take place, slower

response times (72%). Such a reactive model can frequently lead to late patching, piecemeal monitoring, and

increased vulnerability to multifaceted attacks, such as the one in SolarWinds.

 Tooling: Exposure to vulnerabilities was minimized, and vulnerability levels dropped to 45 percent in organizations

that undertook the use of security tooling with no policy mechanism framework. Faster detection and partial

automation of incident response were achieved through the involvement of SBOM generators, vulnerability scanners,

and artefact verification, resulting in a 36 per cent decrease in incident response time. But since there was no

standardized approach to enforcing policy, there was limited uniformity of tooling effectiveness among teams and

between projects. Organizations did not, in many instances, have the governance mechanisms in place to achieve

comprehensive adoption, leaving a hole in the level of compliance and in supply chain resilience.

 Policy and Tooling: The greatest effect was perceived when both strong governance and technical enforcement were

present, yielding the highest vulnerability exposure rate of 25% and incident response time was reduced to 12%. This

holistic solution used policies, such as NIST SP 800-161 and Executive Order 14028, as guiding principles and to

create new tools, such as SBOM-generators, SLSA compliance, and Sigstore signing as part of the CI/CD processes.

The blend not only automated and provided visibility, but it also ensured accountability and consistency with the

industry standards. This led to organizations being more prepared to anticipate threats and react swiftly, as well as

contain them, compared to organizations with isolated practice.

4.2. Case Study Insights

 SolarWinds: The 2020 SolarWinds instance revealed the potentially disastrous implications of not performing build

integrity checks on software supply chains. Hackers could hack into the Orion system building environment and inject

malicious code that spreads to more than 18,000 companies, including government agencies and Fortune 500

corporations. The lack of cryptographic verification, provenance tracking of artifacts, and high assurance of the

pipeline security controls enabled the malicious patches on the software to be pushed without being detected. This

example highlights the importance of secure builds, zero-trust building pipelines, and systems, such as the SLSA

framework, in establishing the integrity of software artefacts.

 Log4Shell: The discovery of the Log4Shell vulnerability in December 2021 highlighted the risks associated with

poorly maintained and deeply ingrained dependencies in software infrastructures. The vulnerability, found in the

popular Log4j library, exposed millions of applications worldwide to remote code execution attacks. The software of

many organizations used Log4j, something they were not aware of, which hindered the process of remediating, thus

increasing the effect. The case highlights the significance of keeping an accurate SBOM, performing ongoing

vulnerability scanning, and possessing visibility into dependencies as one of the building blocks of supply chain

security. Unmanaged, important open-source components may also become system weak points.

 Dependency Confusion: The 2021 Dependency Confusion attacks revealed that package ecosystems have a

fundamental problem: significant weaknesses in how package namespaces are managed. Adversaries exploited

conflicts in the naming of internal and individual packages within publicly available registries by uploading packages

with device-damaging malicious code under the same name. These deceptive dependencies were erroneously

activated by build systems that prioritized public sources, and companies such as Microsoft and Apple were infected.

This case showed that, despite applying secure coding, in a case where an organisation has adopted secure coding

practices, faults in the package management and the assumptions of trust in the ecosystem can be compromised.

85

45

25

72

36

12

0

20

40

60

80

100

Traditional security Tooling Policy + Tooling

Vulnerability Exposure (%) Incident Response Time (%)

Sunil Anasuri1 & Guru Pramod Rusum / IJETCSIT, 5(3), 79-89, 2024

86

Tactics to end authoritative approach, such as scoped package naming, dependent repository controls, and

cryptographic signing of dependents, are fundamental to defying this type of attack.

