
International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V6I1P114

Eureka Vision Publication | Volume 6, Issue 1, 134-144, 2025

Original Article

Multi-Layered Security Policy Enforcement for Confidential

Data in Serverless Cloud Functions

Srinivas Potluri

Director EGS Global Services

Abstract - Serverless computing has disrupted the way clouds

bring customized applications to the market because it removes

the need to manage the infrastructure, allowing flexible, event-

based implementations. Nevertheless, this paradigm presents

new security issues, particularly, how to manage and secure

confidential information. Serverless functions have ephemeral,

stateless, and distributed characteristics, exposing them to an

elevated level of attack surfaces, misconfigurations, and

privilege escalation threats. The paper offers a complex

stacked policy enforcement model that protects sensitive data

in the Function-as-a-Service (FaaS) computing environment,

including AWS Lambda, Azure Functions, and Google Cloud

Functions. The framework suggested contains five layers

interconnected with each other: authentication and access

control, data classification and isolation, a context-aware

policy engine, runtime tracking with anomaly detection, and

audit logging with compliance verification. In deployments to

production and simulated attacks (Denial-Of-Service (DoS)

and API injections, and data exfiltration), we show that our

system can provide high mitigation rates (up to 99.1%) at low

overhead (~11.2%). We also seek to apply reinforcement

learning to dynamically update the policy and fit well into

DevSecOp pipelines to partake in continuous protection. We

also compare the performance of cold/warm starting, cross-

cloud compatibility and evolution of policy over a long time.

The findings emphasize the level of protection that the layered

defence offers against serverless-based applications, and they

also present the potential of automated policy synthesis and

edge-cloud policy extension. This work provides a scalable and

extensible future of safe policy-driven serverless computing.

Keywords - Serverless Computing, Confidential Data, Multi-

Layered Security, Policy Enforcement, AWS Lambda, Azure

Functions, Function-as-a-Service.

1. Introduction
Serverless computing has been spreading rapidly and

profoundly changing the cloud computing landscape, as it

hides infrastructure management and enables developers to

focus solely on application logic. Serverless platforms,

including AWS Lambda, Google Cloud Functions, and

Microsoft Azure Functions, automatically scale, are cost-

efficient, and have much shorter deployment cycles, realized

through the use of cloud provider-managed environments. [1-

3] This abstraction, however, also includes costs in terms of

visibility and control, which critically raises concerns about the

security of data when it comes to handling confidential or

sensitive information.

Serverless functions are ephemeral, stateless, and, often,

short-lived; that is, unlike traditional cloud models, where

applications execute in clearly defined virtual machines or

containers. Such attributes make it challenging to implement

sustainable security policies in diverse execution scenarios. A

lack of isolation for confidential data, an implicit assumption

of trust, or inadequate access control mechanisms may expose

confidential data to unauthorised access, leakage, or misuse.

Moreover, being event-driven and often connecting to multiple

other cloud services, the serverless function environment is

more dynamic and multifaceted, requiring a more mature and

flexible security model.

Classic security technology is insufficient in the context of

serverless architecture, as it is commonly designed to support

long-lived stateful environments. The result is that speciality

security structures are increasingly demanded, which address

the specific properties of serverless computing. This study

presents a multi-authored security policy enforcement

architecture that focuses on securing confidential data in

serverless clouds. The framework enforces security policies

throughout the lifecycle of functions to be deployed, executed,

and beyond, integrating static analysis, context-aware dynamic

monitoring, protection through fine-grained access controls,

and data encryption.

The suggested solution is platform-independent and

scalable, allowing it to seamlessly integrate into open

serverless workflows without a noticeable performance impact.

The system actively assists in identifying and resolving policy

violations, enhancing confidence in serverless applications, and

ensuring compliance with data protection regulations. In this

paper, the design, realisation, and testing of the described

framework are discussed, which provides a realistic and secure

way forward for organisations that need to leverage serverless

technology while meeting certain confidentiality requirements.

https://doi.org/10.63282/3050-9246.IJETCSIT-V6I1P114

Srinivas Potluri / IJETCSIT, 6(1), 134-144, 2025

135

2. Background and Related Work
Serverless computing can be considered a revolution in

cloud-native application development. Serverless enables the

abstraction of the underlying infrastructure, allowing

developers to deploy individual functions that automatically

scale with demand. Although this model is more agile and

cost-effective, it also introduces new security issues that need

to be addressed, particularly when handling proprietary data.

This section provides an overview of the serverless computing

paradigm, security issues associated with these architectures,

and current methodologies for policy implementation, with an

emphasis on securing sensitive data.

2.1. Serverless Computing Models

Serverless applications are built on the foundation of

Function-as-a-Service (FaaS), where developers implement

stateless functions that are executed in response to specific

events, such as an HTTP request, file upload, or database

update. [4-6] The functions run inside ephemeral containers

that are managed by and provisioned by cloud providers. This

elastic and dynamic aspect of FaaS means that serverless

applications can scale within seconds, and scaling does not

require any configuration or interaction from the developer.

This, in turn, permits transparent, fine-grained billing at the

actual time the compute resources are utilised.

Regardless of its efficiency, the serverless model has

peculiarities in its operations. Functions are typically executed

over short intervals and are independent of one another.

Although this is one of the benefits of microservices and a

decoupled application design, it introduces complexity to

issues such as function orchestration and managing long-lived

state. Additionally, the virtualisation of servers hinders

visibility into the time environment, discouraging the use of

traditional security monitoring and control measures. Even

though the concept of serverless implies that one no longer

needs servers, some form of infrastructure is still involved; it

simply is not apparent to the end user.

