
International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P110

Eureka Vision Publication | Volume 4, Issue 2, 101-110, 2023

Original Article

Large Language Models in IDEs: Context-Aware Coding,

Refactoring, and Documentation

Guru Pramod Rusum

Independent Researcher, USA.

Abstract - The Large Language Models (LLMs) have transformed the process of software development, particularly under the

Integrated Development Environments (IDEs). Being trained on large corpora of code and natural language, LLMs have

exhibited an extremely high potential to improve the productivity of developers, facilitate the work of code generation, help in

refactoring, and automate documentation. The integration of LLMs in IDEs and the consequences of such a step are the topics

of this paper and are addressed in three key fields, including context-aware code generation, intelligent code refactoring, and

automated documentation. Based on the pre-2023 developments, we access a thorough literature review and construct a

systematic approach to assessing productivity and quality enhancement carried out by LLM-based instruments. The paper

indicates this transformation in the software development lifecycle using empirical review, case studies, and benchmark

results. Moreover, the ethical implications and limitations are mentioned, and the opportunity to conduct further studies about

it is discussed. Finally, the paper is expected to become a valuable addition to the body of knowledge available to the

researchers and practitioners who might be interested in AI-aided software development.

Keywords - Large Language Models (LLMs), Integrated Development Environments (IDEs), Code Generation, Developer

Productivity, Automated Documentation, Code Refactoring.

1. Introduction
The introduction of artificial intelligence and machine learning technologies, specifically the emergence of Large

Language Models (LLMs), has substantially transformed the software development sphere. The power of tools like OpenAI
GPT-3, Codex, and other architectures aims to change the way developers consume and produce code, allowing machines to

learn from humans and produce natural language and program logic. Such LLMs have become an integral part of

contemporary Integrated Development Environments (IDEs), serving as intelligent assistants that broaden the potential of

conventional code editors. [1-3] They can be felt in many development activities: creation of boilerplate code, unit test writing,

interpretation of difficult legacy applications and generation of readable inline documentation. With the initial analysis of

natural language prompts and the context of a piece of code, LLMs provide instant, context-sensitive suggestions that lower

the thinking burden and shorten development processes. They not only assist in automating mundane programming jobs but

also in improving the quality and maintainability of the code by providing optimized logic structures and recommendations.

This means that the mainstreaming of LLMs in development processes represents a decisive shift in the current state of

programming, encouraging a positive trend in creating a more efficient and natural development experience among

programmers, regardless of their level of competence within the profession.

1.1. Importance of Large Language Models in IDEs

Large Language Models (LLMs) are utilised in Integrated Development Environments (IDEs), marking a significant step in the

evolution of software development tools. They could be regarded as important by us along the following important

dimensions:

Figure 1. Importance of Large Language Models in IDEs

Guru Pramod Rusum / IJETCSIT, 4(2), 101-110, 2023

102

 Smart Code Completion: Conventional code completion automations primarily rely on static analysis and provide

suggestions based on syntax. By contrast, LLMs learn to decipher natural language as well as programming

languages, utilising deep learning to provide context-aware code completions. This will help developers obtain

relevant suggestions regarding surrounding code and comments, saving a significant amount of time in the

development process and manual work.

 Better Coding Interpretation: LLMs can understand the definition of a particular function, the use of variables, and
even the intentions of the code developer, given their comments or instructions. This enables them to support more

complex operations, such as learning foreign codebases or becoming familiar with legacy systems, which makes them

especially useful in large or long-term projects.

 Documentation automation: Writing docstrings and inline comments is one of the more mundane parts of

development, and that is partially automated now with the help of LLMs. Being aware of how a code is structured and

behaves, LLMs can produce human-readable documentation that explains the purposes of functions, parameters, and

return values. This alleviates documentation debt and makes code maintainable.

 Refactoring and debug support: LLMs help to reveal the chances of cleaner and more modular code. Supplying

patterns and proposing refactoring solutions could give a boost to the quality and understanding of the code. They are

also able to aid in debugging processes, interpreting error messages, and providing remedies tailored to the specific

context.