4.3. Discussion

Various findings of this research indicate that ensuring the protection of the software supply chain is a multi-level process

that involves integrating policy, tooling, and governance, rather than resorting to isolated practices. The comparison analysis is

vivid that the organizations that were using an integrated structure of policies and automated tooling mechanism had a low

vulnerability exposure and a quick response rate. This once again throws light on the fact that supply chain security cannot be

viewed simply as a technical issue, but it is also a governance, compliance and cultural integration in the organizations. For

example, although vulnerability scanners and SBOM generators can provide visibility into dependencies, they are not effective

unless implemented in conjunction with enforcement layers and ongoing monitoring of compliance. The same can be said of

policies such as NIST SP 800-161 or Executive Order 14028; they are great as guidelines, but without automation and secure

build pipelines, enforcement is problematic and often lacks firmness, being susceptible to human error.

The analyzed case studies based on SolarWinds, Log4Shell, and Dependency Confusion also confirm that reactive

methods against such measures are not enough when it comes to modern supply chain attacks. These attacks demonstrate that

the vulnerabilities exploited by the attackers are systemic, and they may include compromises in build systems, dependencies

and package ecosystem flaws. All the cases report on the effectiveness of proactive security, including signing cryptographic

artefacts, real-time exploit detection, and severe dependency checking. In addition, the findings suggest that zero-trust

principles, when applied to the development pipeline, may help mitigate risks, as no code, component, or contributor is

implicitly trusted. Another important lesson is that we need international cooperation and standardization. Supply chains are

cross-industry and cross-border, leaving open spaces that adversaries can exploit. Common ground regarding the formats of

SBOMs, consistency in the global regulations (across countries), and collaboration of governments, enterprises, and open-

source communities will play a vital role in long-term resiliency.

5. Conclusion
This paper notes that policy, governance, and tooling have a synergistic effect on software supply chain security, such that

no single approach can secure software supply chains. Accountability and compliance require the creation of a regulatory and

governance framework that includes measures and policies, such as NIST SP 800-161, ISO/IEC 27036, and Executive Order

14028. Enforceable, technical safeguards translate these policies into tooling integration, specifically, by means of automated

SBOM generation, vulnerability scanners, and cryptographic signing. Governance processes ensure that policies and tools are

used consistently among suppliers, partners, and within internal teams. The discussion reiterates that the generation and

enforcement of SBOM via automation dramatically decreases the attack surface, thus empowering organizations to detect and

handle vulnerabilities in real-time and not after the fact. Furthermore, case studies such as SolarWinds, Log4Shell, and

Dependency Confusion can only reiterate the ineffectiveness of reactive response measures, as entities often experience

widespread compromise before any mitigation efforts are in place.

In the future and going forward, one of the major options of supply chain security would be the use of AI to make supply

chain security predictions that would allow organizations to foresee risks even before being actively taken advantage of. An

insight not currently covered by systems is the application of a machine learning model against vulnerability databases, exploit

patterns, and dependency graphs that can be queried predictively to indicate which components are most at risk of being

exploited. The other vital area is that of global standardization of SBOM formats. Although CycloneDX and SPDX have

significant followings, the fact that there is no universal agreement tends to cause some interoperability problems in

multinational organizations. This would make it easier to integrate within ecosystems and would be standardized to generate

transparency and consistency. On top of this, cross-border regulatory harmonization will also play a very critical role as the

supply chains will cross jurisdictions.

The varying laws and regulations can introduce complexity to compliance, and synced frameworks would enable the

development of more coherent and joint strategies for supply chain resilience. Collectively, it is not an event that needs to be

done once to secure the software supply chain, but a continuous process. As illustrated by recent high-profile events, the nature

of threats is changing rapidly, and participants are constantly evolving to identify new vulnerabilities in the selected tooling,

policies, and human procedures. Cooperation among business, government, and industry may be necessary over the long term

to achieve resilience, as modern software environments become increasingly unified globally. Governments need to set and

enact baseline standards, industries need to invest in secure development processes and lifetime observation, and open-source

communities need to adopt secure-by-design principles. The software industry can integrate proactive governance, highly

technical controls, and collaborative efforts to foster international collaboration and a more reliable digital ecosystem. The

answer is obvious: supply chain security is more than a regulatory requirement; it is a strategic driver in the effort to secure

critical infrastructure, preserve user confidence, and ensure the survivability of the global internet.