2.2. Security Challenges in Serverless Architectures

Serverless systems have several security concerns that

differ from those observed in traditional server-based systems.

The increased attack surface area is one of the biggest issues

because functions can be initiated by a variety of sources,

including APIs, storage triggers, or Internet of Things devices.

This diversity predisposes to more exposure to injection

attacks, payload malformation, etc. Another major problem is

the weakness of misconfiguration. The parameters of the

functionality with poorly defined timeouts or concurrency may

result in Denial-of-Service (DoS) or Denial-of-Wallet (DoW)-

based attacks. The most common attacks against the serverless

model in such cases will be cost usury or the function capacity

overflow due to the pay-per-use nature.

A stateless and distributed microservices-based system

may experience access control vulnerability due to an

authentication weakness. The functions frequently run in

isolation, and the failure of one function provides attackers

with an opportunity to exploit related services or gain higher

privileges. Finally, there exist great dangers associated with

over-privileged functions. An overuse of privileges in one

functionality (e.g. privileged access to a database) can enable

an attacker to perform lateral movement in a way that conflicts

with the principle of least privilege. These problems are further

exacerbated by cold-start latency, third-party dependencies,

and the limitations of the serverless environment in terms of

debugging.

2.3. Existing Policy Enforcement Techniques

In response to these challenges, several mechanisms for

policy enforcement have been designed at both the

infrastructure and application levels. Controls at the

infrastructure level: These controls continuously examine and

scan configuration settings, seeking potentially dangerous

vulnerabilities such as publicly exposed secrets or excessively

broad roles. Cloud Workload Protection Platforms (CWPPs)

provide runtime protection mechanisms that monitor function

execution to detect anomalies, such as unexpected outbound

traffic or suspicious Application Programming Interface (API)

calls. Such systems can monitor the exfiltration of data or

tampering with functions in real-time.

Also, proactive code instrumentation has been identified

as a good approach. Securities policies are coded directly into

the function codebase, allowing functions to validate their

inputs, perform authorisation checks, and enforce regulatory

compliance before execution. With the assistance of this so-

called shift-left, security is embedded into the growth process

at an earlier stage, allowing for the identification of

vulnerabilities before launch. These solutions focus on

enforcing least-privilege access, validating data flow, and

securing deployment configurations. Their efficacy, however,

depends on the serverless platform and the breadth of security

controls the cloud provider provides.

2.4. Confidential Data Protection in Cloud Environments

The security of confidential information in serverless

requires an overall protocol involving encryption, secret

management, and policy-based access restriction. The bulk of

cloud vendors offer some form of managed secret service (e.g.,

AWS Secrets Manager, Azure Key Vault) to securely store and

retrieve API keys, credentials, and tokens, thereby preventing

them from being hardcoded in application code. Data-centric

policies are also essential. Function fusion techniques, where

functions are merged to diminish inter-function exposure to

such data, and intelligent scheduling, where schedules are run

to bound the existence and extent to which data is exposed in

the serverless workflow, are techniques intended to restrict the

lifetime and extent to which data is exposed in the serverless

workflow. These methods also reduce the chance of data

leakage by minimising data persistence and making functions

independent.

Srinivas Potluri / IJETCSIT, 6(1), 134-144, 2025

136

Cloud Infrastructure Entitlement Management (CIEM) and

Data Security Posture Management (DSPM) are gaining

popularity to promote visibility. CIEM aims to ensure that

access controls over serverless features and functions adhere to

the principle of least privilege. In the meantime, the DSPM

platforms can visualise the data flows that include sensitive

data within the application landscape and enable recognition of

where confidential data is processed and consumed.

Irrespective of such developments, problems persist. The lack

of uniform policy enforcement across hybrid or multi-cloud

environments is made challenging by vendor lock-in, state

retention, limited functionality, and the transient nature of

serverless functions. This sophistication explains why multi-

layered, flexible security models will be necessary to provide

comprehensive protection of confidential data in serverless

environments.

3. System Architecture and Threat Model
3.1. Overview of the Proposed Framework

The targeted multi-layered security policy enactment

architecture aims to ensure the security of confidential

information in serverless cloud scenarios by combining

coordinated units deployed at deployment, runtime, and

enforcement of security-related policies. [7-10] The framework

also includes stakeholders as DevOps engineers, security

administrators, cloud providers, and end users, who collaborate

in the form of a structured pipeline that integrates security into

the lifecycle of the functions in a much deeper manner. The

infrastructure itself (such as AWS, Azure, or GCP) used by the

cloud provider forms the core of the system, and it provides

APIs to deploy functions, control policies, and store sensitive

information. Developers can upload serverless code with

metadata and policies directly using the API function

deployment, and security administrators can specify global

security policies using a policy management console. Such

policies are transferred to the enforcement framework, where

the Policy Definition and Distribution component transforms

them and communicates to the appropriate enforcement

modules.

When policies are in place, the framework becomes active

and its Data Classification and Isolation engine comes into

action, examining data flows to mark information with a

sensitivity rating (e.g., PII, financial books). This directly feeds

into the Identity and Access Control Layer, which implements

strict role-based access rules through token-based validation

mechanisms combined with cloud IAM and Key Vault

services. Both identity and context are validated in every

function invocation, ensuring that only the correct conditions

and users are allowed to access functions.

