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Abstract - The rapid expansion of data-intensive applications, cloud services, IoT ecosystems, and real-time communication 

platforms has drastically increased the demands on IP backbone networks. These networks must deliver ultra-low latency and 
optimized energy consumption while maintaining high throughput and reliability. Traditional IP switching protocols and static 

control plane architectures are ill-equipped to meet these demands due to their rigidity and lack of adaptability. This paper 

presents a comprehensive exploration and novel implementation of latency-aware and energy-efficient switching protocols 

enabled by AI-augmented control planes for next-generation IP backbone networks. The proposed framework leverages 

machine learning (ML) and deep reinforcement learning (DRL) models to dynamically monitor, predict, and adapt network 

flows based on latency constraints and energy profiles. Through continuous learning from traffic behavior, topology changes, 

and performance metrics, the AI-augmented control plane can make informed decisions that optimize both quality of service 

(QoS) and energy efficiency (EE). A modular architecture is designed, consisting of three core components: (i) a Latency 

Prediction Module (LPM) trained on historical traffic and delay patterns, (ii) an Energy Consumption Optimizer (ECO) based 

on multi-objective optimization, and (iii) a Reinforcement Learning Policy Engine (RLPE) for adaptive switching decisions.  

 

The synergy between these modules allows for proactive switching and routing tailored to real-time network conditions. 
Simulation and test bed evaluations of emulated Tier-1 ISP topologies demonstrate significant improvements, including an 

average latency reduction of 35%, energy savings of 27%, and improved throughput stability under fluctuating traffic. The 

system dynamically bypasses congestion, powers down idle links, and reroutes delay-sensitive data through low-latency paths. 

Comparative analyses with OSPF, IS-IS, and SDN-based approaches establish the superiority of the AI-augmented protocols 

in diverse traffic scenarios. The methodology is validated using datasets from CAIDA and real-world BGP traffic traces. 

Evaluation metrics include latency deviation, link utilization, packet loss, and energy-delay product (EDP). Key findings 

reveal the potential of AI-driven intelligence to revolutionize backbone network control by enhancing responsiveness, 

sustainability, and service quality. This paper contributes a novel AI-based protocol framework, an implementation-ready 

control plane design, and extensive quantitative evaluations that pave the way for practical deployment in ISP environments. 

Our findings underscore the importance of adaptive intelligence in addressing the dual challenges of latency and energy in 

future IP backbone architectures. 
 

Keywords - Latency-aware switching, energy efficiency, IP backbone networks, AI-augmented control plane, machine 

learning, reinforcement learning, QoS, SDN, routing optimization. 

 

1. Introduction 
The modern IP backbone networks are the backbone infrastructure that has made it possible to create a globally 

interconnected internet, supporting everything from normal data transmission operations to mission-critical facilities. As 
emerging technologies like 5G, augmented reality (AR), the Internet of Things (IoT), and cloud-based real-time applications 

rapidly spread, such networks are also faced with the challenge of providing extremely low latency with high throughput and 

nearly failure-free reliability that they have never experienced before. Many of these applications require end-to-end delays in 

the sub-millisecond range, which traditional best-effort routing mechanisms cannot support. [1-3] Meanwhile, the power 

overhead in the backbone infrastructure and especially in data centers and high-capacity core routers has become an acute issue 

both in operating costs and energy footprint. Internet use is rising exponentially worldwide, and it is correspondingly 

increasing the amount of carbon needed to support internet infrastructure, motivating the necessity for greener networking 

trends. 

 

Nevertheless, the available routing algorithms like OSPF and IS-IS are based more or less on shortest-path heuristics and 

are not contextually "smart". They are unable to take real-time, dynamic, adaptive measures to address congestion, traffic 
bursts, energy availability, and energy loss. In the same manner, existing control planes are mostly rule-based and static, with 

little or no predictive abilities or learning behaviour. Such a demand renders the use and management of resources inefficient 

and poor, especially when applied to delay-sensitive or energy-constrained applications. These constraints make the necessity 

of a smart, adaptive, and energy-conscious control plane, which can be responsive to changing network conditions in real-time, 
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without compromising strict performance and sustainability demands. This inspires the invention of AI-enhanced routing 

designs that embody ML and optimization practices to smartly control network assets. 