Sunil Anasuri1 & Guru Pramod Rusum / IJETCSIT, 5(3), 79-89, 2024

87

References
[1] Boyens, J., Paulsen, C., Moorthy, R., Bartol, N., & Shankles, S. A. (2015). Supply chain risk management practices for

federal information systems and organizations. NIST Special Publication, 800(161), 32.

[2] Warren, M., & Hutchinson, W. (2000). Cyber attacks against supply chain management systems: a short note.

International Journal of Physical Distribution & Logistics Management, 30(7/8), 710-716.

[3] Hammi, B., Zeadally, S., & Nebhen, J. (2023). Security Threats, Countermeasures, and Challenges of Digital Supply

Chains. ACM Computing Surveys, 55(14s).

[4] Managing supply chain risk and disruption from IT security incidents. (2009). Operations Management Research, 2, 4-12.

[5] Boyens, J., Paulsen, C., Bartol, N., Winkler, K., & Gimbi, J. (2021). Key Practices in Cyber Supply Chain Risk

Management: Observations from Industry. NIST Interagency/Internal Report (NISTIR)-8276, National Institute of

Standards and Technology, Gaithersburg, MD.

[6] Barabanov, A., Markov, A., & Tsirlov, V. (2020). On the Systematics of Information Security in Software Supply Chains.

In Proceedings of the Computational Methods in Systems and Software (pp. 115-129). Cham: Springer International

Publishing.

[7] Hammi, B., & Zeadally, S. (2023). Software supply-chain security: Issues and countermeasures. Computer, 56(7), 54-66.

[8] Hughes, C., & Turner, T. (2023). Software Transparency: supply chain security in an era of a software-driven society.

John Wiley & Sons.

[9] Bejtlich, R. (2004). The Tao of network security monitoring: beyond intrusion detection. Pearson Education.

[10] Greenfield, V. A., Welburn, J. W., Schwindt, K., ISH, D., Lohn, A. J., & Hartnett, G. S. (2023). Cybersecurity and supply

chain risk management are not simply additive. Tech. Rep. RAND.

[11] Yeboah-Ofori, A., & Islam, S. (2019). Cybersecurity threat modeling for supply chain organizational environments.

Future internet, 11(3), 63.

[12] Software Supply-Chain Security: Issues and Countermeasures. Computer, 2023.

[13] Zhang, C., & Li, S. (2006). Secure information sharing in internet-based supply chain management systems. Journal of

Computer Information Systems, 46(4), 18-24.

[14] Stallings, W. (2018). Effective cybersecurity: a guide to using best practices and standards. Addison-Wesley Professional.

[15] Boyson, S. (2014). Cyber supply chain risk management: Revolutionizing the strategic control of critical IT systems.

Technovation, 34(7), 342-353.

[16] Sarathy, R. (2006). Security and the global supply chain. Transportation journal, 45(4), 28-51.

[17] Librantz, A. F. H., Costa, I., Spinola, M. D. M., de Oliveira Neto, G. C., & Zerbinatti, L. (2021). Risk assessment in

software supply chains using the Bayesian method. International Journal of Production Research, 59(22), 6758-6775.

[18] Choudhary, N. A., Singh, S., Schoenherr, T., & Ramkumar, M. (2023). Risk assessment in supply chains: a state-of-the-art

review of methodologies and their applications. Annals of Operations Research, 322(2), 565-607.

[19] Gokkaya, B., Aniello, L., & Halak, B. (2023). Software supply chain: review of attacks, risk assessment strategies and

security controls. arXiv preprint arXiv:2305.14157.

[20] Aqlan, F. (2016). A software application for rapid risk assessment in integrated supply chains. Expert Systems with

Applications, 43, 109-116.