The Monitoring and Anomaly Detection component takes

the security aspect into account at runtime, observing the

behaviour of functions, data I/O, and events during execution

in an active manner. It sends alarms in the event of suspicious

activities, such as accessing rates higher or lower than normal,

or unauthorised access. These alerts are filtered through the

Context-Aware Policy Engine, which applies fine-grained

security policies dependent on runtime variables such as the

time of day, location, or even role. This dynamic enforcement

plays an important role in the execution of ephemeral functions

common in serverless models. Lastly, all interactions are

recorded and sent to the Audit Logging and Compliance

Validation system. This module generates a report after each

execution for administrators, verifying that all security policies

were enforced and allowing for forensics in the event of an

incident. It also contributes to the policy definition module,

creating a loop in security. The ability to enforce all these

layers within its framework not only promotes a proactive

defence but also reactive auditing and compliance that

monitors the confidentiality of sensitive data in dynamic cloud

environments.

3.2. Operational Assumptions and Environmental Scope

The proposed multi-layered security enforcement

framework is based on the following operational assumptions

and a well-defined scope of the environment in which the

framework will be implemented. [11-13] To begin with, it is

presumed that the base level of security is provided by the

underlying Cloud Service Provider (CSP) like AWS, Azure, or

GCP that implies hardening infrastructure, securely using

virtualization, and certifying against the international set of

standards (e.g., ISO 27001, SOC 2). Infrastructure and

serverless execution environment security are thus delegated to

the domain of the cloud provider, allowing the security

framework to concentrate its efforts primarily on the

application (or, rather, function) level and related controls.

Additionally, it is assumed that any serverless functions will be

deployed to a controlled cloud region where the cloud provider

implements its Function-as-a-Service (FaaS) runtime

execution. Such functions are event-driven (predefined events

cause the functions to run) but do not maintain any state, and

they will operate in ephemeral containers. Confidential

information compiled by these functions is locally cached by

the native cloud services (as object or managed database

storage), referenced through IAM roles, and accessed via a

secure API gateway. Secure key management services and

token-based identity validation facilities are also utilised in the

operational context.

Multi-function and serverless applications have a limited

scope within the environment, including external services,

internal APIs, and cloud storage. The framework does not

control how cloud-native services operate internally (e.g.,

database engines). However, it does regulate the exchange of

sensitive data between services, as well as between services

and users, and between services and serverless functions.

Notably, the model presupposes that the DevOps and security

teams are tasked with defining policies and classifying

information before it is deployed, and runtime checks are

performed by automated enforcement tools integrated into the

architecture.

Srinivas Potluri / IJETCSIT, 6(1), 134-144, 2025

137

Figure 1. Multi-Layered Security Policy Enforcement Framework for Confidential Data in Serverless Cloud Functions

1. Policy Definition &

Distribution

5. Runtime Monitoring &

Anomaly Detection

2. Identity & Access Control

Layer

3. Data Classification &

Isolation

4. Context-Aware Policy

Engine

6. Audit Logging &

Compliance Validation

Multi-Layered Security Enforcement Framework

Function A Data Handler

Serverless Functions

Function C Notifier Function B Log Analyzer

Function Deployment

API

Cloud Provider (AWS / Azure / GCP)

Policy Management

Console

Cloud Storage (DB,

Blob, Object)

Serverless Runtime

(FaaS Engine)
IAM & Key

Vault

Provision Functions
Key Vault for Encrypted

Access

Validate Identity &

Role

Identify Sensitivity

Level

Enforce Contextual Rules

Secure Data I/O

Emit Execution Events

Report Notification Events

Log

Notification

Activity

Retrieve Message Templates

Record Log Processing

Events

Apply Notification Dispatch Policies

Report Notification Events

Read Encrypted Logs

DevOps Engineer Security Admin

End User

Invoke API

Define Security Policies Deploy Code+

Meta Policies

Srinivas Potluri / IJETCSIT, 6(1), 134-144, 2025

138

3.3. Threat Landscape and Adversary Capabilities

The increase in the size of the attack surface in serverless

systems is primarily caused by the loose coupling between

microservices and the fact that multiple events can be used to

run one or more functions in a serverless environment. The

framework is also expected to handle a broad palette of

attackers, including opportunistic individuals as well as

particularly sturdy and financially capable adversaries with

more complex and sophisticated capabilities. The threats

include unauthorised data access, code injection by injecting

event payloads, gaining privileges by relying on misconfigured

access, and both resource starvation and high costs due to

denial-of-service attacks.

Specifically, one of the most troublesome risks is the

exploitation of overprivileged functions, where a compromised

function gains access to a wide range of cloud resources with

overly permissive IAM roles. Hackers can navigate sideways

through the system using excess privileges to completely steal

information or continue attacking the application. Moreover,

attackers can exploit improper configuration gaps, such as a

generous time limit or wide API gates, to initiate prolonged

attacks or provoke financial drain through Denial-of-Wallet

(DoW) attacks.

The adversary model presupposes that attackers can be

aware of cloud-native patterns and attempt to evade security by

either direct (via invoking the function) or indirect

(manipulating metadata or launching attacks based on replay)

methods. Although it is possible that some adversaries could be

external threat agents, the model also takes into account insider

threat individuals who have legitimate access but may abuse

their rights to gain unauthorised access to sensitive

information. The combination of continuous monitoring, real-

time access validation and context-aware enforcement

components into a proposed framework works against these

threats, as even momentary attacks can be tracked and brought

under control.

