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Abstract - Serverless computing has disrupted the way clouds 

bring customized applications to the market because it removes 

the need to manage the infrastructure, allowing flexible, event-

based implementations. Nevertheless, this paradigm presents 

new security issues, particularly, how to manage and secure 

confidential information. Serverless functions have ephemeral, 

stateless, and distributed characteristics, exposing them to an 

elevated level of attack surfaces, misconfigurations, and 

privilege escalation threats. The paper offers a complex 

stacked policy enforcement model that protects sensitive data 

in the Function-as-a-Service (FaaS) computing environment, 

including AWS Lambda, Azure Functions, and Google Cloud 

Functions. The framework suggested contains five layers 

interconnected with each other: authentication and access 

control, data classification and isolation, a context-aware 

policy engine, runtime tracking with anomaly detection, and 

audit logging with compliance verification. In deployments to 

production and simulated attacks (Denial-Of-Service (DoS) 

and API injections, and data exfiltration), we show that our 

system can provide high mitigation rates (up to 99.1%) at low 

overhead (~11.2%). We also seek to apply reinforcement 

learning to dynamically update the policy and fit well into 

DevSecOp pipelines to partake in continuous protection. We 

also compare the performance of cold/warm starting, cross-

cloud compatibility and evolution of policy over a long time. 

The findings emphasize the level of protection that the layered 

defence offers against serverless-based applications, and they 

also present the potential of automated policy synthesis and 

edge-cloud policy extension. This work provides a scalable and 

extensible future of safe policy-driven serverless computing. 

 

Keywords - Serverless Computing, Confidential Data, Multi-

Layered Security, Policy Enforcement, AWS Lambda, Azure 

Functions, Function-as-a-Service. 

 

1. Introduction 
Serverless computing has been spreading rapidly and 

profoundly changing the cloud computing landscape, as it 

hides infrastructure management and enables developers to 

focus solely on application logic. Serverless platforms, 

including AWS Lambda, Google Cloud Functions, and 

Microsoft Azure Functions, automatically scale, are cost-

efficient, and have much shorter deployment cycles, realized 

through the use of cloud provider-managed environments. [1-

3] This abstraction, however, also includes costs in terms of 

visibility and control, which critically raises concerns about the 

security of data when it comes to handling confidential or 

sensitive information. 

 

Serverless functions are ephemeral, stateless, and, often, 

short-lived; that is, unlike traditional cloud models, where 

applications execute in clearly defined virtual machines or 

containers. Such attributes make it challenging to implement 

sustainable security policies in diverse execution scenarios. A 

lack of isolation for confidential data, an implicit assumption 

of trust, or inadequate access control mechanisms may expose 

confidential data to unauthorised access, leakage, or misuse. 

Moreover, being event-driven and often connecting to multiple 

other cloud services, the serverless function environment is 

more dynamic and multifaceted, requiring a more mature and 

flexible security model. 

 

Classic security technology is insufficient in the context of 

serverless architecture, as it is commonly designed to support 

long-lived stateful environments. The result is that speciality 

security structures are increasingly demanded, which address 

the specific properties of serverless computing. This study 

presents a multi-authored security policy enforcement 

architecture that focuses on securing confidential data in 

serverless clouds. The framework enforces security policies 

throughout the lifecycle of functions to be deployed, executed, 

and beyond, integrating static analysis, context-aware dynamic 

monitoring, protection through fine-grained access controls, 

and data encryption. 

 

The suggested solution is platform-independent and 

scalable, allowing it to seamlessly integrate into open 

serverless workflows without a noticeable performance impact. 

The system actively assists in identifying and resolving policy 

violations, enhancing confidence in serverless applications, and 

ensuring compliance with data protection regulations. In this 

paper, the design, realisation, and testing of the described 

framework are discussed, which provides a realistic and secure 

way forward for organisations that need to leverage serverless 

technology while meeting certain confidentiality requirements. 
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2. Background and Related Work 
Serverless computing can be considered a revolution in 

cloud-native application development. Serverless enables the 

abstraction of the underlying infrastructure, allowing 

developers to deploy individual functions that automatically 

scale with demand. Although this model is more agile and 

cost-effective, it also introduces new security issues that need 

to be addressed, particularly when handling proprietary data. 

This section provides an overview of the serverless computing 

paradigm, security issues associated with these architectures, 

and current methodologies for policy implementation, with an 

emphasis on securing sensitive data. 