 Software Development Democratisation: LLMs reduce the technical obstacles to development, making it more

approachable for people without prior experience. As a consequence, they can interpret natural language prompts,

which means that even the smallest experts can engage with coding assignments, making IDEs more inclusive and

educational.

1.2. Context-Aware Coding, Refactoring and Documentation

Large Language Models (LLMs) have significantly enhanced the sophistication of coding, refactoring, and documentation

activities in modern Integrated Development Environments (IDEs) due to their context-aware capabilities. In comparison to

conventional code assistance tools that use syntax-driven pattern matching, LLMs understand the meaning of the code and its

extended context. [4,5] This allows them to create correct, useful pieces of code, up to date with the context at hand: whether

that is a function to be filled in, a highly specialized code pattern or even a textual comment in natural language. The

suggestion mechanism is clever and adjusts to variable names, imported libraries, and project-specific structures, among
others. As a result, the code is entered with higher accuracy, fewer repetitions, and complete results in a shorter time. The

process of refactoring, which was previously rather lengthy and imprecise, also becomes much more effective when LLM

support is provided. It can identify code smells, excessive nesting, and duplicate logic, and suggest better ways of

implementing the same in a simpler, decoupled form.

Through this, it assists developers in maintaining the readability and long-term maintainability of code without

compromising its functionality. In addition, LLMs can follow typical design patterns (DRY: Don't Repeat Yourself, SOLID),

aiding in the use of best practices during the program writing process in an automated manner. Besides enhancing the quality

of the codebase, this also brings a significant improvement to teamwork and scalability in the future. LLMs present a

revolution in the field of documentation. They can also produce accurate docstrings and in-line comments that describe the

usage, parameters, and result values of a function, all based on the implementation itself. This also frees developers from the
tedious and underestimated task of manual documentation, which is necessary for transferring knowledge and onboarding new

developers. Furthermore, it is vital to keep tone and formatting in mind, as LLMs ensure consistency in documentation

throughout the entire codebase and support organisational standards. In its entirety, context-aware coding, smart refactoring,

and auto-documentation contribute to the multidimensional value of the new constructs in computer programming in the

current world, allowing developers to be more creative in their work as they spend less time on boilerplate and routine

procedures.

2. Literature Survey
2.1. Early Code Assistants and Evolution

According to a brief history of early code assistance tools, it is possible to assume that more complex AI-based

development environments have evolved in the background of those above. Among the first and most popular ones was

IntelliSense, initially known as code completion, due to its simple keyword-based completions with basic syntax support. [6-9]

Despite being quite useful, its action was limited to the level of performing a static analysis. It did not imply a perception of

any wider context of the code or awareness of the programmer who created it. A major step was the introduction of TabNine in

2017, which incorporates machine learning to provide more intelligent autocomplete suggestions. The statistical models that

TabNine was trained on were able to operate in the context of large codebases, and thus it could make predictions not only

based on syntactic rules but also on patterns it had learned. Nevertheless, it was still weak in comprehending long-term code

relationships or semantic meaning.

Guru Pramod Rusum / IJETCSIT, 4(2), 101-110, 2023

103

The creation of GitHub Copilot in 2021 revolutionised code assistance with large language models (LLMs). Copilot was

capable of detecting even the context, comments, and natural language requests as it had been built on the framework of

Codex, an offspring of GPT-3. Nevertheless, despite their transformative power, Copilot and other tools like it still have

problems with hallucinations, producing code that appears realistic but is incorrect or malfunctioning. These two depict the

gradual increase in the typically strong code help tools, as well as their increasing intricacy.

2.2. LLMs in Coding

With the emergence of large language models (LLMs) like GPT-3 and Codex, the power of code generation and code

assistance has become significantly greater. They learned from large corpora a combination of natural language text and a

broad collection of programming languages, enabling them to map human intention into machine-checkable syntax. They have

transformer-based architectures (that include token embeddings, self-attention mechanisms, and autoregressive output

generation) that support deep semantic comprehension and contextual comprehension. That enables LLMs to propose code

completions, generate boilerplate code, translations between languages, and even find and fix bugs or refactor code admirably

accurately. Unlike older systems that either simply used statistical co-occurrence or fixed rules, LLMs are capable of

understanding the intentions of developers in their comments, recognising the semantics of functions, and modifying

recommendations based on a wider context within the code. It is this semantic richness that has made LLMs central, in some

regards revolutionary, parts of the developer tooling landscape today, at the edge of what is feasible with code assistance.