3.4. Real-World Application Context: A Serverless Use Case

To ensure the security and privacy mechanisms proposed

in the study translate to the real world, one might consider the

following use case scenario: a healthcare app implemented

using a serverless-based architecture that works with patient

data and diagnostic files. In this case, two operations are

carried out on file intake, including image processing with

machine learning and safe notification to doctors, as well as

audit logging to satisfy regulatory requirements. A set of

storage events (e.g., a new file upload), HTTP API calls (e.g., a

doctor accessing records), as well as message queues (e.g., task

processing pipelines) trigger these functions.

Controlled healthcare information should be protected

behind robust confidentiality measures due to its high

sensitivity and laws such as HIPAA. The ingestion function,

already vetted via identity and access controls, automatically

classifies the file as sensitive based on metadata and content

type once it is uploaded. Such classification initiates policies to

restrict downstream access, permitting identified useful

functions or roles (e.g., certified radiologists) to work with or

observe the data. The context-aware policy engine reviews

every access request using the context-based metadata of each

request to contextualise it (e.g., time, location, and purpose).

Suppose runtime monitoring mechanisms detect an

anomaly, such as an access request in an unusual location or an

unexpected increase in API usage. In that case, they will flag

the occurrence, log it as an audit marker, and, optionally, pause

the execution process. The logs are transferred to the

compliance validation system to verify that organisational and

legal policies were not breached during data access. This use

case again demonstrates that the granular, real-time

enforcement that is made possible by the proposed multi-

layered framework does not come at the expense of the agility

and scalability advantages of a serverless framework.

4. Multi-Layered Security Policy Enforcement

Mechanism
The framework represents a multi-layered enforcement

model addressing the security complexities associated with

confidential data in serverless environments. [14-17] All the

layers are pre-configured to create a unique line of defence so

that access to sensitive data is authorized only within the

nationally formulated and verifiable conditions. Such a layered

architecture will increase resilience by leveraging identity

validation, data sensitivity tagging, and situational awareness,

thereby preventing a wide range of risks, including

unauthorised access and contextual misuse.

4.1. Layer 1: Authentication and Access Control

The initial and lower tier is authentication and access

control, and only legitimate users or services should be able to

invoke functions or access data. Identity and Access

Management (IAM) systems provided by the cloud platform

are used to perform identity verifications and implement either

a token-based or certificate-based authentication system.

For human users, authentication is performed through

integration with identity providers (e.g., Azure Active

Directory, AWS IAM, or OAuth-based SSO integrations). For

machine identities, there are service roles and policies that

perform access control on a fine-grained level. The access

control policy is based on the principle of least privilege,

which grants users and functions the minimal base permissions

necessary. Any serverless role is checked against a policy

database before executing any serverless function to ensure it

falls within the permitted access context. Additionally, within

this framework, there are fine-grained controls (e.g., attribute-

based access control: ABAC), which respond to requests by

considering user attributes, resource tags, and environmental

conditions (e.g., location, time of day). All these security

Srinivas Potluri / IJETCSIT, 6(1), 134-144, 2025

139

measures provide initial protection against impersonation

attacks, privilege elevation, and unauthorised invocation of

functions.

4.2. Layer 2: Data Classification and Isolation

The second level involves categorising data by level of

sensitivity and implementing isolation for various types of

data. When data are ingested or created, they are automatically

labelled with a classification label: Public, Internal,

Confidential, or Highly Confidential, depending on content

analysis, metadata, or external instructions. These tags are

essential to downstream enforcement, as they denote which

operations can and cannot be conducted by whom.

To prevent data tampering or unauthorised data mixing,

the framework ensures isolation at both the storage level and in

available functions. As an illustration, documentation could be

stored in encrypted buckets with limited access keys; official

information could be made available through broader scopes.

The risk of cross-contamination is reduced by using logically

separated environments or virtual networks to deploy functions

that process different classes of data. When a particular

function attempts to access data, its purpose and intended

execution are compared to the classification of the data, and it

must satisfy the predetermined policy levels. This layer

reduces the risks of data exfiltration and enhances regulatory

compliance, particularly in settings that process personally

identifiable information (PII) or financial data.

Figure 2. Multi-Layered Security Policy Enforcement Workflow

4.3. Layer 3: Context-Aware Policy Engine

The third and most flexible layer operates by utilising a

context-aware policy engine that dynamically processes access

and execution requests based on real-time contextual attributes.

This engine does not just judge who, what, when, where, and

why of every interaction, unlike the case with static access

rules. An example would be a request to perform a read of

medical records, which would be authorised for a physician

during work hours when made over a hospital-based IP

address, but not during off-hours or when supplied over a non-

hospital-based network.

This engine will integrate rules that consider behaviour

histories, geographic locations of origin, device fingerprinting,

and current workloads. It is a hardware device that

communicates with a runtime monitoring system that

constantly outputs telemetry on the serverless functions. The

policy engine can take mitigation actions when deviations are

detected in the behaviour of a runtime application or the

unexpected use of a role, which is not in the expected

behaviour patterns learned by the policy engine. Some of these

actions may be throttling, denying the request or quarantining

the executing function. The context-based policy layer brings

another essential degree of flexibility by injecting situational

intelligence into the law enforcement pipeline. It checks that

security decisions are not only based on fixed credentialing,

but also on the active execution environment and real-time

behavior. It enforces zero-trust security in dynamic and

distributed serverless environments.

4.4. Layer 4: Runtime Monitoring and Anomaly Detection

Layer 4 provides real-time insight into dynamic function

behaviour with at-runtime monitoring and anomaly detection.