[21] Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in

Parametric CAD. International Journal of Emerging Research in Engineering and Technology, 1(3), 35-

44. https://doi.org/10.63282/3050-922X.IJERET-V1I3P105

[22] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial

Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-

55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

[23] Enjam, G. R., & Tekale, K. M. (2020). Transitioning from Monolith to Microservices in Policy

Administration. International Journal of Emerging Research in Engineering and Technology, 1(3), 45-

52. https://doi.org/10.63282/3050-922X.IJERETV1I3P106

[24] Pappula, K. K., & Rusum, G. P. (2021). Designing Developer-Centric Internal APIs for Rapid Full-Stack

Development. International Journal of AI, BigData, Computational and Management Studies, 2(4), 80-

88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108

[25] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). End-to-End Hyperautomation with Oracle ERP and Oracle Integration

Cloud. International Journal of Emerging Research in Engineering and Technology, 2(4), 59-

67. https://doi.org/10.63282/3050-922X.IJERET-V2I4P107

[26] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International

Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-

V2I1P107

[27] Enjam, G. R., & Chandragowda, S. C. (2021). RESTful API Design for Modular Insurance Platforms. International

Journal of Emerging Research in Engineering and Technology, 2(3), 71-78. https://doi.org/10.63282/3050-922X.IJERET-

V2I3P108

https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106
https://doi.org/10.63282/3050-922X.IJERETV1I3P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108
https://doi.org/10.63282/3050-922X.IJERET-V2I4P107
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-922X.IJERET-V2I3P108
https://doi.org/10.63282/3050-922X.IJERET-V2I3P108

Sunil Anasuri1 & Guru Pramod Rusum / IJETCSIT, 5(3), 79-89, 2024

88

[28] Rusum, G. P., & Pappula, kiran K. . (2022). Event-Driven Architecture Patterns for Real-Time, Reactive

Systems. International Journal of Emerging Research in Engineering and Technology, 3(3), 108-

116. https://doi.org/10.63282/3050-922X.IJERET-V3I3P111

[29] Pappula, K. K. (2022). Containerized Zero-Downtime Deployments in Full-Stack Systems. International Journal of AI,

BigData, Computational and Management Studies, 3(4), 60-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V3I4P107

[30] Jangam, S. K., & Karri, N. (2022). Potential of AI and ML to Enhance Error Detection, Prediction, and Automated

Remediation in Batch Processing. International Journal of AI, BigData, Computational and Management Studies, 3(4),

70-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P108

[31] Pedda Muntala, P. S. R. (2022). Natural Language Querying in Oracle Fusion Analytics: A Step toward Conversational

BI. International Journal of Emerging Trends in Computer Science and Information Technology, 3(3), 81-

89. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I3P109

[32] Rahul, N. (2022). Optimizing Rating Engines through AI and Machine Learning: Revolutionizing Pricing

Precision. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-

101. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110

[33] Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of

Emerging Trends in Computer Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-

9246.IJETCSIT-V3I2P109

[34] Rusum, G. P., & Anasuri, S. (2023). Synthetic Test Data Generation Using Generative Models. International Journal of

Emerging Trends in Computer Science and Information Technology, 4(4), 96-108. https://doi.org/10.63282/3050-

9246.IJETCSIT-V4I4P111

[35] Pappula, K. K. (2023). Edge-Deployed Computer Vision for Real-Time Defect Detection. International Journal of AI,

BigData, Computational and Management Studies, 4(3), 72-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V4I3P108

[36] Jangam, S. K. (2023). Data Architecture Models for Enterprise Applications and Their Implications for Data Integration

and Analytics. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 91-

100. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P110

[37] Pedda Muntala, P. S. R., & Karri, N. (2023). Managing Machine Learning Lifecycle in Oracle Cloud Infrastructure for

ERP-Related Use Cases. International Journal of Emerging Research in Engineering and Technology, 4(3), 87-