2.3. Documentation and NLP

Documentation has been a time-consuming and inaccurate process in software development. Earlier tools, such as KDocs

and autoDoc, provided rule-based automation of comment generation and summary creation, and may have been based on

pattern matching or a template-based approach. Although they were useful in consistently repeating the same task, these

systems were not versatile and lacked sensitivity to the task's context. Since the introduction of LLMs based on NLP,

documentation tools have gained the capability to analyse the structure, logic, and purpose of code. Now modern systems can

produce descriptive documentation which not only describes what the function does but also how and why it works in the way

it does. Such models can examine the usage and signatures of built-in functions, how variables are used, and utilise the context

code to generate quality, human-readable explanations. This is especially useful when onboarding, reviewing code and

managing large codebases. This has led to LLMs changing documentation into an automated (to a large extent) and context-

aware work, both of which are made more efficient and productive for the developer and enhance the maintainability of the
code.

3. Methodology
3.1. System Overview

A controlled experimental setting has been created and applied to assess how software development can be affected by

tools powered by Large Language Models (LLMs). Such an environment was designed to objectively evaluate the performance

of developers in situations with and without the help of LLM-based code generation tools, such as GitHub Copilot or Codex.
[10-14] The experimental condition included the formation of two groups of participants, the first of which was able to use

LLM tools in the process of coding and the second one, which could only employ traditional development practices, excluding

the use of AI tools. The participants in each group had to complete a series of programming problems of increasing difficulty,

which started with implementing an algorithm and debugging it, and progressed to writing functions of extended functionality

by hand. The test condition was normalised to reduce extraneous factors. Every participant followed the same integrated

development environment (IDE), had the same amount of time available, and received the same documentation with reference

guidance on the task, excluding AI tools in the control group.

The performance parameters, including the completion time of the task, correctness of the code, corrections/errors made,

and total quality of the code, were recorded in the experimental system in terms of the intended rubric pertaining to agreements

and understandings. All code outputs were anonymised, and the reviews were carried out by senior developers who were
unaware whether the solution was AI-assisted or not, to ensure fair results. Moreover, subjective measures were obtained by

surveying developers on their satisfaction, the challenging tasks they encountered, and the cognitive load they experienced

after completing the tasks. These answers provided insight into the psychological and experiential aspects of working with

LLMs. The design of the study used reproducibility and fairness by allocating tasks randomly and cross-validating the results.

This systematic undertaking provided the opportunity to understand the effects of LLM tools beyond the productivity

perspective, including the confidence of developers and their workflow. In general, the system's overview demonstrates a strict

approach aimed at making credible conclusions about the efficiency of LLM-based code assistance in real-life programming

challenges.

Guru Pramod Rusum / IJETCSIT, 4(2), 101-110, 2023

104

3.2. Design of the Experiment

Figure 2. Design of the Experiment

 Participants: A total of 50 software developers participated in the experiment, chosen to represent the widest

possible spectrum of experience levels, including junior developers with less than a year of work experience and

senior developers with more than 10 years of experience. The above participant pool ensured the generalizability of

the results across various skill levels, demonstrating the influence of LLM tools among both new and experienced

coders.

 Tools Used: The subjects were divided into two groups, where the first group was given Visual Studio Code

(VSCode) with GitHub Copilot installed, and the second group worked with the same IDE without AI help. The

similarity of the development environment also meant that any discrepancies regarding performance could be

attributed to the presence or absence of the LLM tool in all other aspects.

 Tasks: All developers were given three fundamental tasks, which are based on typical tasks in everyday

programming: (1) code implementation of a clear algorithm (e.g., sorting, searching), (2) the refactoring of a pre-
existing codebase to make it readable and efficient, and (3) writing extensive docstrings of functions or modules.

These assignments were selected to address various programming skills, including problem-solving, code

optimisation, and documentation.

