
International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V5I3P107

Eureka Vision Publication | Volume 5, Issue 3, 68-78, 2024

Original Article

Scalability and Performance Limitations of Low-Code and No-

Code Platforms for Large-Scale Enterprise Applications and

Solutions

Sandeep Kumar Jangam

Independent Researcher, USA.

Abstract - Low-Code and No-Code (LCNC) development platforms have become ubiquitous, and are showing promise as a

means of rapid application development, enabling business analysts, citizen developers, and professional software engineers to

design, deploy and iterate on applications with little to no hand-coded effort. The growth in LCNC platforms has been

impacted by the demand of enterprises to increase their delivery time when it comes to digital transformation, costs, and

enhanced agility. Notwithstanding these, scalability and performance constraints have been identified as the primary obstacles

to widespread acceptance in mission-critical, high-scale enterprise deployments. In this paper, the author examines these

issues in detail, drawing on a review of LCNC architectures, vendor propositions, and practical examples. Performance

bottlenecks are examined in terms of the overhead incurred during runtime execution, poor performance of the abstraction

layers, poor extensibility, integration overheads, and a lack of suitable governance frameworks. We note that LCNC solutions

can support small to medium-scale workloads, but expanding to enterprise workloads comes with design concerns regarding

the ability to handle a greater level of concurrency, manage intra-replication transactions, and compliance with regulations.

Moreover, dependence on proprietary vendor ecosystems carries long-term risks of lock-in, unpredictable performance, and

the inability to potentially port out. This paper summarizes the literature (2015-2023), benchmarks, and industry reports into a

comprehensive picture of how to assess the scalability of LCNC. The findings suggest that, despite being able to complement

conventional development, LCNC platforms have limitations that necessitate hybrid solutions and other DevOps methods to

sustain enterprise adoption. The paper concludes by presenting architectural proposals, governance structures, and future

research directions, particularly in light of the challenges associated with edge computing, AI-enhanced LCNC development,

and cloud-native scalability.

Keywords - Low-Code, No-Code, Scalability, Performance Limitations, Enterprise Applications, Digital Transformation,

Platform Bottlenecks.

1. Introduction
The fast development of the digital economy has increased pressure on organizations to acquire faster-developing

processes and become more business-driven in nature. The customization and solidity of traditional methods of software

engineering can be a disadvantage since these software engineering systems may find it difficult to keep up with the demands

of the dynamic market environment, especially because these systems require specialized skills in programming, prolonged

development cycles and multiple complex deployments. In their turn, the Low-Code/No-Code (LCNC) platforms have become

one of the radical solutions that should be mentioned, as they provide visual modeling, drag-and-drop interfaces, and reusable

components that greatly reduce the entry barrier to developing applications. [1-4] The platforms also help make it possible to

emerge the so-called citizen developers, making business professionals with minimal coding background capable of actively

participating in the application design and delivery process, which can help accommodate the IT backlog and improve the

match between solutions and business requirements. Although this democratisation of development is one factor that catalyses

the acceleration of innovation at the departmental scale, scaling LCNC platforms to sustain enterprise-wide, mission-critical

applications throws a different set of challenges. Performance bottlenecks, reliability at high workloads, and the complexity of

governance and compliance frameworks become evident as the scope of applications increases. Thus, although LCNC

platforms could be highly effective in overcoming the technical expertise-business agility divide, operational, architectural, and

organizationational limitations must be further explored for their implementation on a large scale.

1.1. Importance of No-Code Platforms for Large-Scale Enterprise Applications

 Accelerating Digital Transformation: No-code platforms help enterprises stay on top of evolving market

requirements by significantly reducing the time needed to design, build, and distribute applications. When it facilitates

quicker prototyping and development in iterations, organizations can pursue digital transformation in a more effective

way so that new solutions will suit the changing streams of the business process and client requirements..

 Enabling Citizen Developers: A fundamental value proposition of the no-code approach is empowering business

users, also known as citizen developers. This democratisation of software development enables domain experts to take

Sandeep Kumar Jangam / IJETCSIT, 5(3), 68-78, 2024

69

an active part in creating the applications, thereby reducing the burden on overworked Information Technology (IT)

departments. This level of empowerment in large-scale enterprises results in the capacity for longer-term innovation,

where business units can convert their needs into functional solutions without intermediaries.

 Cost Efficiency and Resource Optimization: There is an increasing need in enterprises to maximize IT

expenditures, even as the demands on software solutions are very high. No-code platforms minimise the costs of

development by decreasing the requirement for expert knowledge in coding and generating quicker delivery cycles.

Also, reduced need to custom code will allow organizations to redeploy high-value, skilled developers to use on more

important and challenging initiatives, as most organizations use no-code solutions on tasks that are more routine.

 Increasing Agility and Flexibility: Agility is an essential factor in dynamic enterprise environments. No-code

platforms offer flexibility to make instant adjustments to applications in response to regulatory changes, customer

feedback, or market shifts. This flexibility allows mission-critical systems to be aligned with organizational missions

and goals that will allow resilience and competitiveness in rapidly changing industries.

 Enterprise-wide innovation as a driver: No-code platforms also facilitate innovation across various enterprise

functions by reducing impediments to entry in application development. This can be used by individual departments,

including HR and finance, supply chain, and customer service, who can individually develop and implement the

solution specific to their requirements. The use of this decentralized innovation creates a culture of continuous

innovation throughout the organization.