Preventive controls are built upon the preceding layers; this

layer emphasises detective and corrective capabilities. It keeps

a real-time track of the execution patterns of functions, logs of

Srinivas Potluri / IJETCSIT, 6(1), 134-144, 2025

140

accesses, inter-service communications, and data flows. It can

identify abnormal or insidious activity as it occurs. This

monitoring solution will store telemetry generated by the

serverless runtime, which includes execution time, the number

of invocations, potential IP addresses of invokers, environment

variables, and properties of input and output payloads.

These data are presented to an anomaly detection engine,

either rule-based or AI-augmented, which trains itself with the

help of past baselines to identify anomalous activity that

represents a potential threat, such as abuse of functionality,

data theft or injection attacks. For example, suppose there is an

outage in a behaviour that normally processes 50 requests per

hour, and suddenly 5,000 requests are received. In that case,

the system will sound an alarm or perform auto-scaling

quarantine functionality. Notably, this level is also associated

with inter-relating behavior in terms of various functions and

services, and it provides end-to-end visibility of information

flows and identity. Anomaly insights, together with blocking or

dynamically re-stimulating risk scores, can be fed back into

real-time decision-making once combined with the context-

aware policy engine (Layer 3). This feedback loop of detection

and response enhances the security framework's ability to react

to new or previously unknown attack vectors —a crucial

characteristic of ephemeral, stateless serverless systems, where

attack methods are constantly evolving.

4.5. Layer 5: Audit Logging and Policy Compliance Checks

The top layer (accountability) amplifies accountability by

providing a log of all audits and maintaining and verifying

compliance in real-time. All evaluations — including access

requests, data retrievals, policy evaluations, and functions

invoked — are covered by contextual metadata, which includes

timestamps, the identity of the source, resources impacted, and

the results of execution. These logs can be used as a non-

alterable record in post-incident forensics, policy refinement

and compliance reporting.

The layer enables well-organised logging implementations

in line with industry standards, such as ISO/IEC 27001, SOC

2, and GDPR. The logs are safely held through append-only

structures and can be optionally encrypted to maintain

confidentiality. Centralised Security Information and Event

Management (SIEM) platforms or cloud-native observability

tools can ingest them to be correlated in real-time or for later

investigation. The system will periodically execute compliance

validation processes against logging, simulating the

enforcement of the policy under various conditions. These

checks confirm that controls on access, classification rules, and

context policies are all properly applied to all functions in

deployment. For example, automatic scripts could be used to

verify that a “function” with the access privileges of the

internal access level is not allowed to access data with the

access privileges of the confidential data level, thereby

preventing unintentional policy inconsistencies. Organisations

can ensure proactive assurance in addition to reactive security

by maintaining a robust audit and compliance layer. It enables

the prompt identification of policy drift, ensures the resonance

of current safeguards, and facilitates the process of trust-

building with regulators and stakeholders through tangible

compliance artefacts.

5. Implementation and Integration with

Serverless Platforms
5.1. Policy Definition Language

The development of clear, granular, and enforceable

policies is crucial for effectively implementing multi-layered

security in serverless environments. This is supported by a

specific Policy Definition Language (PDL), a domain-specific

language used to define rules controlling data access [18-20] as

well as the act of invoking functions and enforcing security.

The PDL is designed to accommodate declarative syntax,

enabling administrators and DevSecOps teams to express

security requirements in role-based declarations, scenarios, and

data sensitivity levels.

A powerful PDL should be able to fit naturally into

Identity and Access Management (IAM) schemas and enable

such constructs as allowing a user. Role = analyst AND

data.label = pet AND time < 6 PM. Policies are frequently

written in sets of JSON or YAML, making them machine-

readable and subject to human auditing. The policy engine,

which is part of the enforcement framework, interprets and

builds these policies into rules applied at runtime. More

importantly, the PDL must also be extensible, supporting

metadata specific to the environment (e.g., IP addresses,

request source, or device type), and allowing for version

control to monitor policy changes. This model promotes the

externalisation of code logic policy, which fosters policy reuse,

eases audit activities, and makes the deployment of the

approach more flexible. It also facilitates the shift-left

paradigm of DevSecOps operations, where policy violations

can be detected early in development, thereby mitigating the

risk of large-scale operations.

5.2. Integration with AWS Lambda / Azure Functions / GCP

Cloud Functions

The suggested architecture should be able to merge with

other serverless solutions, including AWS Lambda, Azure

Functions, and Google Cloud Functions, to be viable in

practice. Both these platforms provide extensibility interfaces

in the form of native policy engines (e.g. AWS IAM, Azure

RBAC), environment variables, and event triggers that can be

used to integrate the multi-layered security architecture.

In the case of AWS Lambda, the integration is initiated by

attaching fine-grained IAM roles and AWS Secrets Manager

access controls to functions. Policy checks. Before a function

is executed, custom authorizers and AWS Lambda extensions

can make calls to the policy engine to validate their identity,

check data classification rules, and assess the risk of an

Srinivas Potluri / IJETCSIT, 6(1), 134-144, 2025

141

anomaly score. AWS CloudWatch and AWS Config enable

real-time monitoring and tracking of compliance. Similarly,

Azure monitoring functions capabilities include managed

identity and Key Vault to isolate secrets.

In contrast, the use of Azure Monitor and Azure Policy

can provide telemetry feedback and compliance feedback

loops. Similar integration is available by using GCP Cloud

Functions, with IAM bindings, Secret Manager, and VPC

connectors. Additionally, Cloud Audit Logs and Event Threat

Detection provide observability and threat intelligence. The

policy enforcement framework is utilised as a shared service

that is managed across platforms, either through a sidecar

pattern (utilising wrappers or middleware) or via a gateway

used to filter all event input. This enables consistent policy

enforcement regardless of the cloud provider behind a hybrid

and multi-cloud deployment.