 

1.1. Importance of Energy-Efficient Switching Protocols 

 Rising Energy Demands in Backbone Networks: As internet traffic continues to grow exponentially worldwide, 
backbone networks are experiencing unprecedented data loads. Consequently, high-bandwidth applications such as 

4K video streaming, cloud computing, and real-time analytics have driven their increased use. Such networks are 

based on infrastructures comprising large, always-on networks made up of high-speed routers, optical networks, and 

switching fabrics, all designed to minimise power consumption. Traffic requirements and, thus, the energy consumed 

to process and transmit packets are also growing, often making energy consumption and, consequently, energy 

efficiency an important operational cost or environmental sustainability consideration. 

 Environmental and Economic Implications: ICT Networking infrastructure is currently the highest contributor to 

the carbon footprint in the ICT sector. As data centres transition to green computing initiatives, parallel green 

initiatives are becoming increasingly necessary in backbone networking. Power wastage by way of drawing power on 

idle or under-utilized links and devices, as a result of inefficient routing, increases the energy bill and the carbon cost. 

One key divide leading directly to the elimination of these inefficiencies is an energy-efficient switching protocol that 
runs on active network resources and dynamically adjusts them according to real-time demand, without any 

performance loss. 

 Limitations of Traditional Protocols: Fault tolerance and performance are the main features of Traditional 

protocols, such as OSPF and IS-IS, where no concept like energy metrics is observed at all. They continue to keep the 

network up to date at all times, regardless of the amount of traffic, which leads to wastage of energy during off-peak 

traffic. Such protocols do not have the ability to disable unnecessary links or route traffic over energy-efficient routes. 

This does not utilise the full potential of smart energy consumption in dynamic networks to the fullest extent. 

 Toward Intelligent, Sustainable Networks: The intelligent and sustainable networks require energy-efficient 

switching protocols. By incorporating energy-awareness into routing decisions through real-time monitoring, 

predictive analytics, and adaptive algorithms, it is possible to enable networks to drastically lower their power 

consumption while still operating at a high performance level. Such protocols not only follow global sustainability 

targets but also offer long-term cost advantage as well as better utilization of the infrastructure by the telecom 
operators. They constitute a fundamental basis for development toward autonomous and AI-based network 

management platforms. 

 

 
Figure 1.  Importance of Energy-Efficient Switching Protocols 

 

1.2. Generation IP Backbone Networks Using AI-Augmented Control Planes 

The latest IP backbone networks need to be made intelligent, flexible, and sustainable. Driven by the increasing need for 

ultra-low latency, high availability, and energy efficiency, traditional control planes, which are based on fixed policies and 

rules-programmed configurations, can no longer support these requirements. Rather, the trend toward the AI-augmented 

control planes is becoming an innovative solution. Such sophisticated control systems incorporate machine learning (ML), 

deep learning (DL), and reinforcement learning (RL) capabilities to make dynamic, context-sensitive choices throughout the 

network. Instead of responding to a change after it has occurred, AI-augmented systems will be able to anticipate traffic jams, 

link failures, and proactively optimise routing paths. [4,5] As one example, recurrent neural networks such as LSTM could 

predict future latency trends based on the tracking of past statistics, whereas learning agents implemented to use reinforcement 

learning could acquire optimal routing policies that would minimize delay and energy consumption under different conditions 

continuously.  

