

International Journal of Emerging Trends in Computer Science and Information Technology

 ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246/IJETCSIT-V6I1P105

Eureka Vision Publication | Volume 6, Issue 1, pp. 43-50, 2025

Original Article

Dynamic Load Balancing Mechanisms for Scalable Cloud

Computing Architectures

Muhammadu Sathik Raja

Professor & Head at Sengunthar Engineering College (Autonomous), Computer Science, Tiruchengode, India.

Received On: 10/01/2025 Revised On: 23/01/2025 Accepted On: 25/01/2025 Published On: 28/01/2025

Abstract - In the realm of cloud computing, dynamic load

balancing is pivotal for optimizing resource utilization and

enhancing system performance. This mechanism ensures that

workloads are evenly distributed across multiple servers,

preventing any single server from becoming a bottleneck. The

proposed Enhanced Dynamic Load Balancing Algorithm

introduces a non-AI approach that dynamically adjusts load

distribution by considering critical factors such as server

capacity, workload distribution, and current system load. By

employing adaptive threshold modifications, this novel strategy

aims to optimize resource allocation without the complexity

and overhead associated with traditional AI-based methods.

Experimental results indicate that this approach significantly

improves response times and overall system stability compared

to existing techniques. As cloud environments continue to

evolve, effective load balancing mechanisms will be essential

in addressing the challenges of scalability and resource

management, ultimately leading to enhanced user satisfaction

and operational efficiency.

Keywords - Cloud computing, Dynamic load balancing,

Resource optimization, Server capacity, Workload distribution.

1. Introduction
As cloud computing continues to gain traction across

various industries, the demand for scalable and efficient

architectures has never been higher. One of the critical

challenges in cloud environments is managing the distribution

of workloads among multiple servers. Inefficient load

distribution can lead to server overloads, increased latency, and

degraded performance, ultimately affecting user experience

and service reliability. Dynamic load balancing mechanisms

play a vital role in addressing these challenges by ensuring that

workloads are allocated effectively across available resources.

1.1. The Importance of Load Balancing

Load balancing is essential for maintaining optimal

performance in cloud computing architectures. It involves

distributing incoming network traffic or computational tasks

across multiple servers to ensure that no single server is

overwhelmed. This not only enhances resource utilization but

also minimizes response times and maximizes throughput. In a

dynamic environment where workloads can fluctuate

significantly, static load balancing methods fall short, as they

cannot adapt to real-time changes in demand. Therefore,

dynamic load balancing mechanisms are crucial for

maintaining service quality and operational efficiency.

1.2. Challenges in Dynamic Load Balancing

Despite its importance, implementing effective dynamic

load balancing presents several challenges. One major issue is

the need to continuously monitor server performance and

workload distribution in real-time. This requires sophisticated

algorithms capable of making quick decisions based on current

system states. Additionally, as cloud infrastructures grow in

complexity with the integration of various services and

technologies, ensuring scalability while maintaining load

balance becomes increasingly difficult. Furthermore,

traditional AI-based approaches, while effective, can introduce

significant overhead and complexity that may not be justifiable

for all applications.

1.3. A New Approach

To address these challenges, innovative solutions are

required that balance efficiency with simplicity. The proposed

Enhanced Dynamic Load Balancing Algorithm seeks to

optimize resource allocation without the complexities

associated with AI-driven methods. By focusing on adaptive

threshold modifications and real-time workload assessments,

this approach aims to enhance system stability and improve

overall performance in scalable cloud architectures. As we

explore this topic further, we will delve into the mechanics of

this algorithm and its potential impact on cloud computing

environments.

2. Related Work
Dynamic load balancing in cloud computing has

garnered significant attention due to its critical role in

optimizing resource utilization and enhancing system

performance. Numerous studies have explored various

algorithms and methodologies to improve load distribution

across cloud environments.

2.1. Traditional Approaches

One of the foundational works in this field is the review

by Laha et al. (2024), which discusses the importance of load

balancing in cloud computing and introduces a novel Enhanced

Dynamic Load Balancing Algorithm. This algorithm focuses

on adjusting load distribution based on server capacity,

workload distribution, and system load, thereby optimizing

resource allocation without relying on complex AI models. The

Muhammadu Sathik Raja / IJETCSIT, 6(1), 43-50, 2025

 44

authors emphasize that traditional AI-based approaches can

complicate systems and increase costs, making their non-AI

solution a more efficient alternative for dynamic load

balancing.

