NSy

International Journal of Emerging Trends in Computer Science and Information Technology
ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.1JETCSIT-V611P116
Eureka Vision Publication | Volume 6, Issue 1, 144-147, 2025

Original Article

Transforming DevOps via Automated Environment Provisioning

Received On: 20/02/2025 Revised On: 08/03/2025
Abstract - This white paper examines how automated
environment provisioning can enhance DevOps in large-scale
organizations. By replacing manual processes with
Infrastructure as Code (IaC) and Continuous Integration and
Continuous Deployment - CI/CD pipelines, teams can rapidly
and reliably create secure, scalable environments.
Highlighting a US based Telecom giant’s use of composable
infrastructure, the paper demonstrates benefits such as sub-
two-hour environment provisioning, high availability, and
improved customer experiences. Automated provisioning
emerges as a key enabler of speed, consistency, and innovation
in modern DevOps practices.

Keywords - DevOps, Automated Environment Provisioning,
Infrastructure as Code (laC), Continuous Integration (CI),
Continuous Deployment (CD), CI/CD Pipelines.

1. Introduction

DevOps has revolutionized the way we approach software
development and IT operations, emphasizing collaboration,
continuous integration, and delivery. A critical aspect of this
transformation is the ability to scale or descale environments
on a need basis, which significantly enhances the efficiency
and reliability of the software and its usage during peak traffic
such as a holiday sales event. This white paper explores the
impact of automated environment provisioning as a DevOps
practice, illustrating how a completely automated, pipeline-
based environment build can transform traditional IT models.

2. The Traditional Model

Traditionally, environment provisioning is often a separate
manual, time-consuming process involving setting up of
hardware, installing operating systems, configuring software,
and ensuring that all dependencies are installed and configured.
Development is often built and tested against a pre-built
environment, and this leads to different behavior across the
various environments, such as development, testing, staging,
and production. This isolated approach is prone to errors,
inconsistencies, and delays, leading to unstable environments
for the code features and prolonged development cycles.
Scaling of the environment is not often a development
requirement since the functionality and environment
configurations are supported by different teams and designed
in isolation.

Priyadarshini Jayakumar?, Vipin Jose?
12 Independent Researcher, USA.

Accepted On: 21/03/2025 Published On: 24/03/2025

3. Automated Environment Provisioning Model
Features in development are built along with environment
configurations and designed to work best not just in isolation
but also with scaling, redundancy and failover as part of the
requirement. Automated environment provisioning utilizes
infrastructure as code (laC) principles and continuous
deployment pipelines (like Git) to create, configure, and
manage environments programmatically. The entire
environment, including its configuration, hereafter referred as
stack, is defined in code and deployed using a pipeline. Each
stage in the environment like security, networking, monitoring
are handled as environment specific configurations applied to
each feature revision. After completion of a SDLC cycle, this
environment can then be automatically torn down releasing the
infrastructure resources. This approach ensures that
environments are consistent, reproducible, and scalable.

4. Setting up Automated Environment

Provisioning

Transitioning from a traditional development model to an
automated infrastructure and code build model requires
continuous integration and delivery (CI/CD) where the
software being built must meet core architectural guidelines
such as deployability, modifiability, and testability and can be
reliably integrated, tested and released through a pipeline to an
environment automatically. It aims at building, testing, and
releasing software at greater speed and frequency. Setting up
the Environment might seem as an additional overhead during
build; especially during development and unit testing and they
can be developed as discreet components, where each of the
sections are built separately during development but compiled
and deployed together in higher environments.

5.1. High-Level Components of Automated Environment
Provisioning Model

Automated environment provisioning relies on a set of
integrated components that together enable consistent,
reproducible, and scalable deployments. These components
ensure infrastructure, code, and configurations are version-
controlled, automated, and adaptable to ever changing business
needs.

Priyadarshini Jayakumar & Vipin Jose / IJETCSIT, 6(1), 144-147, 2025

5.1.1. Repository

e Stores version-controlled artifacts needed to build the
application.

e Separates feature-based environment configuration
and baselined environment configurations for the
various parts of the Software Development LifeCycle
(SDLC)

01

Automatically

provision an
operational stack

eInfrastructure
eConfigurations
eData

5.1.2. Release Branch
e Manages different versions of files through branch
labeling.
e Ensure that committed changes beyond a point-in-
time label remain isolated.
e Enables simultaneous use of artifacts across multiple
release-specific stacks.