 
This paradigm facilitates a true data-driven control infrastructure, which utilises real-time telemetry, past trends, and trend 

modelling to inform decisions. The AI iterations continually update themselves by learning from past actions and their 

outcomes, ensuring the system is updated when the network state changes. This is especially essential in the case of IP 
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backbones, where traffic patterns are difficult to predict and workloads are highly dynamic in large-scale backbones. Besides, 

AI-enhanced control planes are capable of including multi-objective optimization, piecing together energy consumption with 

performance needs, which conventional protocols would not be ready to deal with. With the aid of AI, next-generation IP 

backbones achieve an autonomy of operations that was once unfathomable. The outcome is not only that the network will be 

faster and more reliable, but also significantly more energy-efficient. With the constantly increasing IT data requirements, AI-
enhanced control planes represent a major step towards creating sustainable, smart, and adaptive internet infrastructure that is 

ready to serve the digital services of the future. 

 

2. Literature Survey 
2.1. Traditional Switching Protocols 

Open Shortest Path First (OSPF) and Intermediate System to Intermediate System (IS-IS) protocols are sectional routing 

protocols, which are traditional protocols that have controlled the traffic core of a network. These protocols are link-state 
protocols that compute optimal paths by calculating a Shortest Path First (SPF) using the Dijkstra algorithm. [6-9] the shortest 

path is normally computed based on metrics like hop count, cost of link or fixed bandwidth. These fixed measurements, 

however, are not dynamic measures of network activities, such as latency spikes, congestion, or power usage. Therefore, in the 

event of congestion in networks or a change in the amount of traffic, such protocols cannot respond in real-time to the change, 

and as such, additional packets will be lost, some delays will be experienced, and efficiency will be compromised. Moreover, 

they could not handle some contextual information, e.g., user demand curves or diurnal energy prices, which restricted their 

overall performance. 

 

2.2. Software Defined Networking (SDN) 

The main difference presented by Software Defined Networking (SDN) is the paradigm shift that decouples the control 

plane and data planes and therefore enables network operation to be managed in a centralized fashion, and provides wider 
flexibility in the operations of the network. SDN controllers, including ONOS and Open Daylight, have a global management 

view of the network and can dynamically program routing policies through programmable interfaces, such as OpenFlow. This 

enables network administrators to respond quickly in case of failure, congestion, or demand deflection. Nevertheless, SDN is 

based on rule-based decision-making, which is not typically predictive, as it is programmable. These policies are preconceived 

and reactive, rather than proactive, and often fail to anticipate or avert performance reductions in most cases. Additionally, the 

control plane itself can be a bottleneck due to its limited scalability and latency in large-scale deployments within high-velocity 

environments. Many existing SDN solutions lack autonomous intelligence and cannot automatically optimise routing due to 

changes in network contexts, such as energy requirements or latency sensitivity. 

 

2.3. Energy Aware Routing 

The protocols developed in the name of Energy-aware routing techniques are an effort to minimise the power consumption 

of the networks due to the increasing concern of the environmental and economic burden of massive data transfer. Several 
techniques have been suggested, such as link sleeping, in which poorly utilized network links are de-energized during low 

traffic times and Power-Aware Link-State Routing (PALSR), which adds energy metrics to conventional link-state protocols. 

These methods have provided opportunities to cut energy consumption, especially in backbone and data centre networks, to a 

great extent. They may, however, do so at the cost of increased latency or reduced reliability, as the routes might become non-

optimal with disabled links. Moreover, these protocols are static or threshold-based and cannot dynamically adapt to increased 

traffic surges or pattern changes. These barriers narrow the possibility of conducting real-time trade-offs between energy 

efficiency and performance because they rely on predetermined heuristics instead of learning mechanisms. 