2.2. AI and Machine Learning Techniques

In contrast, other studies have leveraged artificial

intelligence and machine learning to tackle dynamic load

balancing challenges. For instance, a paper by Zhang et al.

(2024) proposes a deep learning model that incorporates

Convolutional Neural Networks (CNNs) and Recurrent Neural

Networks (RNNs) to enhance decision-making in load

balancing.

This model addresses conflicting goals such as

minimizing makespan and energy consumption while ensuring

balanced resource utilization. The research highlights the

adaptability of this approach to dynamic workloads and its

scalability for larger cloud environments.

Figure 1. Comparison of Static and Dynamic Load Balancing in Cloud Environments

2.3. Bayesian Models for Optimization

Another significant contribution is from a study that

introduces the Load Balancing Bayesian Model (LBBM) for

optimal task distribution in cloud environments. This model

consists of a Load Balancer (LdBr) that assigns tasks to

available Virtual Machines (VMs) based on real-time analysis

provided by a Virtual Machine Monitor (VMMr). The LBBM

approach aims to reduce makespan while increasing resource

utilization, demonstrating the effectiveness of probabilistic

models in dynamic load balancing scenarios.

2.4. Comparative Studies

Additionally, empirical studies have evaluated various

existing load balancing techniques to identify their strengths

and weaknesses. Research has shown that while AI-based

methods offer advanced capabilities, they can also introduce

significant computational overhead. Consequently, there is a

growing interest in hybrid approaches that combine traditional

methods with modern optimization techniques to achieve better

performance without excessive complexity.

3. Proposed Approach
3.1. Architecture Overview

The challenges of static load balancing and the

advantages of dynamic load balancing in a cloud computing

environment. The left half of the image represents a scenario

where tasks are assigned to physical machines (PMs) without

an optimized load balancing strategy. Here, some PMs are

underutilized, meaning their resources are not being efficiently

used, while others are overloaded, leading to potential

performance bottlenecks. The data center (DC) is shown as a

central entity responsible for handling user tasks and

distributing them among PMs, but without an intelligent load

balancing mechanism, resource utilization is inefficient. On the

right half of the image, a dynamic load balancing approach is

demonstrated. In this scenario, tasks are assigned more

intelligently to PMs, ensuring an even distribution of workload.

The data center dynamically adjusts the allocation of tasks

based on the real-time availability and utilization of computing

resources. This results in better resource efficiency, preventing

some PMs from being overwhelmed while others remain idle.

As a result, virtual machines (VMs) hosted within the PMs

receive a balanced share of tasks, leading to optimal

performance and reduced latency.

The visual contrast between these two approaches

highlights the critical need for dynamic load balancing

mechanisms. Static or poorly optimized task allocation can

cause inefficiencies, increasing response time and reducing

overall system throughput. In contrast, a well-designed

dynamic load balancing strategy can significantly enhance

system performance, improve resource utilization, and provide

a better user experience. By incorporating this image into the

article, readers can quickly grasp the key differences between

traditional and optimized task assignment strategies in cloud

computing. The schematic representation simplifies complex

load balancing processes, making it easier to understand how

dynamic mechanisms can improve scalability, reliability, and

efficiency in large-scale cloud environments.

3.2. Algorithms and Techniques

The Enhanced Dynamic Load Balancing Algorithm

(EDLBA) employs a combination of established load

balancing techniques tailored for dynamic environments. This

section outlines the core algorithms utilized in the proposed

approach, focusing on their functionality and implementation.

Muhammadu Sathik Raja / IJETCSIT, 6(1), 43-50, 2025

 45

3.2.1. Algorithm Overview

Dynamic Server Selection Algorithm: This algorithm

continuously evaluates the current state of each server in the

cloud environment. It identifies the server with the lowest

current load (i.e., CPU utilization, memory usage) and directs

new tasks to that server. This approach ensures that resources

are utilized efficiently and prevents any single server from

becoming overloaded.

3.2.2. Weighted Least Connection Algorithm:

This algorithm enhances the traditional least connection

method by assigning weights to servers based on their capacity

(CPU, memory). When a new task arrives, it directs the request

to the server with the fewest connections relative to its weight,

allowing for a more nuanced distribution of tasks.