 Metrics: Four measures were followed to gauge performance: the amount of time to perform each task, the number of

lines of code (LOC) written, the number of bugs found during the compilation or testing phases, and documentation

quality was measured by the professional reviewers using a rubric, where clarity, completeness, and relevance were

the considered aspects. These quantitative and qualitative indicators enabled a comprehensive consideration of the

problem of the impact of LLM tools on productivity, work accuracy, and code maintainability in a complex manner.

3.3. Productivity Metrics

Figure 3. Productivity Metrics

 LOC/Hour (Lines of Code per Hour): This is a metric that is used to gauge how many lines of code an individual

developer can produce in an hour; [15-18] it is an effective measure that is simple. Although it does not directly

impact code quality or complexity, the LOC/hour does provide some useful information about the amount of raw

output generated during coding. In the given study, the level of productivity was tested between developers who write

code manually and those who use LLM-based services, such as GitHub Copilot. An increased LOC/hour could imply

a quicker completion of a task, especially boilerplate work or repetitive coding tasks, which are most suited for

performance by LLMs.

Guru Pramod Rusum / IJETCSIT, 4(2), 101-110, 2023

105

 Error Reduction Rate (ERR): The Error Reduction Rate of the code indicates its effectiveness in terms of

correctness. Simply, it is calculated by assessing the number of syntax and logic errors that occur in early submissions

and comparing it with those found and corrected by the end of the development stage. The greater the ERR, the more

accurate and robust the code is. This indicator is essential for understanding the role LLM assistance plays in reducing

the number of mistakes and the emergence of new categories of errors, including hallucinations and the presentation

of inappropriate suggestions.

 Documentation Coverage Index (DCI): The Documentation Coverage Index is a metric that quantifies and qualifies

the quality and scope of inline documentation submitted in the code. It takes into consideration such factors as the

percentage of functions and modules that have docstrings, the thoroughness of parameter and return descriptions, and

the clarity of explanations. DCI is especially valuable in joint and long-term software projects, where maintainability

and code comprehension are critical. The measure assists in understanding the extent to which LLM tools not only

generate code but are also useful in developing developer behaviours that promote clear and consistent documentation

practices.

3.4. Tools and Technologies

Figure 4. Tools and Technologies

 OpenAI Codex API: In the experimental environment, the OpenAI Codex API was used as the central processor

behind the AI-supported development features. The generation of code completions and auto-completions, refactor

suggestions, and docstring generation has been attributed to Codex, a descendant of GPT-3 that has been fine-tuned

on specific tasks, such as programming. The fact that it could interpret natural language as well as code facilitated the

easy flow of import and export between the developer's mind and the software that could be run. The API was

incorporated into the development process to emulate the scenario of how developers will use the technology in the
real world, where they will utilise LLMs to speed up the code development process.

 VSCode Extension SDK: Codex needed to be integrated, and the user interface needed to be managed regularly;

therefore, Visual Studio Code (VSCode extension SDK) was used. With this SDK, they developed and released a

custom extension that either enabled or disabled Copilot-like functionality following the experimental group. The

SDKs came with APIs to intercept user input, render suggestions, and control permissions, all within a convenient and

distraction-free development environment for participants.

 Python and JavaScript Repositories: The experimental activities were based on actual Python and JavaScript

repositories to make them as realistic as possible and diverse in terms of programming languages. Python was

selected due to its popularity in scripting and data-intensive applications, whereas JavaScript was chosen for its use in

frontend and full-stack development applications. Using these two languages, the research was able to capture the

behaviour and performance of LLMs using different programming paradigms, providing a better perspective on the
effectiveness of the tools.

 Custom Telemetry Tracking Plug-in: A specially created telemetry tracking plugin was developed to ensure that

data about performance was gathered without disrupting the developer's routine. Such crucial statistics included the

time needed to perform each activity, the number of lines created, the number of errors made, and the frequency of

using AI suggestions. Its small and non-obstructive structure helped collect the data properly without interfering with

the natural environment of coding among participants.