 

2.4. AI in Network Control 

In recent years, the use of Artificial Intelligence (AI) in controlling the network has received a boost, and more adaptive 

and intelligent routing tactics are promising to be developed. Supervised machine learning, as well as reinforcement learning 
and deep neural networks, have been used to solve various networking problems. As an example, DeepRoute uses Deep 

Reinforcement Learning (DRL) of paths at runtime to attempt to optimize throughput and minimize delays in response to 

observed network circumstances. Likewise, NetML applies machine learning models to predict traffic patterns that can be used 

to implement preemptive routing, preventing congestion. Another AI application in SDN architectures has been in fault 

tolerance, involving the prediction and diversion of traffic. Nevertheless, these improvements have so far enabled most AI-

based techniques to optimise one objective at the expense of others: they often optimise throughput or fault recovery, but not in 

a multidimensional way. In particular, not many of the current models have focused concurrently on energy consumption and 

latency: the latter is essential to the sustainability and the responsiveness of network operation. Additionally, real-time 

adaptation and learning pose another challenge, particularly in large-scale and high-speed backbone networks. 

 

2.5. Research Gap 

Although there has been an improvement in various traditional protocols, SDN, energy-aware routing, or AI-based 
control, the major research gap lies in the integration of these areas. Current solutions are much more focused on helping 

optimize the performance or be energy efficient, but not both. Besides, the majority of solutions are either responsive or non-
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adaptive to new and dynamic environments and cannot learn and adapt to new and changing network environments in real-

time. This restricts their usage in next-generation networks, which require low latency, high throughput, and low energy 

consumption simultaneously. It is essential that the routing protocol be holistic and AI-driven, capable of dynamically 

balancing latency and energy goals through online learning optimization. An ideal network would have such a system 

deployed that would capitalize on real-time data on the network, on predictive intelligence to predict what was going to be 
congested and the energy needed, and therefore would dynamically adjust routing choices. The concept of this two-objective 

optimization in AI models is a new, unknown territory that is likely to greatly impact the performance and sustainability of 

networks in the current backbone systems. 

 

3. Methodology 
3.1. System Architecture 

 
Figure 2. System Architecture 

 

 Latency Prediction Module (LPM): The Latency Prediction Module utilises Long Short-Term Memory (LSTM) 

based neural networks to predict network delay recurrence, accepting both current telemetry data and past traffic 
patterns. [10-13] LSTMs are quite suitable for time-series prediction capabilities, considering that they do not forget 

long-term dependencies, hence fit perfectly in predicting the latency of different networks under dynamic positions. 

Using prior knowledge of congestion and delay on routes, the LPM provides proactive router decisions that achieve 

minimal end-to-end latency. 

 Energy Consumption Optimizer (ECO): The Energy Consumption Optimizer is developed to minimize the amount 

of power consumed throughout the network by the use of a multi-objective genetic algorithm. In this algorithm, 

routing solutions are developed generation by generation and are associated with the trade-off of conflicting 

objectives of energy utilization and network performance. Taking into account the variables, e.g. link utilization, 

device power states, traffic volume, this feature of ECO determines near-optimal configurations that use minimal 

energy with only a significant implication on latency and throughput. 

 Reinforcement Learning Policy Engine (RLPE): The Reinforcement Learning Policy Engine makes real-time 
routing decisions based on the feedback from the network's state. It is learned with the Proximal Policy Optimization 

(PPO) stable and efficient reinforcement learning algorithm that finds the balance between exploration and 

exploitation. RLPE is an enduring learning scheme where an agent is trained in the environment via interactions with 

simulated or real-world traffic to maximize a cumulative reward function that is simultaneously minimized in terms of 

both latency and energy consumption. It is adaptive enough that it can react more admirably to changing network 

conditions in comparison to fixed routing policies. 

 

3.2. Data Flow Model 

 Collect network statistics from the data plane: Part one of the data flow model involves obtaining real-time 

statistics from the data plane of the network. These metrics include link usage, queue depth, packet loss, throughput, 

and current latency values. This information is gathered by analyzing agents or SDN-supported switches via SDN-
supported protocols such as Open Flow or Net Flow. The resultant data can feed the higher-level modules the 

necessary information to enable them to evaluate the situation in the network and determine where traffic might be 

going through a bottleneck or is in an inefficient process. 