Figure 1. Importance of No-Code Platforms for Large-Scale Enterprise Applications

1.2. Scalability and Performance Limitations of Low-Code
Although low-code entered the market and found its full application as a means of speeding up developing and introducing

new applications and allowing more people to have an opportunity to contribute to software development, scalability and

performance under the enterprise environment are critical issues, which should be addressed when deciding to use low-code or

prefer another well-known approach to application development. Low-code solutions work very well at smaller scales or in

departmental use cases, enabling the rapid prototyping and deployment of applications. [5,6] A number of bottlenecks are,

however, identified when the implementation is scaled to enterprise-wide, mission-critical environments. Run-time

inefficiency is also one of the most important concerns because low-code solutions are based on abstracted interpreter and

middleware layers, which add to latency and processing overheads.

Such inefficiencies are compounded when the user load exceeds saturation points, such as 10,000 simultaneous users,

causing an exponential increase in response times and poor user interactions. Besides, database bottlenecks are frequent owing

to the fact that auto-generated schemas may not consist of optimized indexing, query-optimization strategies, thus leading to

extreme and awkward impediments to applications that necessitate an extreme volume of data processing/reporting or real-time

analytics. Another performance problem that rears its head is integration, especially in applications that are intensive in their

use of APIs. Most platforms have rigid rate restrictions to protect resources; however, these rate throttling limits can hinder

high-volume, integration-intensive processes that many businesses rely on for the smooth transfer of data among systems and

applications.

Moreover, the governance and access control solutions essential to compliance efforts may become stiff and

administratively burdensome on a large scale, where they slow down system responsiveness and drive up operational costs.

Altogether, these details point to the fact that low-code platforms are not designed per se to deliver as fast as they do;

furthermore, they are not necessarily optimized to meet the scale, complexity, and reliability requirements of large enterprises.

The performance of a low-code platform can be diminished to not meet enterprise-level demands without the use of structural

improvements like cloud-native extensibility, hybrid integration of custom-coded modules and AI-based methods of

Sandeep Kumar Jangam / IJETCSIT, 5(3), 68-78, 2024

70

optimization. Therefore, overcoming the issues related to scalability and performance is necessary for low-code to become a

staple of enterprise-wide digital transformation, beyond the convenience of a departmental tool.

2. Literature Survey
2.1. Early Works on Model-Driven Development

The conceptual basis of current Low-Code/No-Code (LCNC) platforms is in the Model-Driven Development (MDD) and

rapid application development (RAD) approaches. [7-9] The main findings in this research and industry adoption (2005-2012)

were the capabilities of rapid prototyping and ease of application design. These frameworks enabled developers to encapsulate

business logic into business models at higher levels, speeding up development cycles and reducing the labour-intensive manual

coding. However, these early contributions were found to have high potential for decreasing time-to-market, but with little

focus on scalability, maintenance, and robustness at the enterprise level. Consequently, despite providing the foundation for

existing LCNC practices, MDD and RAD were limited to small- to medium-scale applications and not suitable for enterprise-

wide implementations.

2.2. LCNC Platforms Scalability Disclaimer

With the development of the LCNC platforms, scalability is one of the most pressing issues, as emphasised in studies

conducted between 2018 and 2023. The overheads of execution were noted as one of the key issues because platform-specific

interpreters and abstraction layers added delays at run time and limited performance. Also, scalability-related issues with the

databases were evident in large-scale applications, where auto-generated schemas did not offer much to do with query

optimization thereby resulting in poor database management on complex data sets. Additionally, concerns about integration

gaps were also observed in enterprise implementations, where the integration of microservices and external APIs into LCNC

workflows proved to be a challenge in achieving effective scaling. The issues highlighted above indicate that, although LCNC

platforms are projected to bring rapidity and ease of access, their successful integration in the enterprise setting in the long run

largely relies on how the architectural and performance limitations will be overcome. Table 1 provides a comparative overview

of the most significant literature on LCNC scalability available through 2023, presenting major findings and their limitations.

2.3. Enterprise Adoption Case Studies

There are several case studies on how LCNC platforms are applied across various industries in practice. As an example,

Microsoft Power Apps has been heavily used in retail, where its ability to deploy applications quickly allowed organizations to

digitize workflows in a short period of time. The performance of large-scale integrations was, however, severely limited, as

enterprises complained of issues with API throttling. Likewise, OutSystems has found its foothold in the financial industry,

thanks to its good extensibility and ability to connect to legacy systems. Nonetheless, businesses faced governance issues

where roles, compliance, and version control were complicated to manage at scale. In the manufacturing industry, Mendix has

been successfully implemented through pilot programs, demonstrating good performance and elasticity. However, there was a

problem with scalability, as the system became overloaded when the intended number of concurrent users reached 10,000,

revealing weaknesses in the platform's ability to manage enterprise-scale traffic. These case studies highlight the fact that

although LCNC platforms are highly applicable when deployed quickly and achieve initial performance levels, their enterprise

adoption tends to raise more serious questions about scalability and governance.

3. Methodology
3.1. Research Framework

This study follows a research design that comprises three mutually converging methodological elements, namely

comparative benchmarking, architectural analysis, and literature synthesis. The basis of comparative benchmarking is to test

existing Low-Code/No-Code (LCNC) platforms according to set standards of scalability, performance, extensibility, and

enterpriseability. [10-13] This step helps identify the drawbacks as well as successes of the existing solutions and provides

practical evidence of where gaps appear in terms of scalability in practice. By systematically comparing several platforms

available, the drawbacks of current solutions and their nature will be outlined. In parallel, architectural analysis is also used to

investigate the technical designs behind LCNC platforms, particularly in implementation models, database management,

integration strategies, and governance processes. This method of analysis is able to identify architectural bottlenecks, including

interpreter overhead, inefficient schemas, and complications in integrations, which do not facilitate large-scale deployments.