4. Results and Discussion
4.1. Code Generation

The test demonstrated that the use of developer productivity and code quality tools tangibly improved when Large

Language Model (LLM)-based tools are combined with the software development process. In particular, the developers who

Guru Pramod Rusum / IJETCSIT, 4(2), 101-110, 2023

106

implemented Codex-powered assistance completed the coding activities with a duration that is approximately 45 per cent

shorter than that of the coder who did not rely on any tools. Such significant time-saving highlights the productivity advantages

achieved by using LLMs that memorise common coding structures, auto-complete code, and minimise boilerplate code writing

that is still necessary with LLMs. Since LLMs can be evaluated like spoken natural language and syntactic programming code,

developers can spend less time on syntax and repetitive logic constructs, and instead focus more on problem-solving and

system design. It was not only the speed that the performance was enhanced, but also the correctness of the code. When the
developers received LLM assistance, their code could pass 92% of the unit tests, compared to only 78% for the control group.

Such a gain means that the functional requirements were also more reliably fulfilled by the LLM-generated code, and there

were fewer syntax and logical errors. To a large degree, this can be credited to the training of the LLM on a variety of

programming situations and examples, which enables it to provide syntactically correct, semantically appropriate code in the

majority of situations.

Additionally, the model provided other frequently used guidelines, including how to utilise APIs and other programming

patterns and techniques, which also contributed to fewer debugging activities. Notably, productivity improvements were

observed in both junior and senior developers, indicating that LLM tools may be valuable to users with varying experience

levels. Although more experienced developers tended to use the tool to speed up standard writing tasks and focus their

attention on more sophisticated modelling choices, less seasoned developers found the tool most useful in filling knowledge

gaps in syntax languages and in realising implementation strategies. Collectively, these findings demonstrate that the code
creation phase of the development process can be substantially enhanced through the use of LLMs, such as Codex, which

accelerates the process, reduces the error rate, and enhances the productivity of developers with varying experience levels.

4.2. Refactoring Support

Table 1. Refactoring Support

Metric Without LLM (%) With LLM (%)

Readability 63% 86%

Cognitive Complexity 100 % 60 %

Figure 5. Graph representing Refactoring Support

 Readability: The code readability on the refactoring task was very good due to the integration of LLM tools.
According to the 10-point reading scale, where independent reviewers were used, the readability of the reading

improvements was 37%. Without the help of LLM, one can only achieve 63 per cent readability, and with its use, it

was enhanced to 86 per cent. The reason behind this improvement is the LLM's capability to refactor code with a

more readable structure, propose more intelligible variable names, and simplify complex logic. Consequently, the

refactored code became easier to read, comprehend, and maintain, particularly in teamwork and long-term projects.

 Cognitive Complexity: Cognitive complexity, which measures the difficulty of thinking in a piece of code, decreased

significantly in the LLM-aided group. Under the non-assisted group (the baseline), the levels of complexity were

recorded at 100% being the maximum complexity recorded throughout the study. This was reduced to 60% with the

input of LLM, which is a big simplification. The LLM-suggested solutions were also likely to bring back a modular

code structure, streamlined abstraction, and more predictable control flows. Such mental load reduction not only

63%

86%

100%

60%

0%

20%

40%

60%

80%

100%

120%

Without LLM (%) With LLM (%)

Readability Cognitive Complexity

Guru Pramod Rusum / IJETCSIT, 4(2), 101-110, 2023

107

facilitates the understanding of future maintainers but also decreases the likelihood of errors occurring during further

growth or testing.

4.3. Documentation Quality

The addition of LLMs to the software development pipeline has had a significant influence on the quality of

documentation, particularly in the production of docstrings and inline comments. One of the most neglected yet crucial aspects
of software maintainability is documentation, and the potential of LLMs to automate this process means that companies can

realise significant benefits in productivity. During the experiment, the developers found that the auto-generated docstrings

reflected the initial intent in 82 per cent of the cases, based on manually reviewed data and subjective responses obtained from

the participants. At the right place, these docstrings were also precise about the purposes of functions, their input parameters,

and the output of a given function, including edge cases, which indicated the model's ability to understand code context and

structure. This rate of high alignment saved a significant amount of post-generation editing.