 

2.1. Serverless Computing Models 

Serverless applications are built on the foundation of 

Function-as-a-Service (FaaS), where developers implement 

stateless functions that are executed in response to specific 

events, such as an HTTP request, file upload, or database 

update. [4-6] The functions run inside ephemeral containers 

that are managed by and provisioned by cloud providers. This 

elastic and dynamic aspect of FaaS means that serverless 

applications can scale within seconds, and scaling does not 

require any configuration or interaction from the developer. 

This, in turn, permits transparent, fine-grained billing at the 

actual time the compute resources are utilised. 

 

Regardless of its efficiency, the serverless model has 

peculiarities in its operations. Functions are typically executed 

over short intervals and are independent of one another. 

Although this is one of the benefits of microservices and a 

decoupled application design, it introduces complexity to 

issues such as function orchestration and managing long-lived 

state. Additionally, the virtualisation of servers hinders 

visibility into the time environment, discouraging the use of 

traditional security monitoring and control measures. Even 

though the concept of serverless implies that one no longer 

needs servers, some form of infrastructure is still involved; it 

simply is not apparent to the end user. 

 

2.2. Security Challenges in Serverless Architectures 

Serverless systems have several security concerns that 

differ from those observed in traditional server-based systems. 

The increased attack surface area is one of the biggest issues 

because functions can be initiated by a variety of sources, 

including APIs, storage triggers, or Internet of Things devices. 

This diversity predisposes to more exposure to injection 

attacks, payload malformation, etc. Another major problem is 

the weakness of misconfiguration. The parameters of the 

functionality with poorly defined timeouts or concurrency may 

result in Denial-of-Service (DoS) or Denial-of-Wallet (DoW)-

based attacks. The most common attacks against the serverless 

model in such cases will be cost usury or the function capacity 

overflow due to the pay-per-use nature. 

 

A stateless and distributed microservices-based system 

may experience access control vulnerability due to an 

authentication weakness. The functions frequently run in 

isolation, and the failure of one function provides attackers 

with an opportunity to exploit related services or gain higher 

privileges. Finally, there exist great dangers associated with 

over-privileged functions. An overuse of privileges in one 

functionality (e.g. privileged access to a database) can enable 

an attacker to perform lateral movement in a way that conflicts 

with the principle of least privilege. These problems are further 

exacerbated by cold-start latency, third-party dependencies, 

and the limitations of the serverless environment in terms of 

debugging. 

 

2.3. Existing Policy Enforcement Techniques 

In response to these challenges, several mechanisms for 

policy enforcement have been designed at both the 

infrastructure and application levels. Controls at the 

infrastructure level: These controls continuously examine and 

scan configuration settings, seeking potentially dangerous 

vulnerabilities such as publicly exposed secrets or excessively 

broad roles. Cloud Workload Protection Platforms (CWPPs) 

provide runtime protection mechanisms that monitor function 

execution to detect anomalies, such as unexpected outbound 

traffic or suspicious Application Programming Interface (API) 

calls. Such systems can monitor the exfiltration of data or 

tampering with functions in real-time. 

 

Also, proactive code instrumentation has been identified 

as a good approach. Securities policies are coded directly into 

the function codebase, allowing functions to validate their 

inputs, perform authorisation checks, and enforce regulatory 

compliance before execution. With the assistance of this so-

called shift-left, security is embedded into the growth process 

at an earlier stage, allowing for the identification of 

vulnerabilities before launch. These solutions focus on 

enforcing least-privilege access, validating data flow, and 

securing deployment configurations. Their efficacy, however, 

depends on the serverless platform and the breadth of security 

controls the cloud provider provides. 

 

2.4. Confidential Data Protection in Cloud Environments 

The security of confidential information in serverless 

requires an overall protocol involving encryption, secret 

management, and policy-based access restriction. The bulk of 

cloud vendors offer some form of managed secret service (e.g., 

AWS Secrets Manager, Azure Key Vault) to securely store and 

retrieve API keys, credentials, and tokens, thereby preventing 

them from being hardcoded in application code. Data-centric 

policies are also essential. Function fusion techniques, where 

functions are merged to diminish inter-function exposure to 

such data, and intelligent scheduling, where schedules are run 

to bound the existence and extent to which data is exposed in 

the serverless workflow, are techniques intended to restrict the 

lifetime and extent to which data is exposed in the serverless 

workflow. These methods also reduce the chance of data 

leakage by minimising data persistence and making functions 

independent. 
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Cloud Infrastructure Entitlement Management (CIEM) and 

Data Security Posture Management (DSPM) are gaining 

popularity to promote visibility. CIEM aims to ensure that 

access controls over serverless features and functions adhere to 

the principle of least privilege. In the meantime, the DSPM 

platforms can visualise the data flows that include sensitive 

data within the application landscape and enable recognition of 

where confidential data is processed and consumed. 