Simultaneously, literature synthesis incorporates information found in previous scholarly research, trade reports, and case

reports, placing the analysis in the context of the broader scholarly and professional discussion. Such a synthesis not only

confirms the findings of benchmarking and architectural evaluation but also reveals themes, emerging trends, and unaddressed

gaps in the literature. Through the triangulation of knowledge drawn from these three elements, the research framework will

be methodologically rigorous and cover all aspects without being overly theoretical or overly applied. Furthermore, such a

multifaceted strategy will lead to the development of a comprehensive understanding of the LCNC scalability issues and

provide evidence-informed directions for their future improvements. A combination of benchmarking data and architectural

knowledge, enhanced by synthesizing the relevant literature, will form a sound framework of evaluation, including both the

technical and organizational aspects of LCNC adoption. Finally, this framework has systematic support in detecting

Sandeep Kumar Jangam / IJETCSIT, 5(3), 68-78, 2024

71

weaknesses in existing LCNC platforms and proposes design principles and best practices that can inform future research,

enterprise adoption plans, and platform development.

3.2. Evaluation Metrics

 Scalability: Scalability can be defined as the platform's ability to support growth in users and transaction volume

while maintaining functionality and stability. In the LCNC platform's context, this entails simulating the maximum

concurrent users supported, transactions per second, and system elasticity in a stressed state. The capability to manage

sudden changes in workloads and maintain adequate performance is essential in a scalable platform, ensuring the

reliability of applications in large enterprise settings.

 Performance: As a direct indicator, performance measures the effectiveness with which the platform manages

requests and provides responses. The main metrics are the average response time, the delay in task operation, and the

effectiveness of updates using the databases. Because LCNC platforms heavily rely on abstraction layers and auto-

generated code, monitoring these parameters will indicate whether platform overheads are a significant issue for the

end-user. The workflows in high-performing platforms have low execution delays, and they optimize the usage of

resources.

 Integration Capability: This rate assesses the way the LCNC platform integrates with external systems, APIs, and

microservices. Given that enterprises typically operate within a heterogeneous IT environment, it is crucial to

integrate them properly to ensure seamless coordination of their operations. Metrics such as API request processing,

the ability to support service orchestration, and interoperability with existing legacy systems are given attention.

Strongly integrated platforms, supported business-wide automation, and supported the introduction of microservice-

based systems.

 Governance: Governance refers to the controls a platform offers to manage security, compliance, and control. This

encompasses the assessment of access control policies, role-based controls, audit logging, and regulatory compliance

support. Governance in enterprise adoption plays an important role in determining levels of trust and sustainability, as

it makes sure that applications created using LCNC platforms fit the organizational standards and legal requirements

of the industries. The balance of high rates of development and risk, along with accountability, is facilitated by strong

administrative characteristics.

Figure 2. Evaluation Metrics

3.3. Experimental Setup

Figure 3. Experimental Setup

Sandeep Kumar Jangam / IJETCSIT, 5(3), 68-78, 2024

72

 Test Environments: The experiment's analysis is conducted on four popular platforms with Low-Code/No-Code

(LCNC) capabilities: Microsoft Power Apps, Mendix, OutSystems, and Appian. The platforms were chosen because

of their use by the enterprise, cloud-native features, and unique architectural patterns. Combining them in a controlled

setting will provide a comparative analysis of their strengths and shortcomings, especially in areas such as scalability,

integration, and governance. Both platforms are deployed in their suggested cloud environment to monitor outcomes

that represent a realistic enterprise application.

 Workloads: Workloads are modeled around typical application workloads, including ERP modules, HR portals and

transactional dashboards, so that they create true-to-life conditions of an enterprise environment. Such workloads

simulate common business activities, such as user logins, data entry, report querying, and multi-user transactions. The

evaluation through modeling realistic enterprise applications enables some insight into the performance of platforms

under conditions that reflect real-world organizational deployments, and not abstract benchmarking.

 Tools: Various industry-standard tools are used in combination to facilitate a thorough assessment. Apache JMeter is

also used to load test Apache JMeter, simulating thousands of concurrent users to quantify response times,

throughput, and latency under pressure. Amazon CloudWatch is also scheduled to monitor resource consumption on

an ongoing basis, including CPU, memory, and network bandwidth, to determine how the various platforms scale

resource allocation. SQL Profiler is used to analyze database queries, to make possible the detection of bottlenecks in

auto-generated schemas and the input and efficiency of queries. Combined, these tools give a multi-dimensional view,

integrating user-centric 54 performance data with a back-end architectural perspective.

3.4. Analytical Model

To formally analyze scalability in Low-Code/No-Code (LCNC) platforms, a measurement model is devised, which measures

the connection between user load, system throughput, latency and the run-time overhead. [14-16] In this case, the scalability

performance could be defined by the following S:

𝑈 is the number of concurrent users, and 𝑇 is the mean transaction throughput; 𝐿 is the latency incurred per request, and 𝑂

is the overhead incurred by LCNC runtime abstractions. This design captures the inherent principle that maximum scalability

is achieved when a system has the ability to support more users and transactions with reduced latency and overhead in the

runtime environment. Placing 𝑈 times 𝑇 in the numerator emphasises the fact that the greater the potential of a platform to

scale, the better it will be able to support more users simultaneously with high transaction processing rates. With this

penalization, however, systems that have too much latency or inefficient runtime abstractions are penalized by the denominator

(+𝑂). Latency () is of special concern in enterprise applications that place a premium on the user experience in response

time. The runtime overhead (8) is considered an inherent cost of LCNC platforms because their abstraction layers may

introduce a multiplicity of execution steps not inherent in traditional, hand-coded applications.

This analytical model offers a simplified yet efficient mechanism for benchmarking LCNC platforms at different

workloads. For example, the values of 𝑆 can be calculated and compared across different platforms, such as Microsoft Power

Apps, Mendix, OutSystems, and Appian, by performing a simulation to obtain the throughput and latency while varying the

user loads. The higher 𝑆 the better indicates a much more scalable platform that better serves users and transactions with less

degradation. An ultimate advantage of this model is that it not only supports quantitative comparisons but also enables the

pinpointing of potential bottlenecks, whether based on architectural inefficiencies, database schema design, or runtime

abstractions that have a direct impact on the enterprise-level scalability.