97. https://doi.org/10.63282/3050-922X.IJERET-V4I3P110

[38] Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. International

Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 85-

94. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110

[39] Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2023). Zero-Downtime CI/CD Production Deployments for

Insurance SaaS Using Blue/Green Deployments. International Journal of Emerging Research in Engineering

and Technology, 4(3), 98-106. https://doi.org/10.63282/3050-922X.IJERET-V4I3P111

[40] Pappula, K. K. (2020). Browser-Based Parametric Modeling: Bridging Web Technologies with CAD

Kernels. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 56-

67. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107

[41] Enjam, G. R., & Chandragowda, S. C. (2020). Role-Based Access and Encryption in Multi-Tenant Insurance

Architectures. International Journal of Emerging Trends in Computer Science and Information Technology, 1(4), 58-

66. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I4P107

[42] Pappula, K. K., & Anasuri, S. (2021). API Composition at Scale: GraphQL Federation vs. REST

Aggregation. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 54-

64. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P107

[43] Pedda Muntala, P. S. R. (2021). Integrating AI with Oracle Fusion ERP for Autonomous Financial Close. International

Journal of AI, BigData, Computational and Management Studies, 2(2), 76-86. https://doi.org/10.63282/3050-

9416.IJAIBDCMS-V2I2P109

[44] Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International

Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-

9262.IJAIDSML-V2I1P106

[45] Enjam, G. R., Chandragowda, S. C., & Tekale, K. M. (2021). Loss Ratio Optimization using Data-Driven Portfolio

Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 54-

62. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107

[46] Rusum, G. P. (2022). Security-as-Code: Embedding Policy-Driven Security in CI/CD Workflows. International Journal of

AI, BigData, Computational and Management Studies, 3(2), 81-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V3I2P108

[47] Pappula, K. K. (2022). Modular Monoliths in Practice: A Middle Ground for Growing Product Teams. International

Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 53-

63. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P106

https://doi.org/10.63282/3050-922X.IJERET-V3I3P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P108
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I3P109
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P111
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P110
https://doi.org/10.63282/3050-922X.IJERET-V4I3P110
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110
https://doi.org/10.63282/3050-922X.IJERET-V4I3P111
https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107
https://doi.org/10.63282/3050-9246.IJETCSIT-V1I4P107
https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P107
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I2P109
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I2P109
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I2P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I2P108
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P106

Sunil Anasuri1 & Guru Pramod Rusum / IJETCSIT, 5(3), 79-89, 2024

89

[48] Jangam, S. K., Karri, N., & Pedda Muntala, P. S. R. (2022). Advanced API Security Techniques and Service

Management. International Journal of Emerging Research in Engineering and Technology, 3(4), 63-

74. https://doi.org/10.63282/3050-922X.IJERET-V3I4P108

[49] Pedda Muntala, P. S. R. (2022). Enhancing Financial Close with ML: Oracle Fusion Cloud Financials Case

Study. International Journal of AI, BigData, Computational and Management Studies, 3(3), 62-

69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P108

[50] Rahul, N. (2022). Enhancing Claims Processing with AI: Boosting Operational Efficiency in P&C

Insurance. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 77-

86. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108

[51] Enjam, G. R., & Tekale, K. M. (2022). Predictive Analytics for Claims Lifecycle Optimization in Cloud-Native

Platforms. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-

104. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P110

[52] Rusum, G. P. (2023). Secure Software Supply Chains: Managing Dependencies in an AI-Augmented Dev

World. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(3), 85-

97. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I3P110

[53] Pappula, K. K., & Rusum, G. P. (2023). Multi-Modal AI for Structured Data Extraction from Documents. International

Journal of Emerging Research in Engineering and Technology, 4(3), 75-86. https://doi.org/10.63282/3050-922X.IJERET-

V4I3P109

[54] Jangam, S. K., & Karri, N. (2023). Robust Error Handling, Logging, and Monitoring Mechanisms to Effectively Detect

and Troubleshoot Integration Issues in MuleSoft and Salesforce Integrations. International Journal of Emerging Research

in Engineering and Technology, 4(4), 80-89. https://doi.org/10.63282/3050-922X.IJERET-V4I4P108