It was reported that developers improved by doing 55% less manual correction of AI-generated documentation than when

developing documentation from scratch. Even though the effort spent on correction was less, the time saved was significant,

and the rate of documentation was more pronounced, as even minor utility functions and other less important parts had proper

descriptive coverage. This is especially useful with large codebases, as you can have excellent and elaborate documentation.

However, since this encompasses a lot of information, it can be time-consuming to update and prone to errors. When shown
just a few examples of documentation conventions, LLMs were also capable of adhering to a consistent style across a given

project. This conformity to the style enhances the ease of reading and the induction of new team members. Moreover, relieving

the mental burden of coming up with technical explanations, developers would have more time for problem-solving and

feature implementations. In general, the experiment proved that LLMs were very effective in improving documentation

quality, accuracy, and consistency, while decreasing the manual effort expended, thereby eliminating a long-time bottleneck in

software engineering. The findings support the importance of integrating LLMs not only to produce code but also to maintain

high standards in documentation and software processes.

4.4. Developer Feedback

Table 2. Developer Feedback

Feedback Category Without LLM (%) With LLM (%)

Confidence 61% 84%

Reported Cognitive Load 100 % 40 %

Satisfaction with Workflow 60 % 90 %

Figure 6. Graph representing Developer Feedback

 Confidence: This level of support in the popularization of LLM tools is particularly found in making developers more

confident about coding tasks. It is indicated that participants in the group with LLM aid scored 84 per cent in

confidence level, as opposed to the control group, which scored 61 per cent. This has also been enhanced by the fact

that the tool offered in-line guidance in the form of smart code suggestions and explanations. Developers were sure

they could always use a contextual assistant, which could examine previously unknown syntax or complex logic, and

help a developer overcome hesitation and improve their mood when performing a task.

61%

100%

60%

84%

40%

90%

0%

20%

40%

60%

80%

100%

120%

Confidence Reported Cognitive Load Satisfaction with
Workflow

Without LLM (%) With LLM (%)

Guru Pramod Rusum / IJETCSIT, 4(2), 101-110, 2023

108

 Reported Cognitive Load: The cognitive load (an estimate of the mental effort to perform a task) was also much

lower when using LLMs among developers. The cognitive load at its maximum was recorded as 100 per cent in the

control group, which is very straining, but it reduced to 40 per cent in the LLM-assisted group. This is because using

the model offloads repetitive and syntactical work, allowing developers to spend more time on high-level problem-

solving and architectural concerns. Consequently, there were fewer complaints of fatigue among developers during

the work process, and they were also more effective.

 Workflow satisfaction: There was also a significant growth in workflow satisfaction with the incorporation of LLM.

The developers using AI tools were considerably more satisfied, with ratings of 90 per cent compared to the manual

coding group's 60 per cent. The participants reported a smoother and more interactive experience, with the LLM

serving as a responsive coding partner. The capability to receive direct, context-sensitive help without leaving the

development environment took it much farther, resulting in a greater and smoother coding experience. Such

satisfaction highlights how LLMs can transform traditional software development practices into a more relationship-

building and enjoyable endeavour.

5. Conclusion
The results of the research demonstrate the redefining power of Large Language Models (LLMs) in the contemporary

software development landscape, particularly intensively. In all the tested tasks code generation, refactoring, and

documentation LLMs contributed significantly to the improvement in the efficiency and quality of the input results provided

by the developer. Having OpenAI Codex as a plug-in to widely used development environments, such as Visual Studio Code,

allows developers to write more context-sensitive code faster, reorganise their existing codebases in more readable and less

complex ways, and create documentation that is accurate and descriptive, with minimal manual effort. Objective measures

were quantifiable, as evidenced by the completion times of the tasks, the error levels, and the quality of the documentation.

These findings were reinforced by subjective feedback, as reporting developers expressed feeling more confident, having less

cognitive load and being happier with their process of development work. What these findings amount to is that LLMs will not
only be used to optimise repetitive tasks but also to enhance the developer experience.