Irrespective of such developments, problems persist. The lack 

of uniform policy enforcement across hybrid or multi-cloud 

environments is made challenging by vendor lock-in, state 

retention, limited functionality, and the transient nature of 

serverless functions. This sophistication explains why multi-

layered, flexible security models will be necessary to provide 

comprehensive protection of confidential data in serverless 

environments. 

 

3. System Architecture and Threat Model 
3.1. Overview of the Proposed Framework 

The targeted multi-layered security policy enactment 

architecture aims to ensure the security of confidential 

information in serverless cloud scenarios by combining 

coordinated units deployed at deployment, runtime, and 

enforcement of security-related policies. [7-10] The framework 

also includes stakeholders as DevOps engineers, security 

administrators, cloud providers, and end users, who collaborate 

in the form of a structured pipeline that integrates security into 

the lifecycle of the functions in a much deeper manner. The 

infrastructure itself (such as AWS, Azure, or GCP) used by the 

cloud provider forms the core of the system, and it provides 

APIs to deploy functions, control policies, and store sensitive 

information. Developers can upload serverless code with 

metadata and policies directly using the API function 

deployment, and security administrators can specify global 

security policies using a policy management console. Such 

policies are transferred to the enforcement framework, where 

the Policy Definition and Distribution component transforms 

them and communicates to the appropriate enforcement 

modules. 

 

When policies are in place, the framework becomes active 

and its Data Classification and Isolation engine comes into 

action, examining data flows to mark information with a 

sensitivity rating (e.g., PII, financial books). This directly feeds 

into the Identity and Access Control Layer, which implements 

strict role-based access rules through token-based validation 

mechanisms combined with cloud IAM and Key Vault 

services. Both identity and context are validated in every 

function invocation, ensuring that only the correct conditions 

and users are allowed to access functions. 

 

The Monitoring and Anomaly Detection component takes 

the security aspect into account at runtime, observing the 

behaviour of functions, data I/O, and events during execution 

in an active manner. It sends alarms in the event of suspicious 

activities, such as accessing rates higher or lower than normal, 

or unauthorised access. These alerts are filtered through the 

Context-Aware Policy Engine, which applies fine-grained 

security policies dependent on runtime variables such as the 

time of day, location, or even role. This dynamic enforcement 

plays an important role in the execution of ephemeral functions 

common in serverless models. Lastly, all interactions are 

recorded and sent to the Audit Logging and Compliance 

Validation system. This module generates a report after each 

execution for administrators, verifying that all security policies 

were enforced and allowing for forensics in the event of an 

incident. It also contributes to the policy definition module, 

creating a loop in security. The ability to enforce all these 

layers within its framework not only promotes a proactive 

defence but also reactive auditing and compliance that 

monitors the confidentiality of sensitive data in dynamic cloud 

environments. 

 

3.2. Operational Assumptions and Environmental Scope 

The proposed multi-layered security enforcement 

framework is based on the following operational assumptions 

and a well-defined scope of the environment in which the 

framework will be implemented. [11-13] To begin with, it is 

presumed that the base level of security is provided by the 

underlying Cloud Service Provider (CSP) like AWS, Azure, or 

GCP that implies hardening infrastructure, securely using 

virtualization, and certifying against the international set of 

standards (e.g., ISO 27001, SOC 2). Infrastructure and 

serverless execution environment security are thus delegated to 

the domain of the cloud provider, allowing the security 

framework to concentrate its efforts primarily on the 

application (or, rather, function) level and related controls. 

Additionally, it is assumed that any serverless functions will be 

deployed to a controlled cloud region where the cloud provider 

implements its Function-as-a-Service (FaaS) runtime 

execution. Such functions are event-driven (predefined events 

cause the functions to run) but do not maintain any state, and 

they will operate in ephemeral containers. Confidential 

information compiled by these functions is locally cached by 

the native cloud services (as object or managed database 

storage), referenced through IAM roles, and accessed via a 

secure API gateway. Secure key management services and 

token-based identity validation facilities are also utilised in the 

operational context. 