04

Stack Cycling

eCurrent Stack deleted
when new
feature/product
deployed is stable

*A new Stack is created
with every new release

Figure 1. What is Automated Environment Provisioning

5.1.3. Infrastructure-as-Code (1aC)
o Defines deterministic provisioning of infrastructure
(e.g., VMs, containers, databases).
e Tightly couples infrastructure
application requirements.
e Ensures all infrastructure is accessible and modifiable
as part of a release branch.

definition with

5.1.4. Application Code
e Contains business logic, compiled into executable
binaries.
e Runs on provisioned infrastructure created by
Infrastructure as Code (laC).
e Accessible and modifiable per
allowing versioned deployment.

release branch,

5.1.5. Configuration (Config)

e Stores persisted-runtime-settings affecting application
behavior (e.g., feature toggles).

e Supports external configuration management for
secrets and dynamic variables.

e Version-controlled alongside application and infra-
artifacts.

e Updated endpoints and credential pointers for
downstream connections (e.g.: - environments used by
downstream applications)

5.1.6. Pipelines
e Static Code Analysis for feature code standards and
Infrastructure as Code (laC) standards
e Automates complex orchestration (infrastructure
provisioning, builds, testing, deployment).
e Chains modular steps for CI/CD processes.

e Fully integrated with release branches for controlled
automation.

5.1.7. Config Templates
e Allows scaling and reconfiguration of environments
without redeploying infra.
e Provides reusable, preset templates to maintain
consistency across stacks.
5.1.8. Testing Components
e Test Definitions: Provide deterministic pass/fail
criteria for functional and performance validation
(Scaling, Failover, etc.)
e Testing Framework: Executes structured tests (unit,
mock, end-to-end, and sanity tests).

5.1.9. Orchestrator
e Automates release-specific lifecycle management:

v Creates and deletes stacks.

v Provisions infrastructure and deploys application
code.

v' Updates
templates.

v Handle rollback gracefully, when required.

config dynamically and applies

5.10. Stack & Stack Manager

e Stack: Runnable collection of
infrastructure containing code and config.

e Stack Manager: Automates stack progression through
release stages (development — canary — production
and rollback).

e Monitors telemetry, testing outcomes, and live traffic
percentage allocations.

provisioned

145

Priyadarshini Jayakumar & Vipin Jose / IJETCSIT, 6(1), 144-147, 2025

5.11. Application Monitoring & Health Check
e Continuously validates live stack performance.
e Runs automated sanity checks and compares
telemetry against baselines.
e Automatically routes or disables traffic to anomalous
stacks.

5.12. Application Gateway
e Serves as a load balancer/proxy for routing traffic
across stacks.
e Enables segment-based traffic control (blue/green,
canary, full rollout).

Git Repository

v

Create New Release
Branch

v

Trigger Pipeline

h 4

Validate Deployment

<
v

Provision Environment

Figure 2. Automated Environment Provisioning - Pipeline
Overview

5.2. Example set-up of a Pipeline
A pipeline can be created in GitLab https://gitlab.com/
and 2 modes of operation can be defined:
e CREATE_STACK - For creating a new environment.
e DESTROY_STACK - To destroy an existing
environment.

And following variables should also be defined:

e MODE - The mode of operation - CREATE_STACK
or DESTROY_STACK

e ENV - The type of environment i.e., non-production
vs Production

e NAME - The name of the environment.

e The pipeline implementation properties can be
defined in a yaml file, /gitlab-ci.yml which defines the
stages of the pipeline.

e The common activities to be done in a pipeline job
can be described under /gitlab-ci/.common.gitlab-
ci.yml

e Each environment specific jobs can be defined
separately by creating a file /gitlab-ci/ .env.{env-
type}.rules.gitlab-ci.yml where env type can be
configured or defined.

e A new docker/cloud image can be created for this
pipeline, to exclusively install any required software
libraries.

5.3. Recommended Environment Progression

Below Diagram describes the ideal progression of a stack
through stages from development to full production for
maximum output efficiency.