5.3. Performance Overhead Considerations

While thorough security enforcement is necessary, it

should not compromise the responsiveness and scalability that

serverless architectures offer. Hence, performance overhead

also plays a vital role in the application of the framework.

Access validation, policy evaluation, and anomaly detection

are examples of security operations which, when feasible, are

made lightweight and asynchronous so that their execution has

minimal effect on the time required to execute the functions.

Policy evaluations are usually conducted at the edge,

either before the API gateways' pre-processing stage or just

before execution on the serverless runtime. This avoids

unnecessary cold starts, and the latency presented by the policy

is minimised. For example, context-aware rules can be cached

in memory with the help of ephemeral stores, such as Redis, or

cloud-native services (e.g., AWS Lambda Layers or Azure

Durable Entities), to reduce real-time computational overhead.

Likewise, logging service, task processing statistics, and

related telemetry streams get offloaded to distinct monitoring

pipelines, which process data after its execution through

parallel computing.

Experimental results on the performance benchmark of

prototyping indicate that the additional latency per invocation

is less than 15 milliseconds on most operations, which is

acceptable in event-driven systems. However, the framework

does not hinder configurable enforcement strictness, allowing

administrators to adjust the trade-offs between performance

and protection according to their sensitivity to workload. Such

flexibility warrants that security is not a bottleneck in any

application of contemporary serverless technology.

6. Evaluation and Results
To support the suggested multi-layered security policy

enforcement structures, extensive work was carried out on their

capabilities in mitigating threats and sustaining performance in

serverless contexts. The architecture was scaled across AWS

Lambda and Azure Functions, with 65 functions designed to

process healthcare records, ensuring compliance with HIPAA,

and financial transactions, adhering to PCI-DSS. Over a ten-

month measurement period, we quantified security response,

system resilience, performance latencies, and cost implications

in simulated attack scenarios.

6.1. Experimental Setup

The assessment was done in cloud-native settings with

standard production-ready workloads. AWS Lambda functions

provided 128MB memory and 3 3-second timeout, and Azure

Functions provided 256MB and 60 60-second timeout. Events

were scheduled and initiated through API calls, resembling the

operations of a typical microservice. In real-world scenarios,

we also conducted high-frequency DDoS-like floods (with

over 500 requests per second), SQL injection attacks using

malformed API requests, and replayed access tokens. The

experiment consisted of two conditions: a cold start, caused by

30 minutes of system-level idle time, and a warm start, which

occurred at a 5-second frequency of invocation. The metrics

recorded were latency, throughput, and security incidents, and

were processed through a special SCOPE (Serverless

Compliance and Performance Evaluation) framework.

6.2. Security Effectiveness Evaluation

Security effectiveness was assessed based on ratings of

threat mitigation levels, false positive rates, and types of

vulnerabilities addressed. The system successfully identified

and countered 12 of the attack variants, as well as sophisticated

scenarios, including cold-start code injection. The average

response latency of runtime anomaly detection was 47

milliseconds, with minimum interruption of its operation.

Table 1. Threat Mitigation Performance

Threat Type Mitigation Rate False Positives Critical Vulnerabilities Addressed

DDoS/Flooding 98.7% 2.1% Resource exhaustion, cost inflation.

API Injections 96.2% 3.8% Data exfiltration, privilege escalation

Compromised Functions 99.1% 0.9% Runtime code manipulation, hardcoded secret theft.

Srinivas Potluri / IJETCSIT, 6(1), 134-144, 2025

142

Figure 3. Graphical Representation of Threat Mitigation Performance

Its multi-layered architecture, particularly the runtime

monitoring (Layer 4) and the adaptive policy enforcement,

played a key role in preventing late-stage attacks and reducing

the window of exposure. Remarkably, even cold starts were

blocked by access attempts from unknown locations, which

reflects the quality of the contextual rules.

6.3. Performance Metrics

We measured performance on three evaluative parameters:

policy enforcement latency, throughput, and cost impact. The

system was responsive enough, even with additional security.

Although the cold starts inherently assume increased latency,

the effect on the warm invocations was minimal.

Table 2. Performance Impact Metrics

Metric Cold Start Warm Start Overhead vs. Baseline

Policy Enforcement Latency 387 ms ± 23 ms 49 ms ± 7 ms +11.2%

Throughput (req/sec) 42 ± 8 219 ± 14 -9.3%

Cost Impact +7.9% +3.1% N/A

Longitudinal testing revealed a 14-percentage-point

difference in performance across cloud regions. Yet, deviation

in Service-Level Agreement (SLA) remained below 5 per cent,

even in areas under attack, ensuring the ability to scale the

adaptive enforcement measure. Such findings highlight the

framework's capability to maintain performance in real-time

and integrate strong security measures.

6.4. Comparison with Baseline Approaches

To place the advantages in perspective, we contrasted the

proposed method with two widely used policy enforcement

strategies: static rule enforcement and ML-assisted policy

enforcement with human supervision. The system in question

utilised a lightweight Reinforcement Learning (RL) agent to

dynamically adjust policies based on observations and

frequently occurring attack patterns.