4. Result and Discussion
4.1. Performance Benchmarking Results

Table 1. Benchmark Results of LCNC Platforms under Load

Platform DB Query Efficiency (%) API Failures (%)

Power Apps 65 12

Mendix 78 8

OutSystems 82 6

Appian 60 15

 Power Apps: The Microsoft Power Apps showed average results since it was able to perform a database query with

65 percent efficiency and 12 percent API failures. Although the platform had been efficient in the quick deployment

of applications and simplicity of use, its use of auto-generated schemas hindered query optimization, thus resulting in

poor performance in accommodating several data operations. What is also likely, based on the rather large percentage

of API failures, is trouble maintaining reliable integrations at scale, consistent with reported issues of throttling and

request limits in enterprise use cases.

Sandeep Kumar Jangam / IJETCSIT, 5(3), 68-78, 2024

73

 Mendix: Performed relatively better, with 78% database query success and 8% API failures, compared to Power

Apps. This helped in query handling due to its support of cloud-native architectures and optimization of the schema

generation. Nevertheless, the API reliability, although higher than that of some competitors, was interrupted when

subjected to an extreme workload. This shows that Mendix is good with moderately large-scale implementations, but

it may need more customization or third-party middleware to fully integrate it in high-traffic settings.

 OutSystems: Proved to be the most balanced platform, as it achieved the best result in database query efficiency at

82% and the lowest API failure rate at 6%. These outputs demonstrate that it is mature enough to manage enterprise-

scale loads, as it is also extensible, and its integration processes are highly mature. The high levels of efficiency in

managing the microservices and consistent API connectivity indicate its applicability in slabs prone to severe

scalability and stability demands. Nonetheless, the governance overhead observed in case studies can also introduce

complexity in situations where a large development team or a compliance-heavy environment is present.

 Appian: In terms of performance, Appian failed to meet the performance benchmarks, with a database query

efficiency of 60% and a relatively high API failure rate of 15%. Slow database operations. One result of the limited

auto-generated schema optimization by the platform was that database operations were slow, notably under complex

workloads. Furthermore, the frequent failures of APIs indicate difficulties in maintaining the stable integration of

various enterprise systems. Although Appian can provide robust workflow automation, these outcomes imply that the

performance and reliability of the product would raise the need to customize and optimize the product with large-scale

deployment.

Figure 4. Graph representing Benchmark Results of LCNC Platforms under Load

4.2. Observed Limitations

 Runtime Inefficiency: Runtime inefficiency, specifically the inability to support more than 10,000 concurrent

sessions, was one of the most notable shortcomings observed on most of the tested platforms. In this size range,

platforms were found to grow exponentially in latency, with response times varying disproportionately with workload

changes. The reason behind the layered abstractions in LCNC runtimes is a major factor in this behavior, as although

making them easier to develop, it adds more interpretation and execution processes. Consequently, platforms that

previously performed well with moderate workloads would struggle in terms of responsiveness when scaled to an

enterprise level.

 Database Bottlenecks: The other major restriction was the presence of database bottlenecks, primarily attributed to

the use of auto-generated schemas. Although the use of such schemas can improve development speed (because the

tedious aspect of manually designing the schema is eliminated), these schemas can still lack efficient indexing

techniques or query optimization methods. Under high transaction loads, this resulted in impaired query performance,

increased response times, and, in rare cases, deadlocks. In particular, the problem was acute in cases where

applications required making complex joins or where real-time reporting was necessary. Hence, smarter schema

generation is what is needed in LCNC platforms.

 Rate Limiting API: The workloads that were heavy regarding essential integration showed difficulties related to API

rate limiting. To avoid exhausting resources, many platforms impose stringent thresholds on requests made; however,

this throttling has been a major problem for applications that rely on sustained outgoing API calls, facing significant

setbacks. As examples, delays in case study retail and financial work caused processes to exceed their limits when

faced with multiple requests. This restriction highlights an important challenge concerning scalability, as enterprise

applications are typically expected to interoperate with a large number of external applications and services.

 Governance Overhead: Finally, another issue that was repeatedly mentioned concerns the governance overhead. Of

all the controls, the implementation of role-based access control mechanisms is necessary for ensuring compliance

and security; however, the strict aspect of this control has created administrative overhead when implemented in

LCNC platforms. With many users and various user roles, and so often changing access, in huge organizations, the

problem was to manage the permissions, which made the system sluggish. This rigidity did not just exacerbate the

65
78 82

60

12 8 6
15

0

20

40

60

80

100

Power Apps Mendix OutSystems Appian

DB Query Efficiency (%) API Failures (%)

Sandeep Kumar Jangam / IJETCSIT, 5(3), 68-78, 2024

74

slowness of deployment cycles but also constrained the capacity of enterprises to dynamically change the governance

structures as the needs of operations evolved.

4.3. Discussion

In our study, the results show that Low-Code/No-Code (LCNC) platforms are very useful when it comes to creating

department-related or small applications, where the speed of prototyping is the chief concern, shorter development times, and

the platform is anything but technical. Such platforms have been successful in offering pre-built templates, visual modelling

tools, and smooth deployment pipelines to quickly digitalize workflows and automate processes on LCNC platforms. When

adoption extends to enterprise-wide systems, however, the constraints of LCNC platforms are more pronounced, specifically

around their capacity to scale, perform, and integrate complex implementations. To undertake large-scale implementation, the

hybrid option of incorporating LCNC platforms with traditional custom coding becomes a more feasible strategy. This mixed

approach combines the speed of delivery associated with LCNC with the ability to support performance-focused modules,

intense database formats, or deep, specialised integrations through the use of custom-coded components. This way of doing

things makes it possible to make decisions that allow an enterprise to ensure the equilibrium between speed and flexibility and

the strength needed to perform the enterprise's mission-critical tasks.