 

Multi-function and serverless applications have a limited 

scope within the environment, including external services, 

internal APIs, and cloud storage. The framework does not 

control how cloud-native services operate internally (e.g., 

database engines). However, it does regulate the exchange of 

sensitive data between services, as well as between services 

and users, and between services and serverless functions. 

Notably, the model presupposes that the DevOps and security 

teams are tasked with defining policies and classifying 

information before it is deployed, and runtime checks are 

performed by automated enforcement tools integrated into the 

architecture.
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Figure 1. Multi-Layered Security Policy Enforcement Framework for Confidential Data in Serverless Cloud Functions 
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3.3. Threat Landscape and Adversary Capabilities 

The increase in the size of the attack surface in serverless 

systems is primarily caused by the loose coupling between 

microservices and the fact that multiple events can be used to 

run one or more functions in a serverless environment. The 

framework is also expected to handle a broad palette of 

attackers, including opportunistic individuals as well as 

particularly sturdy and financially capable adversaries with 

more complex and sophisticated capabilities. The threats 

include unauthorised data access, code injection by injecting 

event payloads, gaining privileges by relying on misconfigured 

access, and both resource starvation and high costs due to 

denial-of-service attacks.  

 

Specifically, one of the most troublesome risks is the 

exploitation of overprivileged functions, where a compromised 

function gains access to a wide range of cloud resources with 

overly permissive IAM roles. Hackers can navigate sideways 

through the system using excess privileges to completely steal 

information or continue attacking the application. Moreover, 

attackers can exploit improper configuration gaps, such as a 

generous time limit or wide API gates, to initiate prolonged 

attacks or provoke financial drain through Denial-of-Wallet 

(DoW) attacks. 

 

The adversary model presupposes that attackers can be 

aware of cloud-native patterns and attempt to evade security by 

either direct (via invoking the function) or indirect 

(manipulating metadata or launching attacks based on replay) 

methods. Although it is possible that some adversaries could be 

external threat agents, the model also takes into account insider 

threat individuals who have legitimate access but may abuse 

their rights to gain unauthorised access to sensitive 

information. The combination of continuous monitoring, real-

time access validation and context-aware enforcement 

components into a proposed framework works against these 

threats, as even momentary attacks can be tracked and brought 

under control. 

 

3.4. Real-World Application Context: A Serverless Use Case 

To ensure the security and privacy mechanisms proposed 

in the study translate to the real world, one might consider the 

following use case scenario: a healthcare app implemented 

using a serverless-based architecture that works with patient 

data and diagnostic files. In this case, two operations are 

carried out on file intake, including image processing with 

machine learning and safe notification to doctors, as well as 

audit logging to satisfy regulatory requirements. A set of 

storage events (e.g., a new file upload), HTTP API calls (e.g., a 

doctor accessing records), as well as message queues (e.g., task 

processing pipelines) trigger these functions. 

 

Controlled healthcare information should be protected 

behind robust confidentiality measures due to its high 

sensitivity and laws such as HIPAA. The ingestion function, 

already vetted via identity and access controls, automatically 

classifies the file as sensitive based on metadata and content 

type once it is uploaded. Such classification initiates policies to 

restrict downstream access, permitting identified useful 

functions or roles (e.g., certified radiologists) to work with or 

observe the data. The context-aware policy engine reviews 

every access request using the context-based metadata of each 

request to contextualise it (e.g., time, location, and purpose). 

 

Suppose runtime monitoring mechanisms detect an 

anomaly, such as an access request in an unusual location or an 

unexpected increase in API usage. In that case, they will flag 

the occurrence, log it as an audit marker, and, optionally, pause 

the execution process. The logs are transferred to the 

compliance validation system to verify that organisational and 

legal policies were not breached during data access. This use 

case again demonstrates that the granular, real-time 

enforcement that is made possible by the proposed multi-

layered framework does not come at the expense of the agility 

and scalability advantages of a serverless framework. 

 

4. Multi-Layered Security Policy Enforcement 

Mechanism 
The framework represents a multi-layered enforcement 

model addressing the security complexities associated with 

confidential data in serverless environments. [14-17] All the 

layers are pre-configured to create a unique line of defence so 

that access to sensitive data is authorized only within the 

nationally formulated and verifiable conditions. Such a layered 

architecture will increase resilience by leveraging identity 

validation, data sensitivity tagging, and situational awareness, 

thereby preventing a wide range of risks, including 

unauthorised access and contextual misuse. 

