
International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V6I1P116

Eureka Vision Publication | Volume 6, Issue 1, 144-147, 2025

Original Article

Transforming DevOps via Automated Environment Provisioning

Priyadarshini Jayakumar1, Vipin Jose2
1,2 Independent Researcher, USA.

Received On: 20/02/2025 Revised On: 08/03/2025 Accepted On: 21/03/2025 Published On: 24/03/2025

Abstract - This white paper examines how automated

environment provisioning can enhance DevOps in large-scale

organizations. By replacing manual processes with

Infrastructure as Code (IaC) and Continuous Integration and

Continuous Deployment - CI/CD pipelines, teams can rapidly

and reliably create secure, scalable environments.

Highlighting a US based Telecom giant’s use of composable

infrastructure, the paper demonstrates benefits such as sub-

two-hour environment provisioning, high availability, and

improved customer experiences. Automated provisioning

emerges as a key enabler of speed, consistency, and innovation

in modern DevOps practices.

Keywords - DevOps, Automated Environment Provisioning,

Infrastructure as Code (IaC), Continuous Integration (CI),

Continuous Deployment (CD), CI/CD Pipelines.

1. Introduction
DevOps has revolutionized the way we approach software

development and IT operations, emphasizing collaboration,

continuous integration, and delivery. A critical aspect of this

transformation is the ability to scale or descale environments

on a need basis, which significantly enhances the efficiency

and reliability of the software and its usage during peak traffic

such as a holiday sales event. This white paper explores the

impact of automated environment provisioning as a DevOps

practice, illustrating how a completely automated, pipeline-

based environment build can transform traditional IT models.

2. The Traditional Model
 Traditionally, environment provisioning is often a separate

manual, time-consuming process involving setting up of

hardware, installing operating systems, configuring software,

and ensuring that all dependencies are installed and configured.

Development is often built and tested against a pre-built

environment, and this leads to different behavior across the

various environments, such as development, testing, staging,

and production. This isolated approach is prone to errors,

inconsistencies, and delays, leading to unstable environments

for the code features and prolonged development cycles.

Scaling of the environment is not often a development

requirement since the functionality and environment

configurations are supported by different teams and designed

in isolation.

3. Automated Environment Provisioning Model
 Features in development are built along with environment

configurations and designed to work best not just in isolation

but also with scaling, redundancy and failover as part of the

requirement. Automated environment provisioning utilizes

infrastructure as code (IaC) principles and continuous

deployment pipelines (like Git) to create, configure, and

manage environments programmatically. The entire

environment, including its configuration, hereafter referred as

stack, is defined in code and deployed using a pipeline. Each

stage in the environment like security, networking, monitoring

are handled as environment specific configurations applied to

each feature revision. After completion of a SDLC cycle, this

environment can then be automatically torn down releasing the

infrastructure resources. This approach ensures that

environments are consistent, reproducible, and scalable.

4. Setting up Automated Environment

Provisioning
 Transitioning from a traditional development model to an

automated infrastructure and code build model requires

continuous integration and delivery (CI/CD) where the

software being built must meet core architectural guidelines

such as deployability, modifiability, and testability and can be

reliably integrated, tested and released through a pipeline to an

environment automatically. It aims at building, testing, and

releasing software at greater speed and frequency. Setting up

the Environment might seem as an additional overhead during

build; especially during development and unit testing and they

can be developed as discreet components, where each of the

sections are built separately during development but compiled

and deployed together in higher environments.

5.1. High-Level Components of Automated Environment

Provisioning Model

Automated environment provisioning relies on a set of

integrated components that together enable consistent,

reproducible, and scalable deployments. These components

ensure infrastructure, code, and configurations are version-

controlled, automated, and adaptable to ever changing business

needs.

Priyadarshini Jayakumar & Vipin Jose / IJETCSIT, 6(1), 144-147, 2025

145

5.1.1. Repository

 Stores version-controlled artifacts needed to build the

application.

 Separates feature-based environment configuration

and baselined environment configurations for the

various parts of the Software Development LifeCycle

(SDLC)

5.1.2. Release Branch

 Manages different versions of files through branch

labeling.

 Ensure that committed changes beyond a point-in-

time label remain isolated.

 Enables simultaneous use of artifacts across multiple

release-specific stacks.