Nevertheless, despite these encouraging results, several limitations have also been identified in the study that should be

addressed in future research and implementation. Among such issues, the problem of model hallucination is one of the most

urgent to address; this refers to syntactically correct but semantically incorrect or hazardous code that the LLM treats with

absolute certainty. This brings about a possibility of risks, particularly in important systems. Additionally, the current models

cannot learn in real-time; that is, they do not dynamically adapt to project conventions or adjust to developer comments

without manual intervention. The second issue can be described by the inherent biases of the training data, which may trigger

inconsistent coding patterns, security issues, or lead to the perpetuation of outdated practices unless properly curated and

tracked.

Apart from that, there are also a number of promising fields where development can be boosted with a glimmer of hope. A
substantial improvement in precision and relevance could be achieved by integrating real-time contextual awareness into

LLMs, such as by reading project files, identifying code patterns, and customising to developers in real-time. Domain-specific

fine-tuning is also a promising prospect, particularly in industries with specialised needs, such as finance, healthcare, or

embedded systems. In addition, adding LLM tools to wider DevOps toolchains with continuous integration and deployment

pipelines, and automated test suites, would allow closing the loop between development and deployment, producing end-to-

end intelligent automation in the software lifecycle. To summarise, the introduction of LLMs to IDEs represents a paradigm

shift in software engineering, introducing a new generation of intelligent programming environments. Although issues like

reliability, adaptability, and bias need to be addressed, the current trend suggests that human-AI interaction in the code creation

process will become the norm, increasing productivity, as well as creativity and code quality.

References
[1] Bruch, M., Monperrus, M., & Mezini, M. (2009, August). Learning from examples to improve code completion systems.

In Proceedings of the 7th joint meeting of the European software engineering conference and the ACM SIGSOFT

symposium on the foundations of software engineering (pp. 213-222).

[2] Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., ... & Zaremba, W. (2021). Evaluating large

language models trained on code. arXiv preprint arXiv:2107.03374.

[3] "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences" — Maliheh Izadi,

Roberta Gismondi, Georgios Gousios; arXiv, February 14, 2022. A language model that enhances code completion by
considering both AST token types and naming semantics.

[4] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are

few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901.

[5] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all

you need. Advances in Neural Information Processing Systems, 30.

Guru Pramod Rusum / IJETCSIT, 4(2), 101-110, 2023

109

[6] Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., ... & Sutton, C. (2021). Program synthesis with

large language models. arXiv preprint arXiv:2108.07732.

[7] Avizienis, A. (2006). Arithmetic error codes: Cost and effectiveness studies for application in digital system design. IEEE

Transactions on Computers, 100(11), 1322-1331.

[8] Ahmad, W. U., Chakraborty, S., Ray, B., & Chang, K. W. (2020). A transformer-based approach for source code

summarization. arXiv preprint arXiv:2005.00653.
[9] Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C. (2018). A survey of machine learning for big code and naturalness.

ACM Computing Surveys (CSUR), 51(4), 1-37.

[10] Alizadehsani, Z., Gomez, E. G., Ghaemi, H., González, S. R., Jordan, J., Fernández, A., & Pérez-Lancho, B. (2021, April).

Modern Integrated Development Environment (IDEs). In Sustainable Smart Cities and Territories International

Conference (pp. 274-288). Cham: Springer International Publishing.

[11] Aghajani, E. (2018, September). Context-aware software documentation. In 2018 IEEE International Conference on

Software Maintenance and Evolution (ICSME) (pp. 727-731). IEEE.

[12] Kannan, J., Barnett, S., Cruz, L., Simmons, A., & Agarwal, A. (2022, May). Mlsmellhound: A context-aware code

analysis tool. In Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: New Ideas and

Emerging Results (pp. 66-70).

[13] "CoditT5: Pretraining for Source Code and Natural Language Editing" — Jiyang Zhang, Sheena Panthaplackel, Pengyu

Nie, Junyi Jessy Li, Milos Gligoric; arXiv, August 10, 2022. A pretrained model tailored for editing tasks like comment
updating, bug fixing, and code review.

[14] Aghajani, E., Nagy, C., Vega-Márquez, O. L., Linares-Vásquez, M., Moreno, L., Bavota, G., & Lanza, M. (2019, May).

Software documentation issues unveiled. In 2019 IEEE/ACM 41st International Conference on Software Engineering

(ICSE) (pp. 1199-1210). IEEE.