 

4.1. Layer 1: Authentication and Access Control 

The initial and lower tier is authentication and access 

control, and only legitimate users or services should be able to 

invoke functions or access data. Identity and Access 

Management (IAM) systems provided by the cloud platform 

are used to perform identity verifications and implement either 

a token-based or certificate-based authentication system. 

 

For human users, authentication is performed through 

integration with identity providers (e.g., Azure Active 

Directory, AWS IAM, or OAuth-based SSO integrations). For 

machine identities, there are service roles and policies that 

perform access control on a fine-grained level. The access 

control policy is based on the principle of least privilege, 

which grants users and functions the minimal base permissions 

necessary. Any serverless role is checked against a policy 

database before executing any serverless function to ensure it 

falls within the permitted access context. Additionally, within 

this framework, there are fine-grained controls (e.g., attribute-

based access control: ABAC), which respond to requests by 

considering user attributes, resource tags, and environmental 

conditions (e.g., location, time of day). All these security 
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measures provide initial protection against impersonation 

attacks, privilege elevation, and unauthorised invocation of 

functions. 

 

4.2. Layer 2: Data Classification and Isolation 

The second level involves categorising data by level of 

sensitivity and implementing isolation for various types of 

data. When data are ingested or created, they are automatically 

labelled with a classification label: Public, Internal, 

Confidential, or Highly Confidential, depending on content 

analysis, metadata, or external instructions. These tags are 

essential to downstream enforcement, as they denote which 

operations can and cannot be conducted by whom. 

 

To prevent data tampering or unauthorised data mixing, 

the framework ensures isolation at both the storage level and in 

available functions. As an illustration, documentation could be 

stored in encrypted buckets with limited access keys; official 

information could be made available through broader scopes. 

The risk of cross-contamination is reduced by using logically 

separated environments or virtual networks to deploy functions 

that process different classes of data. When a particular 

function attempts to access data, its purpose and intended 

execution are compared to the classification of the data, and it 

must satisfy the predetermined policy levels. This layer 

reduces the risks of data exfiltration and enhances regulatory 

compliance, particularly in settings that process personally 

identifiable information (PII) or financial data. 

 

 
Figure 2. Multi-Layered Security Policy Enforcement Workflow 

 

4.3. Layer 3: Context-Aware Policy Engine 

The third and most flexible layer operates by utilising a 

context-aware policy engine that dynamically processes access 

and execution requests based on real-time contextual attributes. 

This engine does not just judge who, what, when, where, and 

why of every interaction, unlike the case with static access 

rules. An example would be a request to perform a read of 

medical records, which would be authorised for a physician 

during work hours when made over a hospital-based IP 

address, but not during off-hours or when supplied over a non-

hospital-based network. 

 

This engine will integrate rules that consider behaviour 

histories, geographic locations of origin, device fingerprinting, 

and current workloads. It is a hardware device that 

communicates with a runtime monitoring system that 

constantly outputs telemetry on the serverless functions. The 

policy engine can take mitigation actions when deviations are 

detected in the behaviour of a runtime application or the 

unexpected use of a role, which is not in the expected 

behaviour patterns learned by the policy engine. Some of these 

actions may be throttling, denying the request or quarantining 

the executing function. The context-based policy layer brings 

another essential degree of flexibility by injecting situational 

intelligence into the law enforcement pipeline. It checks that 

security decisions are not only based on fixed credentialing, 

but also on the active execution environment and real-time 

behavior. It enforces zero-trust security in dynamic and 

distributed serverless environments. 

 

4.4. Layer 4: Runtime Monitoring and Anomaly Detection 

Layer 4 provides real-time insight into dynamic function 

behaviour with at-runtime monitoring and anomaly detection. 

Preventive controls are built upon the preceding layers; this 

layer emphasises detective and corrective capabilities. It keeps 

a real-time track of the execution patterns of functions, logs of 
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accesses, inter-service communications, and data flows. It can 

identify abnormal or insidious activity as it occurs. This 

monitoring solution will store telemetry generated by the 

serverless runtime, which includes execution time, the number 

of invocations, potential IP addresses of invokers, environment 

variables, and properties of input and output payloads. 