3.2.3. Resource-Based Load Balancing Algorithm:

This algorithm focuses on the resource availability of

each server, considering metrics such as CPU load and

memory usage. It routes requests to the server best equipped to

handle them based on real-time data.

3.3. Workflow and Components

The workflow of the Enhanced Dynamic Load

Balancing Algorithm is designed to facilitate seamless task

distribution while maintaining optimal performance across

cloud resources. The following outlines the key components

involved in this workflow:

3.3.1. Workflow Steps

• Task Generation: The process begins when a new task is

generated within the cloud environment. This task could

originate from user requests, scheduled jobs, or automated

processes.

• Task Queue Management: Once generated, tasks are

placed into a Task Queue managed by the system. The

queue organizes tasks based on priority levels, ensuring

that critical tasks are processed promptly.

• Resource Monitoring: Concurrently, the Resource

Monitoring Module collects real-time data from all servers

in the Server Pool. It tracks metrics such as CPU

utilization, memory usage, and active connections to

assess each server's current state.

• Dynamic Server Selection: The Load Balancer utilizes

one of the algorithms (Dynamic Server Selection,

Weighted Least Connection, or Resource-Based Load

Balancing) to evaluate which server is best suited to

handle the incoming task based on current load conditions

and resource availability.

• Task Dispatching: After selecting an appropriate server,

the Load Balancer dispatches the task to that server for

processing. The task is monitored throughout its execution

to ensure timely completion.

• Feedback Loop: Upon task completion, feedback is sent

back to the Resource Monitoring Module, updating the

system's understanding of each server's load and

performance metrics. This information is crucial for future

decision-making regarding task allocation.

• Dynamic Adjustment: If any server becomes overloaded

or underperforming during this process, the Load Balancer

can dynamically redistribute tasks as needed to maintain

overall system stability and performance.

3.3.2. Component Interaction

• Load Balancer: Central to managing incoming tasks and

distributing them based on real-time data.

• Resource Monitoring Module: Provides continuous

updates on each server's performance metrics.

• Task Queue Management: Organizes tasks based on

priority and ensures efficient processing.

• Server Pool: Represents all available servers that can

handle incoming requests.

4. Experimental Setup
4.1. Environment and Tools

The experimental setup is a pivotal component in

evaluating the Enhanced Dynamic Load Balancing Algorithm

(EDLBA), as it determines the reliability and applicability of

the results in real-world cloud computing environments. This

section highlights the infrastructure, tools, and the rationale

behind their selection, emphasizing how they collectively

provide an optimal environment for the algorithm’s evaluation.

4.1.1 Cloud Infrastructure

The experiments were conducted on a prototype cloud

computing environment built using OpenStack, an open-source

platform that facilitates the deployment of Virtual Machines

function selectServer(servers):

 minLoad = Infinity

 selectedServer = None

 for server in servers:

 if server.load < minLoad:

 minLoad = server.load

 selectedServer = server

 return selectedServer

function weightedLeastConnection(servers):

 minWeightedLoad = Infinity

 selectedServer = None

 for server in servers:

 weightedLoad = server.connections / server.weight

 if weightedLoad < minWeightedLoad:

 minWeightedLoad = weightedLoad

 selectedServer = server

 return selectedServer

function resourceBasedSelection(servers):

 bestServer = None

 maxAvailableResources = -1

 for server in servers:

 availableResources = server.capacity - server.currentLoad

 if availableResources > maxAvailableResources:

 maxAvailableResources = availableResources

 bestServer = server

 return bestServer

Muhammadu Sathik Raja / IJETCSIT, 6(1), 43-50, 2025

 46

(VMs) and networking resources. OpenStack was chosen due

to its flexibility, scalability, and widespread adoption in cloud

computing research and operations. It supports various

configurations, making it an ideal choice for testing different

load balancing algorithms in a controlled yet realistic

environment. To ensure stability and efficient resource

management, the backend infrastructure was powered by

CentOS Linux, a robust operating system known for its

reliability in enterprise-level applications.

4.1.2. Virtual Machines Setup

A cluster of virtual machines was provisioned within

the OpenStack environment to replicate a realistic cloud

infrastructure. The VMs were configured with varying resource

capacities to create a heterogeneous environment, mimicking

real-world conditions where servers often have diverse

capabilities. The specific configurations included:

• VM1: 2 CPUs, 4 GB RAM

• VM2: 2 CPUs, 8 GB RAM

• VM3: 4 CPUs, 16 GB RAM

• VM4: 4 CPUs, 32 GB RAM

This diversity allowed for a thorough examination of EDLBA's

performance under different load scenarios, providing insights

into its adaptability and efficiency across a range of resource

profiles.