The last important dimension is cloud-native extensibility, which has become a much-needed aspect of scaling

applications in a dynamic enterprise, as it is challenging to scale applications in traditional environments. Other platforms,

such as LCNC platforms that support microservices, containerization, and API-driven architectures, will be better placed to fit

well within enterprise environments. Nevertheless, existing solutions tend to be restrictive in the form of vendor-specific

environments, which can lead to problems associated with lock-in, low portability, and interoperability among systems. Such

vendor lock-ins limit enterprise flexibility in strategy and can even lead to long-term relations with a single supplier. As such,

although LCNC platforms are great as a potentially transformative paradigm shift toward hastening digital transformation,

their scalability in broader enterprise usage hinges not only on whether they can transition beyond their current platforms as

closed, proprietary walled gardens, but also on their ability to adopt open standards in extending their capabilities. Future

adoption patterns will likely support hybrid strategies, cloud-native architectures, and governance webs that strike an

appropriate balance between the advantages of rapid application development and enterprise-grade scalability, security, and

flexibility.

5. Conclusion
This paper has demonstrated that LCNC systems offer significant value as a means of low-code/no-code application

development, particularly in departmental solutions and small-scale deployments. Their potential to empower non-technical

users, shorten the development cycle, and ease prototyping makes them a useful tool in a very fast digital transformation.

Nonetheless, several concerns were identified when evaluated in enterprise settings. Problems with scalability manifested

themselves as exponential latency increase following 10,000 users, and the inefficiencies of the databases were affected by the

use of auto-generated schemas that could not be indexed and optimized sufficiently. It was also hampered by performance

overheads of runtime abstraction layers, and integration-intensive workloads tended to exhibit API throttling. Additionally,

crucial governance mechanisms proved to be inflexible or cumbersome, thereby reducing the flexibility required in dynamic

enterprise environments. Together, these results emphasise the fact that LCNC platforms are fast and accessible, but are not as

efficient as when used in complex and large-scale enterprise systems.

On the grounds of these findings, a number of recommendations to make the LCNC platforms more viable are suggested.

To begin with, a hybrid development strategy will be implemented, combining LCNC and custom-coded microservices to

unite the rapid prototyping capabilities and the management of performance-demanding operations. Second, companies are

advised to put in place sound governance systems, which coordinate the LCNC implementation with compliance, security and

other organizational regulations, thus trimming down on the balance between agility and risk management. Third, there should

be adoption of vendor-neutral APIs that would minimize lock-in to any single provider and enhance cross-platform

interoperability, so that enterprises would enjoy strategic flexibility. Lastly, AI-augmented runtime optimization has the

potential to greatly enhance the execution performance by adapting resources dynamically in real-time, and automatically

identifying and tuning bottlenecks. All these measures will provide a blueprint for enterprises to adopt LCNC technologies

more sustainably.

Aspirations. Further studies can be extended to designing AI-based query optimization strategies that can smartly

reorganize auto-generated schemas as well as enhance the performance of databases in high-transaction volumes. Additionally,

edge computing in LCNC environments can provide solutions to real-time scalability, especially in manufacturing and retail

industries that demand low-latency processing at the network edge. Yet another obvious hotspot is the development of open

standards of interoperability that can alleviate the issues of vendor independence and contribute to a more cooperative

environment among LCNC vendors. The examination of these areas will ensure that future studies fill the existing gaps

between the speed of LCNC platforms and the stringent requirements of business applications, which will eventually lead to

the transformation of more resilient, scalable, and interoperable digital worlds.

Sandeep Kumar Jangam / IJETCSIT, 5(3), 68-78, 2024

75

References
[1] Prinz, N., Rentrop, C., & Huber, M. (2021, August). Low-Code Development Platforms: A Literature Review. In AMCIS.

[2] Al Alamin, M. A., Malakar, S., Uddin, G., Afroz, S., Haider, T. B., & Iqbal, A. (2021, May). An empirical study of

developer discussions on low-code software development challenges. In 2021, IEEE/ACM 18th International Conference

on Mining Software Repositories (MSR) (pp. 46-57). IEEE.

[3] Luo, Y., Liang, P., Wang, C., Shahin, M., & Zhan, J. (2021, October). Characteristics and challenges of low-code

development: the practitioners' perspective. In Proceedings of the 15th ACM/IEEE International Symposium on empirical

software engineering and measurement (ESEM) (pp. 1-11).

[4] Käss, S., Strahringer, S., & Westner, M. (2023). Practitioners' Perceptions of the Adoption of Low-Code Development

Platforms. IEEE Access, 11, 29009-29034.

[5] Binzer, B., & Winkler, T. J. (2022, October). Democratizing software development: a systematic multivocal literature

review and research agenda on citizen development. In International Conference on Software Business (pp. 244-259).

Cham: Springer International Publishing.

[6] Upadhyaya, N. (2023). Low-Code/No-Code platforms and their impact on traditional software development: A literature

review. No-Code Platforms and Their Impact on Traditional Software Development: A Literature Review (March 21,

2023).

[7] Silva, J. X., Lopes, M., Avelino, G., & Santos, P. (2023, May). Adoption of low-code and no-code technologies: A grey

literature review. In Proceedings of the XIX Brazilian Symposium on Information Systems (pp. 388-395).