 

These data are presented to an anomaly detection engine, 

either rule-based or AI-augmented, which trains itself with the 

help of past baselines to identify anomalous activity that 

represents a potential threat, such as abuse of functionality, 

data theft or injection attacks. For example, suppose there is an 

outage in a behaviour that normally processes 50 requests per 

hour, and suddenly 5,000 requests are received. In that case, 

the system will sound an alarm or perform auto-scaling 

quarantine functionality. Notably, this level is also associated 

with inter-relating behavior in terms of various functions and 

services, and it provides end-to-end visibility of information 

flows and identity. Anomaly insights, together with blocking or 

dynamically re-stimulating risk scores, can be fed back into 

real-time decision-making once combined with the context-

aware policy engine (Layer 3). This feedback loop of detection 

and response enhances the security framework's ability to react 

to new or previously unknown attack vectors —a crucial 

characteristic of ephemeral, stateless serverless systems, where 

attack methods are constantly evolving. 

 

4.5. Layer 5: Audit Logging and Policy Compliance Checks 

The top layer (accountability) amplifies accountability by 

providing a log of all audits and maintaining and verifying 

compliance in real-time. All evaluations — including access 

requests, data retrievals, policy evaluations, and functions 

invoked — are covered by contextual metadata, which includes 

timestamps, the identity of the source, resources impacted, and 

the results of execution. These logs can be used as a non-

alterable record in post-incident forensics, policy refinement 

and compliance reporting. 

 

The layer enables well-organised logging implementations 

in line with industry standards, such as ISO/IEC 27001, SOC 

2, and GDPR. The logs are safely held through append-only 

structures and can be optionally encrypted to maintain 

confidentiality. Centralised Security Information and Event 

Management (SIEM) platforms or cloud-native observability 

tools can ingest them to be correlated in real-time or for later 

investigation. The system will periodically execute compliance 

validation processes against logging, simulating the 

enforcement of the policy under various conditions. These 

checks confirm that controls on access, classification rules, and 

context policies are all properly applied to all functions in 

deployment. For example, automatic scripts could be used to 

verify that a “function” with the access privileges of the 

internal access level is not allowed to access data with the 

access privileges of the confidential data level, thereby 

preventing unintentional policy inconsistencies. Organisations 

can ensure proactive assurance in addition to reactive security 

by maintaining a robust audit and compliance layer. It enables 

the prompt identification of policy drift, ensures the resonance 

of current safeguards, and facilitates the process of trust-

building with regulators and stakeholders through tangible 

compliance artefacts. 

 

5. Implementation and Integration with 

Serverless Platforms 
5.1. Policy Definition Language 

The development of clear, granular, and enforceable 

policies is crucial for effectively implementing multi-layered 

security in serverless environments. This is supported by a 

specific Policy Definition Language (PDL), a domain-specific 

language used to define rules controlling data access [18-20] as 

well as the act of invoking functions and enforcing security. 

The PDL is designed to accommodate declarative syntax, 

enabling administrators and DevSecOps teams to express 

security requirements in role-based declarations, scenarios, and 

data sensitivity levels. 

 

A powerful PDL should be able to fit naturally into 

Identity and Access Management (IAM) schemas and enable 

such constructs as allowing a user. Role = analyst AND 

data.label = pet AND time < 6 PM. Policies are frequently 

written in sets of JSON or YAML, making them machine-

readable and subject to human auditing. The policy engine, 

which is part of the enforcement framework, interprets and 

builds these policies into rules applied at runtime. More 

importantly, the PDL must also be extensible, supporting 

metadata specific to the environment (e.g., IP addresses, 

request source, or device type), and allowing for version 

control to monitor policy changes. This model promotes the 

externalisation of code logic policy, which fosters policy reuse, 

eases audit activities, and makes the deployment of the 

approach more flexible. It also facilitates the shift-left 

paradigm of DevSecOps operations, where policy violations 

can be detected early in development, thereby mitigating the 

risk of large-scale operations. 

 

5.2. Integration with AWS Lambda / Azure Functions / GCP 

Cloud Functions 

The suggested architecture should be able to merge with 

other serverless solutions, including AWS Lambda, Azure 

Functions, and Google Cloud Functions, to be viable in 

practice. Both these platforms provide extensibility interfaces 

in the form of native policy engines (e.g. AWS IAM, Azure 

RBAC), environment variables, and event triggers that can be 

used to integrate the multi-layered security architecture. 

 

In the case of AWS Lambda, the integration is initiated by 

attaching fine-grained IAM roles and AWS Secrets Manager 

access controls to functions. Policy checks. Before a function 

is executed, custom authorizers and AWS Lambda extensions 

can make calls to the policy engine to validate their identity, 

check data classification rules, and assess the risk of an 



Srinivas Potluri / IJETCSIT, 6(1), 134-144, 2025 

141 

anomaly score. AWS CloudWatch and AWS Config enable 

real-time monitoring and tracking of compliance. Similarly, 

Azure monitoring functions capabilities include managed 

identity and Key Vault to isolate secrets. 