Table 3. Comparative Evaluation of Policy Approaches

Approach Threat Mitigation Response Time Compliance Score Daily Policy Updates

Proposed (RL Agent) 95.8% 2–5 seconds 98% 5.2

Static Policies 70.2% 8–15 minutes 82% 0.3

ML + Human Oversight 85.1% 3–7 minutes 91% 1.7

The suggested RL-based enforcement decreased the threat

response time by 23% compared to ML baselines. It closed 98

per cent of the known compliance gaps, including open ports

and over-permitted roles. In addition, the SCOPE framework

saved 38% of the overhead cost by lowering the requirement

for extensive manual testing and redeployments.

7. Discussion
Analysis of the proposed framework proves that multi-

layered security enforcement is not only applicable in

serverless systems but also an effective defence against a broad

range of threat vectors. The system provided security by

integrating the benefits of authentication, data isolation,

runtime monitoring, and adaptive policy engines, and reduced

attack surfaces without drastically compromising application

performance. Remarkably, the policy adaptation facilitated by

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Mitigation Rate

False Positives

Srinivas Potluri / IJETCSIT, 6(1), 134-144, 2025

143

reinforcement learning enabled a quicker response to new

threats compared to a fixed or semi-automated policy, and the

transition to an intelligent, self-healing security architecture is

particularly well-suited for the cloud-native environment.

Nevertheless, this piece also addresses important issues related

to the problem of securing serverless platforms. Stateless and

ephemeral serverless functions introduce complications to

creating policies that can be uniformly enforced across all

environments at any given time, especially in high-load or

multi-region serverless functions. Moreover, any attempt to

implement policy logic across disparate platforms (e.g., AWS

vs. Azure) may result in a higher development burden due to

the distinctions between native controls and IAM organisation.

Although our framework provides abstraction layers to

mitigate the problem of vendor lock-in, there are opportunities

to add automated cross-provider policy translators and support

for proponents of zero-trust architecture. Ultimately, the results

support the need to consider security as an integral, dynamic

layer of the serverless execution model, rather than a secondary

response. The suggested system leaves perimeter-based

protection to the contextual, data-aware model of enforcement,

which aligns with the current dynamic and decentralised nature

of cloud workloads.

8. Future Work
Serverless computing is constantly growing and scaling in

all domains; therefore, there is potential in upgrading and

expanding the presented multi-layered security paradigm. The

subsections below outline some of the major future research

and development directions that aim to enhance confidentiality,

policy agility, and the integration of operations within various

environments, ultimately achieving even better operations.

8.1. Automated Policy Synthesis Using ML

A promising direction is the deployment of Machine

Learning (ML) to automatically generate and optimise policies.

More complex models (including policies based on a

transformer-based language model of policies) may be trained

against large-scale security events and logs to generalize and

estimate relevant and desirable policies, including access

controllers, data flow, and data isolation rules. It would limit

manual configuration issues, increase flexibility against zero-

day threats, and provide contextual and historical pattern-based

learning to improve detection accuracy. Additionally,

explainable AI (XAI) procedures can be adopted to make the

synthesised policies transparent and auditable.

8.2. Integration with DevSecOps Pipelines

The next generation of the framework must be able to

integrate seamlessly into DevSecOps pipelines and facilitate

continuous security verification throughout the Software

Development Lifecycle (SDLC). This includes hardcoding

policy validation into the CI/CD pipelines, automating code

security tests when committing code to source control, and

ensuring policy compliance as part of the packaging and

deployment stages. The framework can assist in enforcing a

“shift-left” security practice by integrating with common build

tools, such as GitHub Actions, Jenkins, or GitLab CI, allowing

vulnerabilities to be identified and fixed promptly. It would

also provide real-time feedback loops, where anomalies at run

time direct future hardening at the code level.

8.3. Extending to Edge-Cloud Hybrid Environments

As edge computing and edge-compatible application types

grow, the frontiers of security policy enforcement have

expanded to include edge-cloud hybrid architectures. Edge

applications (running near the sources of data) typically lack

comprehensive monitoring and IAM infrastructure, which is

often present in public clouds. The framework should be able

to optimise to these restraints by providing lightweight,

decentralised policy agents that can enforce policy in real-time

and in disconnected operation. Besides, unified security

postures at the edge and cloud will be a prerequisite for

implementing federated policy synchronisation with version-

controlled policies, conflict resolution, and contextual delivery

across locality, device capabilities, and trust.

9. Conclusion
The research establishes an extensive, multi-faceted

security policy enforcement mechanism, akin to confidential

data security in serverless computing platforms. The

framework brings together five different, yet interconnected

layers, including authentication and access control, runtime

monitoring, and compliance auditing, that can work

simultaneously to resolve the security issues unique to the

ephemeral and event-driven nature of Function-as-a-Service

(FaaS) platforms. The proposed system demonstrated strong

threat mitigation, low performance overhead, and a high level

of compliance compared to the baseline models, resulting from

rigorous testing on Amazon Web Services Lambda and Azure

functions. The technical performance of the framework also

provides a flexible and scalable pattern, aligning with the

principles of cloud-native design.

Its modularity facilitates cross-provider deployment, and it

can use reinforcement learning to enhance intelligent and

contextually aware policy enforcement, which adapts to

application behaviour and threat landscape. This makes

serverless security more ideal, as it adopts a proactive,

embedded security paradigm —a prerequisite for sensitive

workloads, such as healthcare, finance, and real-time data

analytics, where the mindset must be security by design. In the

future, the framework will provide a baseline for building

secure serverless computing innovations. Its possible

interconnection with automated policy synthesis, DevSecOps

pipelines, and edge-cloud deployments indicates its

extensibility and applicability in increasingly complex cloud

environments. This effort forms the basis of robust policy-

based security designs that do not compromise the agility that

serverless computing offers, while building resilient,

dynamically adjustable systems.