[8] Martinez, E., & Pfister, L. (2023). Benefits and limitations of using low-code development to support digitalization in the

construction industry. Automation in Construction, 152, Article 104909

[9] Bucaioni, A., Cicchetti, A., & Ciccozzi, F. (2022). Modelling in low-code development: a multi-vocal systematic review.

Software and Systems Modeling, 21(5), 1959-1981.

[10] Muntés-Mulero, V., & Carretero, J. (2018). Challenges of Big Data Analytics in the Cloud and Low-Code Platforms.

Future Generation Computer Systems, 79, 134–135.

[11] Rokis, K., & Kirikova, M. (2022, September). Challenges of low-code/no-code software development: A literature review.

In International Conference on Business Informatics Research (pp. 3-17). Cham: Springer International Publishing.

[12] Sanchis, R., García-Perales, Ó., Fraile, F., & Poler, R. (2019). Low-code as an enabler of digital transformation in the

manufacturing industry. Applied Sciences, 10(1), 12.

[13] Desina, G. C. (2023). Evaluating the impact of cloud-based microservices architecture on application performance. arXiv

preprint arXiv:2305.15438.

[14] Khorram, F., Mottu, J. M., & Sunyé, G. (2020, October). Challenges & opportunities in low-code testing. In Proceedings

of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion

Proceedings (pp. 1-10).

[15] Sanchez, P., Moreira, A., Fuentes, L., Araújo, J., & Magno, J. (2010). Model-driven development for early aspects.

Information and Software Technology, 52(3), 249-273.

[16] Patrascoiu, O. (2023, October). Performance and scalability of DMN-based LCNC platforms. In 2023 ACM/IEEE

International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C) (pp. 863-867).

IEEE.

[17] Richardson, C., & Rymer, J. R. (2014). New Development Platforms Emerge For Customer-Facing Applications.

Forrester Research.

[18] Trigaux, D., Allacker, K., & Debacker, W. (2021). Environmental benchmarks for buildings: a critical literature review.

The international journal of life cycle assessment, 26(1), 1-21.

[19] Gao, T., Yu, D., Yue, D., & Hu, Y. (2010, July). Design and implementation of a communication platform in the CNC

system. In Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and

Applications (pp. 355-360). IEEE.

[20] Sufi, F. (2023). Algorithms in low-code/no-code for research applications: a practical review. Algorithms, 16(2), 108.

[21] Rusum, G. P., Pappula, K. K., & Anasuri, S. (2020). Constraint Solving at Scale: Optimizing Performance in Complex

Parametric Assemblies. International Journal of Emerging Trends in Computer Science and Information

Technology, 1(2), 47-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I2P106

[22] Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in

Parametric CAD. International Journal of Emerging Research in Engineering and Technology, 1(3), 35-

44. https://doi.org/10.63282/3050-922X.IJERET-V1I3P105

[23] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial

Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-

55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

[24] Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal

of AI, BigData, Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V1I4P104

https://doi.org/10.63282/3050-9246.IJETCSIT-V1I2P106
https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104

Sandeep Kumar Jangam / IJETCSIT, 5(3), 68-78, 2024

76

[25] Pappula, K. K., Anasuri, S., & Rusum, G. P. (2021). Building Observability into Full-Stack Systems: Metrics That

Matter. International Journal of Emerging Research in Engineering and Technology, 2(4), 48-

58. https://doi.org/10.63282/3050-922X.IJERET-V2I4P106

[26] Pedda Muntala, P. S. R., & Karri, N. (2021). Leveraging Oracle Fusion ERP’s Embedded AI for Predictive Financial

Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 74-

82. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I3P108

[27] Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International

Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-

9262.IJAIDSML-V2I1P106

[28] Enjam, G. R. (2021). Data Privacy & Encryption Practices in Cloud-Based Guidewire Deployments. International Journal

of AI, BigData, Computational and Management Studies, 2(3), 64-73. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V2I3P108

[29] Rusum, G. P., & Pappula, kiran K. . (2022). Event-Driven Architecture Patterns for Real-Time, Reactive

Systems. International Journal of Emerging Research in Engineering and Technology, 3(3), 108-

116. https://doi.org/10.63282/3050-922X.IJERET-V3I3P111

[30] Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International

Journal of Emerging Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.IJERET-

V3I4P107

[31] Anasuri, S. (2022). Adversarial Attacks and Defenses in Deep Neural Networks. International Journal of Artificial

Intelligence, Data Science, and Machine Learning, 3(4), 77-85. https://doi.org/10.63282/xs971f03

[32] Pedda Muntala, P. S. R. (2022). Anomaly Detection in Expense Management using Oracle AI Services. International

Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 87-94. https://doi.org/10.63282/3050-

9262.IJAIDSML-V3I1P109

[33] Rahul, N. (2022). Automating Claims, Policy, and Billing with AI in Guidewire: Streamlining Insurance

Operations. International Journal of Emerging Research in Engineering and Technology, 3(4), 75-

83. https://doi.org/10.63282/3050-922X.IJERET-V3I4P109

[34] Enjam, G. R. (2022). Energy-Efficient Load Balancing in Distributed Insurance Systems Using AI-Optimized Switching

Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 68-

76. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108

[35] Rusum, G. P., & Anasuri, S. (2023). Composable Enterprise Architecture: A New Paradigm for Modular Software

Design. International Journal of Emerging Research in Engineering and Technology, 4(1), 99-

111. https://doi.org/10.63282/3050-922X.IJERET-V4I1P111

[36] Pappula, K. K. (2023). Reinforcement Learning for Intelligent Batching in Production Pipelines. International Journal of

Artificial Intelligence, Data Science, and Machine Learning, 4(4), 76-86. https://doi.org/10.63282/3050-9262.IJAIDSML-

V4I4P109

[37] Anasuri, S. (2023). Secure Software Supply Chains in Open-Source Ecosystems. International Journal of Emerging