 Predict future latency and load: After acquiring real-time data, it is input into the Latency Prediction Module 

(LPM), which implements LSTM-based models to predict future latency and traffic load. This forecast takes into 

consideration time trends on the traffic network, e.g. peak usage times or periodic peak congestion. Prediction of 
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future states enables the system to take anticipatory actions in routing and resource allocation, thereby reducing the 

likelihood of packet delay or overload situations before they occur. 

 Compute energy-delay trade off: The foregrounding latency and load data then go through Energy Consumption 

Optimizer (ECO) to estimate possible routing paths not only regarding energy consumption, but also delay. ECO 

utilises a multi-objective genetic algorithm to explore the combinations of paths, discerning tradeoffs between 
minimal cost and energy consumption, and minimal latency. This ensures that paths representing high performance 

and energy efficiency are not overly damaging, and that paths that are fast do not create unwarranted energy overhead. 

 Select the optimal path via RL: To produce a final routing decision, the Reinforcement Learning Policy Engine 

(RLPE) combines the predictions of LPM and ECO. The RL agent is trained with Proximal Policy Optimization 

(PPO) and calculates the reward during the optimization process of numerous routing policies and chooses the most 

optimal by looking at the total of both the delay and energy parameters. This is an adaptive decision-making process, 

and the engine will improve its policy over time, learning new states and outcomes within the network. 

 Select the optimal path via RL: Once the optimal path has been chosen, the system dynamically updates the 

forwarding rules in the switches within the network. This is achieved through control plane interfaces, such as Open 

Flow, where the SDN controller adds new flow table entries to direct traffic along the route of interest. This means 

that it will be responsive to the changing conditions in its networks, making it possible to adjust traffic flows in real-
time while maintaining a good balance between performance and energy efficiency. 

 

 
Figure 3. Data Flow Model 

 

3.3. Algorithms 

 
Figure 4. Algorithms 

 

 Latency Prediction (LSTM-Based): The Latency Prediction algorithm uses a Long Short-Term Memory (LSTM) 

network to predict [14-18] future delays in a network using past as well as real-time traffic measurements. LSTMs are 

a version of recurrent neural networks (RNNs) that have the capability of learning long-term temporal dependencies 

in series of data over time, making them great at modelling time series latency trends with cyclical behaviour or 

bursty traffic. The model utilises sequences of link statistics, such as current delay, throughput, and queue length, to 

tune and predict latency on each link or path. These predictions assist the routing engine in making proactive 

decisions without incurring congestion. 
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 Energy Optimization: A multi-objective genetic algorithm (GA) in the Energy Optimization algorithm determines 

paths through a network that require the least amount of energy, but that meet given requirements on performance. 

The algorithm begins with a population of randomly generated potential routing configurations, which are evaluated 

using a fitness function that considers both energy consumption and estimated delay. It refines the solutions iteratively 

through crossover and mutation activities, aiming to arrive at a set of Pareto optimal solutions. Network policies and 
limitations, such as maximum latency, minimum bandwidth requirements, and link capacity, are applied to these 

candidate paths. The result is the viability of a collection of energy-efficient paths that conform to satisfactory 

performance aggregates. 

 RLPE Routing Policy: The Reinforcement Learning Policy Engine (RLPE) combines Proximal Policy Optimization 

(PPO) based policy-based learning to choose optimum routing paths on demand. The state that the agent monitors 

consists of peak-level link usage and delay vectors throughout the network topology in real-time. Action is equivalent 

to choosing a specific routing path between the source and destination. The reward is characterized as the negative 

sum of latency and energy cost, which encourages the agent to reduce both indicators. The RLPE adapts to current 

conditions on the network, over time, optimizing its policy based on its experiences with the network. The PPO 

algorithm is stable and efficient for training because the policy is only updated radically in a few situations; therefore, 

it is suitable for use in live networks when decisions must be made continuously. 