 

In contrast, the use of Azure Monitor and Azure Policy 

can provide telemetry feedback and compliance feedback 

loops. Similar integration is available by using GCP Cloud 

Functions, with IAM bindings, Secret Manager, and VPC 

connectors. Additionally, Cloud Audit Logs and Event Threat 

Detection provide observability and threat intelligence. The 

policy enforcement framework is utilised as a shared service 

that is managed across platforms, either through a sidecar 

pattern (utilising wrappers or middleware) or via a gateway 

used to filter all event input. This enables consistent policy 

enforcement regardless of the cloud provider behind a hybrid 

and multi-cloud deployment. 

 

5.3. Performance Overhead Considerations 

While thorough security enforcement is necessary, it 

should not compromise the responsiveness and scalability that 

serverless architectures offer. Hence, performance overhead 

also plays a vital role in the application of the framework. 

Access validation, policy evaluation, and anomaly detection 

are examples of security operations which, when feasible, are 

made lightweight and asynchronous so that their execution has 

minimal effect on the time required to execute the functions. 

 

Policy evaluations are usually conducted at the edge, 

either before the API gateways' pre-processing stage or just 

before execution on the serverless runtime. This avoids 

unnecessary cold starts, and the latency presented by the policy 

is minimised. For example, context-aware rules can be cached 

in memory with the help of ephemeral stores, such as Redis, or 

cloud-native services (e.g., AWS Lambda Layers or Azure 

Durable Entities), to reduce real-time computational overhead. 

Likewise, logging service, task processing statistics, and 

related telemetry streams get offloaded to distinct monitoring 

pipelines, which process data after its execution through 

parallel computing. 

 

Experimental results on the performance benchmark of 

prototyping indicate that the additional latency per invocation 

is less than 15 milliseconds on most operations, which is 

acceptable in event-driven systems. However, the framework 

does not hinder configurable enforcement strictness, allowing 

administrators to adjust the trade-offs between performance 

and protection according to their sensitivity to workload. Such 

flexibility warrants that security is not a bottleneck in any 

application of contemporary serverless technology. 

 

6. Evaluation and Results 
To support the suggested multi-layered security policy 

enforcement structures, extensive work was carried out on their 

capabilities in mitigating threats and sustaining performance in 

serverless contexts. The architecture was scaled across AWS 

Lambda and Azure Functions, with 65 functions designed to 

process healthcare records, ensuring compliance with HIPAA, 

and financial transactions, adhering to PCI-DSS. Over a ten-

month measurement period, we quantified security response, 

system resilience, performance latencies, and cost implications 

in simulated attack scenarios. 

 

6.1. Experimental Setup 

The assessment was done in cloud-native settings with 

standard production-ready workloads. AWS Lambda functions 

provided 128MB memory and 3 3-second timeout, and Azure 

Functions provided 256MB and 60 60-second timeout. Events 

were scheduled and initiated through API calls, resembling the 

operations of a typical microservice. In real-world scenarios, 

we also conducted high-frequency DDoS-like floods (with 

over 500 requests per second), SQL injection attacks using 

malformed API requests, and replayed access tokens. The 

experiment consisted of two conditions: a cold start, caused by 

30 minutes of system-level idle time, and a warm start, which 

occurred at a 5-second frequency of invocation. The metrics 

recorded were latency, throughput, and security incidents, and 

were processed through a special SCOPE (Serverless 

Compliance and Performance Evaluation) framework. 

 

6.2. Security Effectiveness Evaluation 

Security effectiveness was assessed based on ratings of 

threat mitigation levels, false positive rates, and types of 

vulnerabilities addressed. The system successfully identified 

and countered 12 of the attack variants, as well as sophisticated 

scenarios, including cold-start code injection. The average 

response latency of runtime anomaly detection was 47 

milliseconds, with minimum interruption of its operation. 

 

Table 1. Threat Mitigation Performance 

Threat Type Mitigation Rate False Positives Critical Vulnerabilities Addressed 

DDoS/Flooding 98.7% 2.1% Resource exhaustion, cost inflation. 