Trends in Computer Science and Information Technology, 4(1), 62-74. https://doi.org/10.63282/3050-9246.IJETCSIT-

V4I1P108

[38] Pedda Muntala, P. S. R., & Karri, N. (2023). Leveraging Oracle Digital Assistant (ODA) to Automate ERP Transactions

and Improve User Productivity. International Journal of Artificial Intelligence, Data Science, and Machine

Learning, 4(4), 97-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P111

[39] Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C

Insurance. International Journal of AI, BigData, Computational and Management Studies, 4(3), 92-

101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110

[40] Enjam, G. R. (2023). Modernizing Legacy Insurance Systems with Microservices on Guidewire Cloud

Platform. International Journal of Emerging Research in Engineering and Technology, 4(4), 90-

100. https://doi.org/10.63282/3050-922X.IJERET-V4I4P109

[41] Pappula, K. K. (2020). Browser-Based Parametric Modeling: Bridging Web Technologies with CAD

Kernels. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 56-

67. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107

[42] Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in

Claims. International Journal of Emerging Research in Engineering and Technology, 1(4), 38-

46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105

[43] Enjam, G. R., & Chandragowda, S. C. (2020). Role-Based Access and Encryption in Multi-Tenant Insurance

Architectures. International Journal of Emerging Trends in Computer Science and Information Technology, 1(4), 58-

66. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I4P107

[44] Pappula, K. K. (2021). Modern CI/CD in Full-Stack Environments: Lessons from Source Control

Migrations. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 51-

59. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106

https://doi.org/10.63282/3050-922X.IJERET-V2I4P106
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I3P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108
https://doi.org/10.63282/3050-922X.IJERET-V3I3P111
https://doi.org/10.63282/3050-922X.IJERET-V3I4P107
https://doi.org/10.63282/3050-922X.IJERET-V3I4P107
https://doi.org/10.63282/xs971f03
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P109
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P109
https://doi.org/10.63282/3050-922X.IJERET-V3I4P109
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108
https://doi.org/10.63282/3050-922X.IJERET-V4I1P111
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P108
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110
https://doi.org/10.63282/3050-922X.IJERET-V4I4P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107
https://doi.org/10.63282/3050-922X.IJERET-V1I4P105
https://doi.org/10.63282/3050-9246.IJETCSIT-V1I4P107
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106

Sandeep Kumar Jangam / IJETCSIT, 5(3), 68-78, 2024

77

[45] Pedda Muntala, P. S. R. (2021). Prescriptive AI in Procurement: Using Oracle AI to Recommend Optimal Supplier

Decisions. International Journal of AI, BigData, Computational and Management Studies, 2(1), 76-

87. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P108

[46] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International

Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-

V2I1P107

[47] Enjam, G. R., Chandragowda, S. C., & Tekale, K. M. (2021). Loss Ratio Optimization using Data-Driven Portfolio

Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 54-

62. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107

[48] Rusum, G. P., & Pappula, K. K. (2022). Federated Learning in Practice: Building Collaborative Models While Preserving

Privacy. International Journal of Emerging Research in Engineering and Technology, 3(2), 79-

88. https://doi.org/10.63282/3050-922X.IJERET-V3I2P109

[49] Pappula, K. K. (2022). Modular Monoliths in Practice: A Middle Ground for Growing Product Teams. International

Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 53-

63. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P106

[50] Anasuri, S. (2022). Next-Gen DNS and Security Challenges in IoT Ecosystems. International Journal of Emerging

Research in Engineering and Technology, 3(2), 89-98. https://doi.org/10.63282/3050-922X.IJERET-V3I2P110

[51] Pedda Muntala, P. S. R. (2022). Detecting and Preventing Fraud in Oracle Cloud ERP Financials with Machine

Learning. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 57-

67. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P107

[52] Rahul, N. (2022). Enhancing Claims Processing with AI: Boosting Operational Efficiency in P&C

Insurance. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 77-

86. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108

[53] Enjam, G. R., & Tekale, K. M. (2022). Predictive Analytics for Claims Lifecycle Optimization in Cloud-Native

Platforms. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-

104. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P110

[54] Rusum, G. P., & Pappula, K. K. (2023). Low-Code and No-Code Evolution: Empowering Domain Experts with

Declarative AI Interfaces. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(2), 105-

112. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I2P112

[55] Pappula, K. K., & Rusum, G. P. (2023). Multi-Modal AI for Structured Data Extraction from Documents. International

Journal of Emerging Research in Engineering and Technology, 4(3), 75-86. https://doi.org/10.63282/3050-922X.IJERET-

V4I3P109

[56] Anasuri, S. (2023). Confidential Computing Using Trusted Execution Environments. International Journal of AI,

BigData, Computational and Management Studies, 4(2), 97-110. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V4I2P111

[57] Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. International

Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 85-

94. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110

[58] Enjam, G. R. (2023). AI Governance in Regulated Cloud-Native Insurance Platforms. International Journal of AI,

BigData, Computational and Management Studies, 4(3), 102-111. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V4I3P111

[59] Pappula, K. K., & Rusum, G. P. (2020). Custom CAD Plugin Architecture for Enforcing Industry-Specific Design

Standards. International Journal of AI, BigData, Computational and Management Studies, 1(4), 19-

28. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103

[60] Enjam, G. R., & Tekale, K. M. (2020). Transitioning from Monolith to Microservices in Policy

Administration. International Journal of Emerging Research in Engineering and Technology, 1(3), 45-

52. https://doi.org/10.63282/3050-922X.IJERETV1I3P106

[61] Pappula, K. K., & Anasuri, S. (2021). API Composition at Scale: GraphQL Federation vs. REST

Aggregation. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 54-

64. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P107

[62] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). Real-time Decision-Making in Fusion ERP Using Streaming Data and