4.1.3. Load Balancing Tools

To implement and evaluate EDLBA, HAProxy, widely

used open-source software, was employed for its capabilities in

high availability, load balancing, and proxy services for both

TCP and HTTP applications. HAProxy was configured to

distribute incoming requests among the VMs according to the

load balancing algorithm being tested. For traffic generation

and performance measurement, Apache JMeter was utilized.

JMeter is an open-source tool designed for load testing and

provides the ability to simulate concurrent user traffic and

analyze system performance under varying conditions. By

leveraging JMeter, the experiments were able to measure key

performance metrics such as throughput, response time, and

system stability under high loads.

4.1.4. Monitoring Tools

Real-time monitoring of the system was achieved

through the integration of Prometheus and Grafana.

Prometheus, a time-series database, collected performance

metrics from the VMs, including CPU usage, memory

utilization, and network statistics. These metrics were then

visualized using Grafana, which provided customizable

dashboards for clear and actionable insights. This combination

enabled continuous tracking of critical parameters such as

resource utilization and response times, facilitating a detailed

analysis of EDLBA's performance.

4.2. Metrics for Evaluation

To determine the efficiency and effectiveness of the

Enhanced Dynamic Load Balancing Algorithm (EDLBA),

several performance metrics were identified as key indicators.

These metrics were carefully selected to provide

comprehensive insights into the system’s behavior and

performance under various conditions.

• Throughput: Throughput is a measure of how many

requests the system can handle in a given time frame,

typically expressed in transactions per second (TPS). It

reflects the ability of the load balancing algorithm to

efficiently distribute workloads and maximize resource

utilization. Higher throughput values indicate that the

system can handle larger volumes of user requests without

bottlenecks, making it a critical metric for evaluating

EDLBA's effectiveness.

• Average Response Time: The average response time

measures the duration between when a user submits a

request and when the system responds. This metric is

crucial as it directly impacts user experience, with lower

response times indicating a faster and more efficient

system. By monitoring the average response time, the

experiments aimed to assess how well EDLBA minimizes

delays and optimizes resource allocation to improve service

quality.

• Resource Utilization: Resource utilization evaluates the

distribution and usage of CPU and memory across all VMs

in the environment. This metric highlights whether the

resources are being effectively leveraged or if certain

components are underutilized or overburdened. An ideal

load balancing algorithm ensures balanced resource

utilization, avoiding both overloading and resource

wastage.

• Scalability: Scalability measures the algorithm’s ability to

handle increased workloads by seamlessly incorporating

additional resources or VMs without a decline in

performance. This metric is vital for understanding how

well EDLBA adapts to growth in demand, ensuring the

system remains stable and efficient as traffic scales up.

• Fault Tolerance: Fault tolerance assesses the system's

resilience to component failures, such as server crashes. A

robust load balancing algorithm ensures that workloads are

automatically redistributed to operational servers without

significant service interruptions. Monitoring fault tolerance

demonstrates EDLBA's capability to maintain service

continuity even during unexpected failures.

• Latency: Latency refers to the delay experienced during

data transmission between clients and servers. It is a critical

metric for user satisfaction, as high latency can degrade the

perceived performance of applications. By minimizing

latency, EDLBA ensures that users receive timely

responses, even under high traffic conditions.

5. Results and Analysis
This section presents the results from the evaluation of the

Enhanced Dynamic Load Balancing Algorithm (EDLBA). The

analysis covers its performance under varying load conditions,

comparative performance against traditional and advanced load

balancing algorithms, and its scalability and efficiency in

handling dynamic workloads.

5.1. Performance Evaluation

The performance of EDLBA was evaluated through

controlled experiments simulating diverse workload scenarios.

Muhammadu Sathik Raja / IJETCSIT, 6(1), 43-50, 2025

 47

Key metrics, including response time, throughput, and resource

utilization, were analyzed to assess the algorithm's efficiency

and effectiveness.

Key Metrics Evaluated

• Response Time: Measured as the average time taken to

process user requests.

• Throughput: The number of requests handled per second,

indicating the system's capacity to manage workloads.

• Resource Utilization: The percentage of CPU and

memory used by servers, reflecting the efficiency of

resource allocation.