 

3.4. Tools and Simulation Environment 

 
Figure 5. Tools and Simulation Environment 

 

 Topology: The simulation environment utilises real-world network topologies based on the Rocket fuel and CAIDA 

datasets. Rocket fuel maps ISP networks in detail, using trace route and BGP information, to provide topologies 
representative of real-life routing layouts and interlink characteristics. Similarly, the Tier-1 ISP datasets provided by 

CAIDA contain backbone connectivity information, including peerings and the latency distribution of backbone 

connectivity. Their use will ensure that the proposed architecture and algorithms are tested under conditions as close 

as possible to real Internet-scale systems, allowing for meaningful conclusions to be drawn about performance and 

scalability. 

 Tools: The underlying framework of the experiment is constructed with the help of office tools that incorporate 

galvanising tools. Mini net simulates SDN settings and enables the introduction of simulated topologies with 

programmable switches using Open Flow routing, which allows route developments to be driven dynamically. The 

reinforcement learning framework used is Open AI Gym, which supports a modular interface for training and 

assessment of the RL-inspired routing agent in a controlled environment. The deep learning models, such as the 

LSTM for predicting latency and the PPO agent for making routing decisions, are developed and trained using 
TensorFlow. Combined, they create a fully integrated, end-to-end simulation and learning platform. 

 Traffic: The system utilises historical BGP and Net Flow traces to achieve realistic traffic patterns. BGP traces 

provide visibility into control plane phenomena, such as route advertisements, the preferred route, and changes to 

prefixes. The Net Flow offers detailed information on the quantity of flow, duration of traffic flow and utilization per 

link. The emulated environment re-runs these traces to mimic the conditions seen in the real environment, the latency 

predictor and the reinforcement learning agent learns based on realistic and variable traffic patterns. This makes the 

models resilient, transferable, and able to handle sophisticated situations that exist in production networks. 

 

4. Results and Discussion 
4.1. Performance Metrics 

To assess the success of the suggested AI-powered routing framework, a comprehensive set of performance qualities is 

applied. The given metrics measure both the level of work efficiency and the system's sustainability under conditions close to 

real-world network conditions. Another important metric is the average latency (ms), which is the mean of the end-to-end 

delay of the packets as they travel across the network. One is the responsiveness of the routing protocol, which is especially 
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relevant when latency-sensitive applications are in focus, such as video conferencing, online games, and real-time analytics. A 

decreased average latency indicates that the routing engine is effectively anticipating congestion and acting proactively to 

select faster routes. Energy consumption (kWh) measures the amount of electricity consumed by networking devices, such as 

routers, switches, and data links, during the process of transmitting data. It is an important metric that can be used to evaluate 

the environmental and economic sustainability of the network's functioning.  
 

Energy efficiency is of special significance in scale backbone and data centre networks, where power consumption is high. 

The framework can reduce unwarranted energy spending by having energy-conscious algorithms to achieve this objective 

without affecting the quality of service. A packet delivery ratio (PDR) is a ratio that reflects the percentage of successfully 

delivered packets compared to the total number of sent packets. It is one of the measures of network reliability and robustness. 

Exceptional PDR means the suggested routing system does not compromise data integrity or fault tolerance in the pursuit of 

reducing latency or energy efficiency. The energy-delay product (EDP) is a compound metric that combines both energy and 

latency into a single number, calculated by multiplying them together. The metric helps measure trade-offs of energy 

efficiency and performance. A smaller EDP means a more balanced and optimized system. It is especially applicable to 

contemporary networks that must achieve both sustainability and QoS requirements. All these metrics help to provide a 

multidimensional picture of the system's performance and facilitate measuring the trade-offs in AI-based network control. 