Figure 1. What is Automated Environment Provisioning

5.1.3. Infrastructure-as-Code (IaC)

 Defines deterministic provisioning of infrastructure

(e.g., VMs, containers, databases).

 Tightly couples infrastructure definition with

application requirements.

 Ensures all infrastructure is accessible and modifiable

as part of a release branch.

5.1.4. Application Code

 Contains business logic, compiled into executable

binaries.

 Runs on provisioned infrastructure created by

Infrastructure as Code (IaC).

 Accessible and modifiable per release branch,

allowing versioned deployment.

5.1.5. Configuration (Config)

 Stores persisted-runtime-settings affecting application

behavior (e.g., feature toggles).

 Supports external configuration management for

secrets and dynamic variables.

 Version-controlled alongside application and infra-

artifacts.

 Updated endpoints and credential pointers for

downstream connections (e.g.: - environments used by

downstream applications)

5.1.6. Pipelines

 Static Code Analysis for feature code standards and

Infrastructure as Code (IaC) standards

 Automates complex orchestration (infrastructure

provisioning, builds, testing, deployment).

 Chains modular steps for CI/CD processes.

 Fully integrated with release branches for controlled

automation.

5.1.7. Config Templates

 Allows scaling and reconfiguration of environments

without redeploying infra.

 Provides reusable, preset templates to maintain

consistency across stacks.

5.1.8. Testing Components

 Test Definitions: Provide deterministic pass/fail

criteria for functional and performance validation

(Scaling, Failover, etc.)

 Testing Framework: Executes structured tests (unit,

mock, end-to-end, and sanity tests).

5.1.9. Orchestrator

 Automates release-specific lifecycle management:

 Creates and deletes stacks.

 Provisions infrastructure and deploys application

code.

 Updates config dynamically and applies

templates.

 Handle rollback gracefully, when required.

5.10. Stack & Stack Manager

 Stack: Runnable collection of provisioned

infrastructure containing code and config.

 Stack Manager: Automates stack progression through

release stages (development → canary → production

and rollback).

 Monitors telemetry, testing outcomes, and live traffic

percentage allocations.

Automatically
provision an
operational stack​

•Infrastructure​

•Configurations​

•Data​

01
Short-lived
environments

•Only used for a single
new feature/product
release

•Reduced Data
congestion

02
Release
Propagation

•Environment is moved
through SDLC process
instead of code moved
through environments

03
 Stack Cycling

•Current Stack deleted
when new
feature/product
deployed is stable

•A new Stack is created
with every new release

04

Priyadarshini Jayakumar & Vipin Jose / IJETCSIT, 6(1), 144-147, 2025

146

5.11. Application Monitoring & Health Check

 Continuously validates live stack performance.

 Runs automated sanity checks and compares

telemetry against baselines.

 Automatically routes or disables traffic to anomalous

stacks.

5.12. Application Gateway

 Serves as a load balancer/proxy for routing traffic

across stacks.

 Enables segment-based traffic control (blue/green,

canary, full rollout).

Figure 2. Automated Environment Provisioning - Pipeline

Overview

5.2. Example set-up of a Pipeline
A pipeline can be created in GitLab https://gitlab.com/

and 2 modes of operation can be defined:

 CREATE_STACK - For creating a new environment.

 DESTROY_STACK - To destroy an existing

environment.

And following variables should also be defined:

 MODE - The mode of operation - CREATE_STACK

or DESTROY_STACK

 ENV - The type of environment i.e., non-production

vs Production

 NAME - The name of the environment.

 The pipeline implementation properties can be

defined in a yaml file, /gitlab-ci.yml which defines the

stages of the pipeline.

 The common activities to be done in a pipeline job

can be described under /gitlab-ci/.common.gitlab-

ci.yml

 Each environment specific jobs can be defined

separately by creating a file /gitlab-ci/ .env.{env-

type}.rules.gitlab-ci.yml where env type can be

configured or defined.

 A new docker/cloud image can be created for this

pipeline, to exclusively install any required software

libraries.

5.3. Recommended Environment Progression

 Below Diagram describes the ideal progression of a stack

through stages from development to full production for

maximum output efficiency.