The performance metrics for EDLBA were compared with

those of the Round Robin and Least Connections algorithms.

Table 1. Comparison of Performance Metrics for Load Balancing Algorithms

Metric EDLBA (Average)
Round Robin

(Average)

Least Connections

(Average)

Response Time (ms) 150 200 180

Throughput (req/sec) 1200 900 1000

CPU Utilization (%) 70 85 80

Figure 2. Comparison of Performance Metrics for Load Balancing Algorithms

The results demonstrate that EDLBA significantly

outperforms both Round Robin and Least Connections

across all three metrics. It achieves faster response times and

higher throughput while consuming fewer CPU resources,

highlighting its ability to balance workloads effectively and

efficiently.

5.2. Comparative Analysis

To further validate EDLBA's superiority, a

comparative analysis was conducted against advanced load

balancing algorithms, including the Throttled Load Balancer

and Enhanced Model Priority Based Throttled Load

Balancing (EMPBT-LB). The evaluation focused on

response times under varying load conditions.

Table 2. Comparative Analysis of Response Times for Different Algorithms

Algorithm
Overall Average

Response Time (ms)

Minimum Response

Time (ms)

Maximum Response

Time (ms)

EDLBA 150 120 180

Throttled 220 140 250

EMPBT-LB 218 138 248

0

200

400

600

800

1000

1200

1400

EDLBA (Average) Round Robin (Average) Least Connections
(Average)

Response Time (ms)

Throughput (req/sec)

CPU Utilization (%)

Muhammadu Sathik Raja / IJETCSIT, 6(1), 43-50, 2025

 48

Figure 3. Comparative Analysis of Response Times for Different Algorithms

EDLBA consistently achieves a lower average response

time compared to both Throttled and EMPBT-LB algorithms.

Its minimum and maximum response times also remain within

narrower bounds, indicating stable performance even under

varying workloads. This consistency underscores EDLBA's

ability to manage workloads more effectively than its

counterparts.

5.3. Scalability and Efficiency

Scalability is a critical attribute of any load balancing

algorithm in cloud computing. EDLBA's scalability was tested

by incrementally increasing the number of concurrent user

requests and observing its impact on response time and

throughput.

Table 3. Scalability Testing Results for EDLBA

Number of

Concurrent

Users

Average

Response

Time (ms)

Throughput

(req/sec)

10 100 1500

20 120 1400

30 150 1200

40 180 1000

The results indicate that EDLBA maintains a stable

throughput as user concurrency increases, with only a gradual

rise in response time. Even at higher loads, the algorithm

demonstrates its ability to scale effectively while minimizing

performance degradation. This performance makes EDLBA

particularly suitable for dynamic cloud environments where

workloads can fluctuate unpredictably.

6. Discussion
The results obtained from the experimental evaluation

of the Enhanced Dynamic Load Balancing Algorithm

(EDLBA) underscore its effectiveness in managing workloads

within cloud computing environments. The algorithm's ability

to achieve lower average response times and higher throughput

compared to traditional load balancing methods such as

Round Robin and Least Connections highlights its potential for

optimizing resource utilization. This is particularly important

in cloud settings where fluctuating workloads can lead to

inefficiencies if not managed properly. By dynamically

adjusting load distribution based on real-time metrics, EDLBA

ensures that no single server becomes a bottleneck, thereby

enhancing overall system performance. One of the key

strengths of EDLBA is its focus on resource utilization. The

results indicate that EDLBA maintains lower CPU utilization

compared to other algorithms, which is crucial for maximizing

the efficiency of cloud resources. By preventing overutilization

of any single server while effectively distributing tasks,

EDLBA not only improves performance but also extends the

lifespan of hardware resources. This aspect is particularly

beneficial for organizations seeking to reduce operational costs

associated with cloud services while maintaining high levels of

service availability and responsiveness.

Scalability is another critical consideration in cloud

computing, and the experiments conducted demonstrate that

EDLBA can efficiently handle increased workloads. Although

response times increase with a higher number of concurrent

users, the algorithm manages to maintain a stable throughput

until reaching significant load thresholds. This characteristic

suggests that EDLBA is well-suited for dynamic environments

where user demand can vary widely, making it an attractive

option for businesses that require reliable performance during

peak usage periods. However, it is important to acknowledge

that while EDLBA shows promising results, its implementation

should be tailored to specific application requirements and

infrastructure configurations. Future work could explore hybrid

approaches that combine EDLBA with AI-driven techniques to

further enhance decision-making processes in load balancing.