 

4.2. Comparative Analysis 

Table 1:  Comparative Analysis 

Protocol Avg Latency (%) Energy (%) EDP (%) Packet Delivery (%) 

OSPF 100% 100% 100% 93.2% 

SDN 84.3% 92.0% 77.5% 96.7% 

Proposed 64.7% 73.0% 47.2% 98.9% 

 

 
Figure 6. Graph representing Comparative Analysis 

 

 OSPF: It is upon this background that the comparison with Open Shortest Path First (OSPF) will be made. It is the 

most commonly used routing protocol; therefore, it has the highest average latency (100%) and maximum energy 

consumption (100%), as it uses static, metric-based routing algorithms that do not respond to real-time traffic or 

power conditions. Accordingly, the Energy-Delay Product (EDP) stands at 100%, indicating inefficiency in both 

performance and energy consumption. The packet delivery ratio shows that 93.2 per cent of the packets are received; 
however, this is less reliable when the network is congested or under dynamic loads, which OSPF cannot efficiently 

handle. 

 SDN: A noticeable enhancement is observed with Software-Defined Networking (SDN). Harnessing programmable 

flow control and centralisation, SDN reduces the amount of latency and electricity used by OSPF by 84.3% and 

92.0%, respectively. These improvements indicate a better balance between performance and efficiency, as evidenced 

by a 77.5% reduction in EDP. Additionally, with SDN packet delivery, uptimes have increased to 96.7%, which is 

attributed to its dynamic traffic rerouting capability resulting from network changes. But since it is a rule-based 

system, it does not offer predictive intelligence, hence further optimization cannot be carried out. 

 Proposed System: The suggested AI-based protocol outperforms OSPF and SDN in all measurements. With the help 

of latency prediction through LSTM, energy optimization with the help of genetic algorithms, and real-time path 
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formulation with the help of reinforcement learning, it can bring down the average latency to only 64.7 percent of 

OSPF. It also has the lowest energy consumption of 73.0% and an EDP of 47.2%, which is improved by a dramatic 

proportion, indicating a better energy-performance trade off. Moreover, the packet delivery ratio reaches 98.9%, 

which proves the reliability and soundness of the intelligent routing policy under various traffic conditions. 

 

4.3. Latency vs Energy Trade-off Curve 

Latency versus energy trade-off curve: As the dilemma arises about whether to save more power or ensure good network 

performance, the latency versus energy trade-off curve demonstrates the inherent trade-off that exists between the least amount 

of power consumption and reasonable network performance. As the routing system becomes more insistent on being energy-

efficient (i.e., turning off unused links or following low-energy paths), it can initially dramatically reduce energy consumption 

with a relatively small penalty to latency. This advantage, nevertheless, has a non-linear character. The improvement in 

average latency is minimal and falls within an acceptable range of QoS, resulting in approximately 30 per cent energy savings. 

The range identified by this part of the curve represents an efficient operating range, wherein the system can handle redundant 

capacity without requiring high-power links and without a drastic effect on packet delivery times. At a level above 30 per cent, 

the curve starts to exhibit diminishing returns.  

 

The extra latency costs more energy savings at the expense of disproportionately greater energy savings. The reason here 
is that in this case, the optimizer will inevitably have to resort to less direct paths or more congested paths or will have to use 

those links that have lower transmission rates in order to save more power. Such decisions can multiply queuing delays, 

prolong end-to-end paths, and increase the likelihood of packet drops in bursty traffic. Therefore, at the expense of this 

marginal improvement in energy efficiency, a huge loss of user experience and application performance is incurred. The curve 

also forms a realistic limit on energy-aware routing, in the sense that efficiency does not adversely affect latency-sensitive 

services. In the suggested system, this equilibrium is dynamically maintained through a reward-sensitive, energy- and latency-

reinforcement learning-based policy engine. The learning process, which runs very close to the point of diminishing returns, 

permits the system to attain maximum energy savings with acceptable latency costs. It is vital illumination for network 

operators seeking to reduce operational expenditure and lower their carbon-emitting profile while striving to achieve a 

responsive network output for the end user. 