Srinivas Potluri / IJETCSIT, 6(1), 134-144, 2025

144

References
[1] Khan, S., Parkinson, S., & Crampton, A. (2017,

December). A multi-layered cloud protection framework.

In Companion Proceedings of the 10th International

Conference on Utility and Cloud Computing (pp. 233-

238).

[2] Shafiei, H., Khonsari, A., & Mousavi, P. (2022).

Serverless computing: a survey of opportunities,

challenges, and applications. ACM Computing Surveys,

54(11s), 1-32.

[3] Li, Z., Guo, L., Cheng, J., Chen, Q., He, B., & Guo, M.

(2022). The serverless computing survey: A technical

primer for design architecture. ACM Computing Surveys

(CSUR), 54(10s), 1-34.

[4] Cinar, B. (2023). The Rise of Serverless Architectures:

Security Challenges and Best Practices. Asian Journal of

Research in Computer Science, 16(4), 194-210.

[5] Ouyang, R., Wang, J., Xu, H., Chen, S., Xiong, X., Tolba,

A., & Zhang, X. (2023). A Microservice and Serverless

Architecture for Secure IoT Systems. Sensors, 23(10),

4868.

[6] Yau, S. S., An, H. G., & Buduru, A. B. (2012). An

approach to data confidentiality protection in cloud

environments. International Journal of Web Services

Research (IJWSR), 9(3), 67-83.

[7] Hossain, M. E., Kabir, M. F., Al Noman, A., Akter, N., &

Hossain, Z. (2022). Enhancing Data Privacy And Security

In Multi-Cloud Environments. BULLET: Jurnal

Multidisiplin Ilmu, 1(05), 967-975.

[8] What Is Cloud Data Protection?, Palo Alto Networks,

online.

https://www.paloaltonetworks.com/cyberpedia/what-is-

cloud-data-protection

[9] Guimarães, R. P. (2024). Protecting confidential data in

cloud environments.

[10] Schlegel, R., Obermeier, S., & Schneider, J. (2015, July).

Structured system threat modelling and mitigation analysis

for industrial automation systems. In 2015 IEEE 13th

International Conference on Industrial Informatics

(INDIN) (pp. 197-203). IEEE.

[11] Fernandez, E. B. (2016, August). Threat modelling in

cyber-physical systems. In 2016 IEEE 14th Intl Conf on

Dependable, Autonomic and Secure Computing, 14th Intl

Conf on Pervasive Intelligence and Computing, 2nd Intl

Conf on Big Data Intelligence and Computing and Cyber

Science and Technology Congress

(DASC/PiCom/DataCom/CyberSciTech) (pp. 448-453).

IEEE.

[12] Kloprogge, P., Van der Sluijs, J. P., & Petersen, A. C.

(2011). A method for the analysis of assumptions in

model-based environmental assessments. Environmental

Modelling & Software, 26(3), 289-301.

[13] Kovanen, T., Nuojua, V., & Lehto, M. (2018, March).

Cyber Threat Landscape in the Energy Sector. In ICCWS

2018, 13th International Conference on Cyber Warfare

and Security (p. 353). Academic Conferences and

publishing limited.

[14] Eismann, S., Scheuner, J., Van Eyk, E., Schwinger, M.,

Grohmann, J., Herbst, N., & Iosup, A. (2020). A review of

serverless use cases and their characteristics. arXiv

preprint arXiv:2008.11110.

[15] Ankit Kumar, Demystifying Serverless Computing: A

Paradigm Shift in Cloud Development, Medium, 2023.

online. https://blog.stackademic.com/demystifying-

serverless-computing-a-paradigm-shift-in-cloud-

development-e257a5d525a8

[16] Sash Ghosh, Confidential Computing: Enhancing Data

Privacy and Security in Cloud Environments, 2025.

online. https://openmetal.io/resources/blog/confidential-

computing-benefits-and-use-cases/

[17] Wolthusen, S. (2001, June). Layered multipoint network

defence and security policy enforcement. In Proceedings

from the Second Annual IEEE SMC Information

Assurance Workshop, United States Military Academy

(pp. 100-108).

[18] Alves-Foss, J., Taylor, C., & Oman, P. (2004, January). A

multi-layered approach to security in high-assurance

systems. In the 37th Annual Hawaii International

Conference on System Sciences, 2004. Proceedings of the

(pp. 10-pp). IEEE.

[19] McGrath, G., & Brenner, P. R. (2017, June). Serverless

computing: Design, implementation, and performance. In

2017 IEEE 37th International Conference on Distributed

Computing Systems Workshops (ICDCSW) (pp. 405-

410). IEEE.

[20] What are the security challenges in serverless computing?

https://milvus.io/ai-quick-reference/what-are-the-security-

challenges-in-serverless-computing

https://blog.stackademic.com/demystifying-serverless-computing-a-paradigm-shift-in-cloud-development-e257a5d525a8
https://blog.stackademic.com/demystifying-serverless-computing-a-paradigm-shift-in-cloud-development-e257a5d525a8
https://blog.stackademic.com/demystifying-serverless-computing-a-paradigm-shift-in-cloud-development-e257a5d525a8
https://openmetal.io/resources/blog/confidential-computing-benefits-and-use-cases/
https://openmetal.io/resources/blog/confidential-computing-benefits-and-use-cases/
https://milvus.io/ai-quick-reference/what-are-the-security-challenges-in-serverless-computing
https://milvus.io/ai-quick-reference/what-are-the-security-challenges-in-serverless-computing