Figure 3. Example of a Stack Progression

5.4. Implementing Monitoring and Logging

Automated provisioning should be accompanied by robust

monitoring and logging to track the health and performance of

environments. Environment Metrics help identify and resolve

issues quickly. Tools like Prometheus, Grafana, and ELK stack

are examples of tools that can be integrated into the

application. A US based telecom giant uses blue-green pipeline

monitoring reports for tracking the successful stages in the

pipeline for any given environment with the respective

environment placeholder.

5.5. Ensuring Security and Compliance

Security practices should be integrated into the

provisioning process, including the use of secure

configurations, automated vulnerability scanning, and

compliance checks. Provision to auto-rotate secrets per stack

allows for the keys to be active only during the availability of

the stack. This ensures that environments are secure and

compliant with industry standards and regulations.

Development

Changes committed

Unit tested

Release Candidate

End-to-End tested

Performance tested

Blue/Green Deploy

Tested with live traffic

Soak In Period

Full Production

Continuously monitored

Anomalies failover or rollback

https://gitlab.com/tmobile/DCD/pipelines/environment-management-pipeline

Priyadarshini Jayakumar & Vipin Jose / IJETCSIT, 6(1), 144-147, 2025

147

6. Benefits of Automated Environment

Provisioning
6.1. Key Benefits include

 Consistency and Reproducibility: Automated

provisioning ensures that stacks are built from the

same configuration scripts, eliminating discrepancies

between various stages of the SDLC.

 Speed and Efficiency: Features are tested in relation

to a specific environment configuration version which

reduces the risk of environment related defects and

speeds up rollout to production.

 Scalability: Features are built to be scaled up or down

based on demand, optimizing resource usage and cost.

 Security: Automated provisioning integrates security

practices into the pipeline and thereby the stacks,

ensuring that environments are compliant with

security standards and policies. Also, secrets such as

keys are created and destroyed per stack provisioned,

providing automatic secret key rotations.

Figure 4. Key Components of Cloud Computing Infrastructure

7. Quantifiable Outcomes
 By adopting automated environment provisioning powered

by composable infrastructure, large enterprises can achieve

remarkable outcomes. A US based telecom giant achieved.

 Rapid Environment Deployments: Fully functional,

production-grade environments spun up in under two

hours instead of days.

 100% Availability: Ensured uninterrupted service

delivery, even under high traffic conditions.

 Enhanced Customer Engagement: Improved

experience and increased engagement driven by

precise, targeted A/B testing.

 Environment Compliance: Keeping up with package

updates and security patches are integrated into the

SDLC and part of the feature rollout.

8. Conclusion
Automated environment provisioning is a game-changer

for DevOps, enabling teams to build, manage, and scale

environments efficiently and reliably. By leveraging pipeline-

based environment builds, organizations can ensure that

environments remain stable and secure throughout the SDLC

process. This approach not only accelerates development

cycles but also enhances the quality and security of the

software being developed. The ability to tear-down

environments after a specific SDLC cycle paves way to low-

cost infrastructure set-up and maintenance. As organizations

continue to adopt DevOps practices, automated environment

provisioning will become an essential component of their

strategy, driving innovation and excellence in software

development and operations.

References
[1] HashiCorp, “Terraform: Infrastructure as Code.

HashiCorp, 2021”. [Online]. Available:

https://www.terraform.io

[2] Amazon Web Services, “AWS CloudFormation”.

Amazon, 2021. [Online]. Available:

https://aws.amazon.com/cloudformation

[3] Red Hat, “Ansible: Provision Infrastructure”. Red Hat,

2021. [Online]. Available: https://www.ansible.com

[4] Jenkins Project, “Jenkins Pipeline”. Jenkins, 2021.

[Online]. Available:

https://www.jenkins.io/doc/book/pipeline

[5] Prometheus Authors, “Prometheus Monitoring”.

Prometheus, 2021. [Online]. Available:

https://prometheus.io

[6] T-Mobile, “Autopilot” (Patent Pending). T-Mobile US,

Inc., 2025.

Fearless Releases ​

Feature specific releases ​

No releases blocked by other

releases ​

Fewer Environment Refreshes

More frequent

delpoyments/canary releases

Reliability ​

Enterprise grade performance
testing in an actual production

candidate ​

Less data build up

Security ​

Stack specific accounts ​

Frequent rotation of

keys/secrets ​

Cost/Time Reduction

Reduces release time and effort

No long-running environments

Reduces testing resource

allocation