Release Candidate Blue/Green Deploy Full Production

Changes committed End-to-End tested

Unit tested Performance tested

Tested with live traffic l Continuously monitored |
An

Soak In Period omalies failover or rollback

Figure 3. Example of a Stack Progression

5.4. Implementing Monitoring and Logging

Automated provisioning should be accompanied by robust
monitoring and logging to track the health and performance of
environments. Environment Metrics help identify and resolve
issues quickly. Tools like Prometheus, Grafana, and ELK stack
are examples of tools that can be integrated into the
application. A US based telecom giant uses blue-green pipeline
monitoring reports for tracking the successful stages in the
pipeline for any given environment with the respective
environment placeholder.

5.5. Ensuring Security and Compliance

Security practices should be integrated into the
provisioning process, including the wuse of secure
configurations, automated vulnerability scanning, and

compliance checks. Provision to auto-rotate secrets per stack
allows for the keys to be active only during the availability of
the stack. This ensures that environments are secure and
compliant with industry standards and regulations.

146

https://gitlab.com/tmobile/DCD/pipelines/environment-management-pipeline

Priyadarshini Jayakumar & Vipin Jose / IJETCSIT, 6(1), 144-147, 2025

6. Benefits of Automated Environment

Provisioning
6.1. Key Benefits include
e Consistency and Reproducibility: Automated
provisioning ensures that stacks are built from the
same configuration scripts, eliminating discrepancies
between various stages of the SDLC.
e Speed and Efficiency: Features are tested in relation
to a specific environment configuration version which

-
9
NP

Fearless Releases

{({

Reliability

Feature specific releases Enterprise grade performance
testing in an actual production

No releases blocked by other
candidate

releases

Fewer Environment Refreshes Less data build up

More frequent
delpoyments/canary releases

reduces the risk of environment related defects and
speeds up rollout to production.

e Scalability: Features are built to be scaled up or down
based on demand, optimizing resource usage and cost.

e Security: Automated provisioning integrates security
practices into the pipeline and thereby the stacks,
ensuring that environments are compliant with
security standards and policies. Also, secrets such as
keys are created and destroyed per stack provisioned,
providing automatic secret key rotations.

>

Security Cost/Time Reduction

Stack specific accounts Reduces release time and effort

Frequent rotation of
keys/secrets

No long-running environments

Reduces testing resource
allocation

Figure 4. Key Components of Cloud Computing Infrastructure

7. Quantifiable Outcomes

By adopting automated environment provisioning powered
by composable infrastructure, large enterprises can achieve
remarkable outcomes. A US based telecom giant achieved.

e Rapid Environment Deployments: Fully functional,
production-grade environments spun up in under two
hours instead of days.

e 100% Awvailability: Ensured uninterrupted service
delivery, even under high traffic conditions.

e Enhanced Customer Engagement: Improved
experience and increased engagement driven by
precise, targeted A/B testing.

e Environment Compliance: Keeping up with package
updates and security patches are integrated into the
SDLC and part of the feature rollout.

8. Conclusion

Automated environment provisioning is a game-changer
for DevOps, enabling teams to build, manage, and scale
environments efficiently and reliably. By leveraging pipeline-
based environment builds, organizations can ensure that
environments remain stable and secure throughout the SDLC
process. This approach not only accelerates development
cycles but also enhances the quality and security of the
software being developed. The ability to tear-down

environments after a specific SDLC cycle paves way to low-
cost infrastructure set-up and maintenance. As organizations
continue to adopt DevOps practices, automated environment
provisioning will become an essential component of their

strategy, driving innovation and excellence in software

development and operations.

References

[1]1 HashiCorp, “Terraform: Infrastructure as Code.
HashiCorp, 2021”. [Online]. Auvailable:

https://www.terraform.io

[2] Amazon Web Services, “AWS CloudFormation”.
Amazon, 2021. [Online]. Available:
https://aws.amazon.com/cloudformation

[3] Red Hat, “Ansible: Provision Infrastructure”. Red Hat,
2021. [Online]. Available: https://www.ansible.com

[4]1 Jenkins Project, “Jenkins Pipeline”. Jenkins, 2021.
[Online]. Available:
https://www.jenkins.io/doc/book/pipeline

[5] Prometheus Authors, “Prometheus Monitoring”.
Prometheus, 2021. [Online]. Auvailable:

https://prometheus.io
[6] T-Mobile, “Autopilot” (Patent Pending). T-Mobile US,
Inc., 2025.

147