[15] Sedano, T., Ralph, P., & Péraire, C. (2017, May). Software development waste. In 2017 IEEE/ACM 39th International

Conference on Software Engineering (ICSE) (pp. 130-140). IEEE.

[16] "ReACC: A Retrieval-Augmented Code Completion Framework" — Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-

won Hwang, Alexey Svyatkovskiy; arXiv, March 15, 2022. Introduces retrieval-augmented completion that leverages

external code context.

[17] "A Systematic Evaluation of Large Language Models of Code" — Frank F. Xu, Uri Alon, Graham Neubig, Vincent J.

Hellendoorn; arXiv, February 26, 2022. Evaluates code LMs like Codex, GPT-J, GPT-Neo, and introduces PolyCoder.
[18] Wingkvist, A., Ericsson, M., Lincke, R., & Löwe, W. (2010, September). A metrics-based approach to technical

documentation quality. In 2010, the Seventh International Conference on the Quality of Information and Communications

Technology (pp. 476-481). IEEE.

[19] Berlekamp, E. R. (2005). The technology of error-correcting codes. Proceedings of the IEEE, 68(5), 564-593.

[20] "Better Together? An Evaluation of AI-Supported Code Translation" — Justin D. Weisz, Michael Muller, Steven I. Ross,

Fernando Martinez, Stephanie Houde, Mayank Agarwal, Kartik Talamadupula, John T. Richards; IUI ’22, 2022. Evaluates

human–AI collaboration in code translation.

[21] Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in

Parametric CAD. International Journal of Emerging Research in Engineering and Technology, 1(3), 35-

44. https://doi.org/10.63282/3050-922X.IJERET-V1I3P105

[22] Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in

Claims. International Journal of Emerging Research in Engineering and Technology, 1(4), 38-
46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105

[23] Enjam, G. R., & Tekale, K. M. (2020). Transitioning from Monolith to Microservices in Policy

Administration. International Journal of Emerging Research in Engineering and Technology, 1(3), 45-

52. https://doi.org/10.63282/3050-922X.IJERETV1I3P106

[24] Pappula, K. K. (2021). Modern CI/CD in Full-Stack Environments: Lessons from Source Control

Migrations. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 51-

59. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106

[25] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). Real-time Decision-Making in Fusion ERP Using Streaming Data and

AI. International Journal of Emerging Research in Engineering and Technology, 2(2), 55-

63. https://doi.org/10.63282/3050-922X.IJERET-V2I2P108

[26] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International
Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-

V2I1P107

[27] Enjam, G. R., Chandragowda, S. C., & Tekale, K. M. (2021). Loss Ratio Optimization using Data-Driven Portfolio

Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 54-

62. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107

[28] Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International

Journal of Emerging Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.IJERET-

V3I4P107

https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
https://doi.org/10.63282/3050-922X.IJERET-V1I4P105
https://doi.org/10.63282/3050-922X.IJERETV1I3P106
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106
https://doi.org/10.63282/3050-922X.IJERET-V2I2P108
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107
https://doi.org/10.63282/3050-922X.IJERET-V3I4P107
https://doi.org/10.63282/3050-922X.IJERET-V3I4P107

Guru Pramod Rusum / IJETCSIT, 4(2), 101-110, 2023

110

[29] Jangam, S. K. (2022). Role of AI and ML in Enhancing Self-Healing Capabilities, Including Predictive Analysis and

Automated Recovery. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 47-

56. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P106

[30] Anasuri, S. (2022). Zero-Trust Architectures for Multi-Cloud Environments. International Journal of Emerging Trends in

Computer Science and Information Technology, 3(4), 64-76. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P107

[31] Pedda Muntala, P. S. R. (2022). Enhancing Financial Close with ML: Oracle Fusion Cloud Financials Case
Study. International Journal of AI, BigData, Computational and Management Studies, 3(3), 62-

69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P108

[32] Rahul, N. (2022). Optimizing Rating Engines through AI and Machine Learning: Revolutionizing Pricing

Precision. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-

101. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110

[33] Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of

Emerging Trends in Computer Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-

9246.IJETCSIT-V3I2P109

https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P106
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P107
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109