Additionally, real-world deployment scenarios should be

considered to validate the algorithm's performance under

diverse conditions and workloads. Overall, the findings from

this study advocate for the adoption of EDLBA as a viable

solution for dynamic load balancing in cloud computing

0

50

100

150

200

250

300

Overall Average
Response Time (ms)

Minimum Response
Time (ms)

Maximum Response
Time (ms)

EDLBA

Throttled

EMPBT-LB

Muhammadu Sathik Raja / IJETCSIT, 6(1), 43-50, 2025

 49

architectures, paving the way for more efficient and resilient

cloud services.

7. Conclusion and Future Work
In conclusion, the Enhanced Dynamic Load Balancing

Algorithm (EDLBA) presents a significant advancement in the

field of dynamic load balancing for cloud computing

environments. The experimental results demonstrate that

EDLBA effectively optimizes resource utilization while

minimizing response times and maximizing throughput

compared to traditional load balancing methods. By leveraging

real-time performance metrics and adaptive threshold

modifications, EDLBA ensures that workloads are distributed

efficiently across available servers, preventing bottlenecks and

enhancing overall system performance. This capability is

particularly critical in today’s cloud environments, where

demand can fluctuate rapidly and unpredictably. The findings

also highlight the algorithm’s scalability, indicating that it can

maintain performance levels even as user demand increases.

This characteristic makes EDLBA an attractive solution for

organizations that rely on cloud services to support varying

workloads, ensuring that they can deliver consistent and

reliable service to their users. Moreover, the lower CPU

utilization observed with EDLBA suggests potential cost

savings in operational expenses, as it allows organizations to

make better use of their existing resources without

necessitating frequent hardware upgrades.

Looking ahead, several avenues for future work can be

explored to enhance the capabilities of EDLBA further. One

promising direction is the integration of machine learning

techniques to predict workload patterns and optimize load

distribution proactively. By analyzing historical data and

identifying trends, a machine learning model could provide

insights that enable EDLBA to make even more informed

decisions regarding task allocation. Additionally, exploring

hybrid approaches that combine the strengths of EDLBA with

AI-driven methodologies could lead to more robust solutions

capable of adapting to complex and dynamic cloud

environments. Furthermore, real-world testing in diverse

deployment scenarios is essential for validating the algorithm's

performance beyond controlled experimental conditions.

Future research could involve implementing EDLBA in

various cloud service models (IaaS, PaaS, SaaS) to assess its

effectiveness across different applications and workloads. By

addressing these areas, EDLBA can evolve into a more

comprehensive solution for load balancing in cloud computing,

ultimately contributing to enhanced efficiency, reliability, and

user satisfaction in cloud services.

References
[1] EAI Endorsed Transactions on IoT. Dynamic load

balancing in IoT environments. Retrieved from

https://publications.eai.eu/index.php/IoT/article/download/

5387/2985/10984

[2] International Journal of Science and Research. (2014).

Load balancing algorithms: A review. Retrieved from

https://www.ijsr.net/archive/v3i7/MDIwMTQxMzM1.pdf

[3] MDPI. (2023). Dynamic load balancing in cloud

computing systems. Processes, 12(3), 519. Retrieved from

https://www.mdpi.com/2227-9717/12/3/519

[4] Google Cloud. Choosing the right load balancer. Retrieved

from https://cloud.google.com/load-

balancing/docs/choosing-load-balancer

[5] GeeksforGeeks. Static vs. dynamic load balancing.

Retrieved from https://www.geeksforgeeks.org/static-vs-

dynamic-load-balancing/

[6] ResearchGate. (2023). Dynamic load balancing in cloud

computing: A review and a novel approach. Retrieved

from

https://www.researchgate.net/publication/378922098_Dyn

amic_Load_Balancing_in_Cloud_Computing_A_Review_

and_a_Novel_Approach

[7] IEEE Xplore. (2017). Techniques for dynamic load

balancing in distributed systems. Retrieved from

https://ieeexplore.ieee.org/document/8076760/

[8] GeeksforGeeks. Load balancing in cloud computing.

Retrieved from https://www.geeksforgeeks.org/load-

balancing-in-cloud-computing/

[9] MDPI. (2023). Processes in load balancing for distributed

computing systems. Applied Sciences, 13(3), 1586.