AI. International Journal of Emerging Research in Engineering and Technology, 2(2), 55-

63. https://doi.org/10.63282/3050-922X.IJERET-V2I2P108

[63] Enjam, G. R., & Chandragowda, S. C. (2021). RESTful API Design for Modular Insurance Platforms. International

Journal of Emerging Research in Engineering and Technology, 2(3), 71-78. https://doi.org/10.63282/3050-922X.IJERET-

V2I3P108

[64] Rusum, G. P. (2022). Security-as-Code: Embedding Policy-Driven Security in CI/CD Workflows. International Journal of

AI, BigData, Computational and Management Studies, 3(2), 81-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V3I2P108

https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P108
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107
https://doi.org/10.63282/3050-922X.IJERET-V3I2P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P106
https://doi.org/10.63282/3050-922X.IJERET-V3I2P110
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P107
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P110
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I2P112
https://doi.org/10.63282/3050-922X.IJERET-V4I3P109
https://doi.org/10.63282/3050-922X.IJERET-V4I3P109
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I2P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I2P111
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103
https://doi.org/10.63282/3050-922X.IJERETV1I3P106
https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P107
https://doi.org/10.63282/3050-922X.IJERET-V2I2P108
https://doi.org/10.63282/3050-922X.IJERET-V2I3P108
https://doi.org/10.63282/3050-922X.IJERET-V2I3P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I2P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I2P108

Sandeep Kumar Jangam / IJETCSIT, 5(3), 68-78, 2024

78

[65] Pappula, K. K. (2022). Containerized Zero-Downtime Deployments in Full-Stack Systems. International Journal of AI,

BigData, Computational and Management Studies, 3(4), 60-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V3I4P107

[66] Anasuri, S. (2022). Zero-Trust Architectures for Multi-Cloud Environments. International Journal of Emerging Trends in

Computer Science and Information Technology, 3(4), 64-76. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P107

[67] Pedda Muntala, P. S. R., & Karri, N. (2022). Using Oracle Fusion Analytics Warehouse (FAW) and ML to Improve KPI

Visibility and Business Outcomes. International Journal of AI, BigData, Computational and Management Studies, 3(1),

79-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P109

[68] Rahul, N. (2022). Optimizing Rating Engines through AI and Machine Learning: Revolutionizing Pricing

Precision. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-

101. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110

[69] Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of

Emerging Trends in Computer Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-

9246.IJETCSIT-V3I2P109

[70] Rusum, G. P. (2023). Large Language Models in IDEs: Context-Aware Coding, Refactoring, and

Documentation. International Journal of Emerging Trends in Computer Science and Information Technology, 4(2), 101-

110. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P110

[71] Pappula, K. K. (2023). Edge-Deployed Computer Vision for Real-Time Defect Detection. International Journal of AI,

BigData, Computational and Management Studies, 4(3), 72-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V4I3P108

[72] Anasuri, S., & Pappula, K. K. (2023). Green HPC: Carbon-Aware Scheduling in Cloud Data Centers. International

Journal of Emerging Research in Engineering and Technology, 4(2), 106-114. https://doi.org/10.63282/3050-

922X.IJERET-V4I2P111

[73] Reddy Pedda Muntala , P. S. (2023). Process Automation in Oracle Fusion Cloud Using AI Agents. International Journal

of Emerging Research in Engineering and Technology, 4(4), 112-119. https://doi.org/10.63282/3050-922X.IJERET-

V4I4P111

[74] Enjam, G. R. (2023). Optimizing PostgreSQL for High-Volume Insurance Transactions & Secure Backup and Restore

Strategies for Databases. International Journal of Emerging Trends in Computer Science and Information

Technology, 4(1), 104-111. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P112

[75] Pappula, K. K., & Rusum, G. P. (2021). Designing Developer-Centric Internal APIs for Rapid Full-Stack

Development. International Journal of AI, BigData, Computational and Management Studies, 2(4), 80-

88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108

[76] Pedda Muntala, P. S. R. (2021). Integrating AI with Oracle Fusion ERP for Autonomous Financial Close. International

Journal of AI, BigData, Computational and Management Studies, 2(2), 76-86. https://doi.org/10.63282/3050-

9416.IJAIBDCMS-V2I2P109

[77] Rusum, G. P., & Pappula, kiran K. . (2022). Event-Driven Architecture Patterns for Real-Time, Reactive

Systems. International Journal of Emerging Research in Engineering and Technology, 3(3), 108-

116. https://doi.org/10.63282/3050-922X.IJERET-V3I3P111

[78] Anasuri, S., Rusum, G. P., & Pappula, kiran K. (2022). Blockchain-Based Identity Management in Decentralized

Applications. International Journal of AI, BigData, Computational and Management Studies, 3(3), 70-

81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P109

[79] Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2023). Zero-Downtime CI/CD Production Deployments for

Insurance SaaS Using Blue/Green Deployments. International Journal of Emerging Research in Engineering

and Technology, 4(3), 98-106. https://doi.org/10.63282/3050-922X.IJERET-V4I3P111

[80] Pedda Muntala, P. S. R. (2023). AI-Powered Chatbots and Digital Assistants in Oracle Fusion Applications. International

Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 101-

111. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P111

https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P107
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P109
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P110
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108
https://doi.org/10.63282/3050-922X.IJERET-V4I2P111
https://doi.org/10.63282/3050-922X.IJERET-V4I2P111
https://doi.org/10.63282/3050-922X.IJERET-V4I4P111
https://doi.org/10.63282/3050-922X.IJERET-V4I4P111
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P112
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I2P109
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I2P109
https://doi.org/10.63282/3050-922X.IJERET-V3I3P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P109
https://doi.org/10.63282/3050-922X.IJERET-V4I3P111
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P111