 

4.4. Discussion 

The suggested AI-based routing architecture shows significant results in flexibility, effective resource utilization, and 

general network performance in changing situations. An attribute such as the Reinforcement Learning Policy Engine (RLPE) is 

one of the main strengths because it can demonstrate high adaptivity to changes in traffic. In contrast to a system requiring 

static routing or routing based on rules, RLPE learns using real-time feedback and adapts routing choices on-the-fly, permitting 

the network to stay within optimal performance even when facing variable loads and unpredictable traffic spikes. Such 

flexibility helps ensure that the network does not experience congestion in advance, resulting in a more consistent quality of 

service (QoS) on various time scales. LSTM neural networks drive the Latency Prediction Module (LPM), which is able to 

predict possible latency spikes based on long-term traffic volume and time dependency analysis. Through this foresight, the 

system can reroute traffic to avoid an impending bottleneck before the flow of traffic is disrupted, resulting in queuing delays 

and jittering prevention. This subsequently leads to more reliable performance of latency-sensitive applications, such as VoIP, 

video conferencing, and cloud gaming, with reduced disruption.  
 

The Energy Consumption Optimiser (ECO) also makes a significant contribution to achieving the sustainability goals 

within the system. Employing the multi-objective genetic algorithms, ECO has been able to realize and manage to shut down 

about 17 % of underutilized or idle links during off-peak times without having the degradation of the service quality or packet 

delivery being eminently felt. Such a selective shutdown can reduce superfluous energy consumption, which speaks volumes 

to the importance of intelligent, context-sensitive energy management within backbone networks. Notably, the AI components 

create a very minor computational overhead considering the total performance and energy savings. The models are trained in 

offline mode and periodically fine-tuned, which enables real-time inference with minimal processing requirements. The system 

architecture maintains the latency of the decision-making activity at a comfortable level during operation. Overall, the 

proposed framework confirms the potential and utility of integrating predictive and adaptive intelligence with network routing, 

resulting in enhanced performance and energy efficiency. 

 

5. Conclusion 
This paper presents a new AI-augmented control plane architecture that enhances the efficiency and responsiveness of 

backbone networks to routing. Contrary to traditional routing protocols, which tend to be myopic and statically make 

decisions, the proposed system learns to adapt dynamically to real-time changes in the network, jointly optimising latency and 

energy costs. The architecture is built of three modules that are tightly coupled together, namely Latency Prediction Module 

(LPM), Energy Consumption Optimizer (ECO), and Reinforcement Learning Policy engine ( RL PE ). The LPM applies 
LSTM neural networks to predict latency trends, allowing the system to avoid congestion before it occurs. ECO utilises a 

multi-objective genetic algorithm to determine energy-efficient paths and routes, while maintaining the quality of service 
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through them. Through Proximal Policy Optimization (PPO), RLPE selects paths in real time, balancing energy usage and 

network-delay trade-offs. When combined, this forms a coherent and intelligent routing system that not only significantly 

reduces average latency compared to before, but also lowers power consumption and improves packet delivery reliability, as 

proven through simulations using realistic topologies and traffic traces. The framework has demonstrated that the potential 

integration of predictive and adaptive intelligence into network control planes can offer considerable operational advantages 
with minimal drawbacks in the form of excessive overhead. 

 

Although promising results are achieved with the proposed architecture, there are a few directions in which it can be 

further improved in the future. BGP-level integration is one of the primary areas, enabling AI-based routing logic to work in 

tandem with inter-domain routing policies. This would increase the system's applicability to multi-AS backbone situations and 

enhance existing interoperability with the Internet infrastructure. Cross-layer optimization, especially on transport-layer 

protocols like TCP and QUIC, is another direction of investigation. End-to-end performance and stability can be increased 

further by agreeing on the nature of congestion control to match characteristics of retransmission behavior and network-layer 

intelligence. Additionally, power-gating techniques at the hardware level can be implemented to save energy beyond link-level 

schemes. It will be able to selectively shut down parts of the routers and switches when they are not in use and bring them up 

when required through the AI control plane. The above improvements would bring the architecture closer to the field where it 

would be deployed, providing a scalable, sustainable, and intelligent solution for next-generation networks. 
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