Retrieved from https://www.mdpi.com/2076-

3417/13/3/1586

[10] Techtarget. What are the different types of cloud load

balancing? Retrieved from

https://www.techtarget.com/searchcloudcomputing/answer

/What-are-the-different-types-of-cloud-load-balancing

[11] AWS. What is load balancing? Retrieved from

https://aws.amazon.com/what-is/load-balancing/?nc1=h_ls

[12] Cloudflare. Types of load balancing algorithms. Retrieved

from

https://www.cloudflare.com/learning/performance/types-

of-load-balancing-algorithms/

[13] JETIR. Load balancing algorithms and their applications.

Retrieved from

https://www.jetir.org/papers/JETIRAR06009.pdf

[14] Suman, Chintala (2024). Evolving BI Architectures:

Integrating Big Data for Smarter Decision-Making.

American Journal of Engineering, Mechanics and

Architecture, 2 (8). pp. 72-79. ISSN 2993-2637

[15] International Journal of Advanced Computer Science and

Applications. (2023). Experimental models for efficient

load balancing. Retrieved from

https://thesai.org/Publications/ViewPaper?Volume=13&Is

sue=3&Code=IJACSA&SerialNo=16

[16] MDPI. (2020). Performance evaluation of load balancing

algorithms in IoT environments. Sensors, 20(24), 7342.

Retrieved from https://www.mdpi.com/1424-

8220/20/24/7342

[17] Chintala, S. and Thiyagarajan, V., “AI-Driven Business

Intelligence: Unlocking the Future of Decision-Making,”

ESP International Journal of Advancements in

ComputationalTechnology, vol. 1, pp. 73-84, 2023.

[18] IEEE Xplore. (2023). Performance evaluation of dynamic

load balancing. Retrieved from

https://ieeexplore.ieee.org/document/10176241

[19] PLOS ONE. (2023). Load balancing strategies in

distributed systems. Retrieved from

https://www.jetir.org/papers/JETIRAR06009.pdf
https://www.mdpi.com/1424-8220/20/24/7342
https://www.mdpi.com/1424-8220/20/24/7342

Muhammadu Sathik Raja / IJETCSIT, 6(1), 43-50, 2025

 50

https://journals.plos.org/plosone/article?id=10.1371%2Fjo

urnal.pone.0284176

[20] Chintala, Suman. (2024). “Smart BI Systems: The Role of

AI in Modern Business”. ESP Journal of Engineering &

Technology Advancements, 4(3): 45-58.

[21] Fardapaper. (2018). Experimental model for load

balancing in cloud computing using throttled algorithm.

Retrieved from

https://fardapaper.ir/mohavaha/uploads/2018/08/Fardapap

er-Experimental-Model-for-Load-Balancing-in-Cloud-

Computing-Using-Throttled-Algorithm.pdf

[22] Applied Sciences. (2020). Dynamic load balancing in

distributed cloud systems. Retrieved from

https://www.mdpi.com/2076-3417/13/3/1586

[23] International Journal of Intelligent Systems and

Applications in Engineering. (2023). Performance

evaluation of dynamic load balancing algorithms.

Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/5833

[24] Kushal Walia, 2024. "Scalable AI Models through Cloud

Infrastructure" ESP International Journal of

Advancements in Computational Technology (ESP-

IJACT), Volume 2, Issue 2: 1-7.

[25] Sumanth Tatineni, Anirudh Mustyala, 2024. "Leveraging

AI for Predictive Upkeep: Optimizing Operational

Efficiency" ESP International Journal of Advancements in

Computational Technology (ESP-IJACT), Volume 2, Issue

1: 66-79.

[26] Suman Chintala, "Boost Call Center Operations: Google's

Speech-to-Text AI Integration," International Journal of

Computer Trends and Technology, vol. 72, no. 7, pp.83-

86, 2024. Crossref,

https://doi.org/10.14445/22312803/IJCTT-V72I7P110

[27] Chandrakanth Lekkala 2022. “Automating Infrastructure

Management with Terraform: Strategies and Impact on

Business Efficiency”, European Journal of Advances in

Engineering and Technology, 2022, 9(11): 82-88.

https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0284176
https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0284176
https://ijisae.org/index.php/IJISAE/article/view/5833
https://doi.org/10.14445/22312803/IJCTT-V72I7P110