[55] Pedda Muntala, P. S. R. (2023). AI-Powered Chatbots and Digital Assistants in Oracle Fusion Applications. International

Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 101-

111. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P111

[56] Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C

Insurance. International Journal of AI, BigData, Computational and Management Studies, 4(3), 92-

101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110

[57] Enjam, G. R. (2023). Optimizing PostgreSQL for High-Volume Insurance Transactions & Secure Backup and Restore

Strategies for Databases. International Journal of Emerging Trends in Computer Science and Information

Technology, 4(1), 104-111. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P112

[58] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). Real-time Decision-Making in Fusion ERP Using Streaming Data and

AI. International Journal of Emerging Research in Engineering and Technology, 2(2), 55-

63. https://doi.org/10.63282/3050-922X.IJERET-V2I2P108

[59] Rusum, G. P., & Pappula, K. K. (2022). Federated Learning in Practice: Building Collaborative Models While Preserving

Privacy. International Journal of Emerging Research in Engineering and Technology, 3(2), 79-

88. https://doi.org/10.63282/3050-922X.IJERET-V3I2P109

[60] Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International

Journal of Emerging Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.IJERET-

V3I4P107

[61] Jangam, S. K. (2022). Self-Healing Autonomous Software Code Development. International Journal of Emerging Trends

in Computer Science and Information Technology, 3(4), 42-52. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105

[62] Pedda Muntala, P. S. R., & Karri, N. (2022). Using Oracle Fusion Analytics Warehouse (FAW) and ML to Improve KPI

Visibility and Business Outcomes. International Journal of AI, BigData, Computational and Management Studies, 3(1),

79-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P109

[63] Rahul, N. (2022). Automating Claims, Policy, and Billing with AI in Guidewire: Streamlining Insurance

Operations. International Journal of Emerging Research in Engineering and Technology, 3(4), 75-

83. https://doi.org/10.63282/3050-922X.IJERET-V3I4P109

[64] Enjam, G. R., & Tekale, K. M. (2022). Predictive Analytics for Claims Lifecycle Optimization in Cloud-Native

Platforms. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-

104. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P110

[65] Rusum, G. P. (2023). Large Language Models in IDEs: Context-Aware Coding, Refactoring, and

Documentation. International Journal of Emerging Trends in Computer Science and Information Technology, 4(2), 101-

110. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P110

[66] Jangam, S. K. (2023). Importance of Encrypting Data in Transit and at Rest Using TLS and Other Security Protocols and

API Security Best Practices. International Journal of AI, BigData, Computational and Management Studies, 4(3), 82-

91. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P109

[67] Reddy Pedda Muntala , P. S. (2023). Process Automation in Oracle Fusion Cloud Using AI Agents. International Journal

of Emerging Research in Engineering and Technology, 4(4), 112-119. https://doi.org/10.63282/3050-922X.IJERET-

V4I4P111

https://doi.org/10.63282/3050-922X.IJERET-V3I4P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P108
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P110
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I3P110
https://doi.org/10.63282/3050-922X.IJERET-V4I3P109
https://doi.org/10.63282/3050-922X.IJERET-V4I3P109
https://doi.org/10.63282/3050-922X.IJERET-V4I4P108
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P112
https://doi.org/10.63282/3050-922X.IJERET-V2I2P108
https://doi.org/10.63282/3050-922X.IJERET-V3I2P109
https://doi.org/10.63282/3050-922X.IJERET-V3I4P107
https://doi.org/10.63282/3050-922X.IJERET-V3I4P107
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P109
https://doi.org/10.63282/3050-922X.IJERET-V3I4P109
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P110
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P110
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P109
https://doi.org/10.63282/3050-922X.IJERET-V4I4P111
https://doi.org/10.63282/3050-922X.IJERET-V4I4P111