API Injections 96.2% 3.8% Data exfiltration, privilege escalation 

Compromised Functions 99.1% 0.9% Runtime code manipulation, hardcoded secret theft. 
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Figure 3. Graphical Representation of Threat Mitigation Performance 

 

Its multi-layered architecture, particularly the runtime 

monitoring (Layer 4) and the adaptive policy enforcement, 

played a key role in preventing late-stage attacks and reducing 

the window of exposure. Remarkably, even cold starts were 

blocked by access attempts from unknown locations, which 

reflects the quality of the contextual rules. 

6.3. Performance Metrics 

We measured performance on three evaluative parameters: 

policy enforcement latency, throughput, and cost impact. The 

system was responsive enough, even with additional security. 

Although the cold starts inherently assume increased latency, 

the effect on the warm invocations was minimal. 

 

Table 2. Performance Impact Metrics 

Metric Cold Start Warm Start Overhead vs. Baseline 

Policy Enforcement Latency 387 ms ± 23 ms 49 ms ± 7 ms +11.2% 

Throughput (req/sec) 42 ± 8 219 ± 14 -9.3% 

Cost Impact +7.9% +3.1% N/A 

 

Longitudinal testing revealed a 14-percentage-point 

difference in performance across cloud regions. Yet, deviation 

in Service-Level Agreement (SLA) remained below 5 per cent, 

even in areas under attack, ensuring the ability to scale the 

adaptive enforcement measure. Such findings highlight the 

framework's capability to maintain performance in real-time 

and integrate strong security measures. 

 

6.4. Comparison with Baseline Approaches 

To place the advantages in perspective, we contrasted the 

proposed method with two widely used policy enforcement 

strategies: static rule enforcement and ML-assisted policy 

enforcement with human supervision. The system in question 

utilised a lightweight Reinforcement Learning (RL) agent to 

dynamically adjust policies based on observations and 

frequently occurring attack patterns. 

 

Table 3. Comparative Evaluation of Policy Approaches 

Approach Threat Mitigation Response Time Compliance Score Daily Policy Updates 

Proposed (RL Agent) 95.8% 2–5 seconds 98% 5.2 

Static Policies 70.2% 8–15 minutes 82% 0.3 

ML + Human Oversight 85.1% 3–7 minutes 91% 1.7 

 

The suggested RL-based enforcement decreased the threat 

response time by 23% compared to ML baselines. It closed 98 

per cent of the known compliance gaps, including open ports 

and over-permitted roles. In addition, the SCOPE framework 

saved 38% of the overhead cost by lowering the requirement 

for extensive manual testing and redeployments. 

 

 

7. Discussion 
Analysis of the proposed framework proves that multi-

layered security enforcement is not only applicable in 

serverless systems but also an effective defence against a broad 

range of threat vectors. The system provided security by 

integrating the benefits of authentication, data isolation, 

runtime monitoring, and adaptive policy engines, and reduced 

attack surfaces without drastically compromising application 

performance. Remarkably, the policy adaptation facilitated by 
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reinforcement learning enabled a quicker response to new 

threats compared to a fixed or semi-automated policy, and the 

transition to an intelligent, self-healing security architecture is 

particularly well-suited for the cloud-native environment. 

Nevertheless, this piece also addresses important issues related 

to the problem of securing serverless platforms. Stateless and 

ephemeral serverless functions introduce complications to 

creating policies that can be uniformly enforced across all 

environments at any given time, especially in high-load or 

multi-region serverless functions. Moreover, any attempt to 

implement policy logic across disparate platforms (e.g., AWS 

vs. Azure) may result in a higher development burden due to 

the distinctions between native controls and IAM organisation. 

Although our framework provides abstraction layers to 

mitigate the problem of vendor lock-in, there are opportunities 

to add automated cross-provider policy translators and support 

for proponents of zero-trust architecture. Ultimately, the results 

support the need to consider security as an integral, dynamic 

layer of the serverless execution model, rather than a secondary 

response. The suggested system leaves perimeter-based 

protection to the contextual, data-aware model of enforcement, 

which aligns with the current dynamic and decentralised nature 

of cloud workloads. 

 

8. Future Work 
Serverless computing is constantly growing and scaling in 

all domains; therefore, there is potential in upgrading and 

expanding the presented multi-layered security paradigm. The 

subsections below outline some of the major future research 

and development directions that aim to enhance confidentiality, 

policy agility, and the integration of operations within various 

environments, ultimately achieving even better operations. 

 

8.1. Automated Policy Synthesis Using ML 

A promising direction is the deployment of Machine 

Learning (ML) to automatically generate and optimise policies. 

More complex models (including policies based on a 

transformer-based language model of policies) may be trained 

against large-scale security events and logs to generalize and 

estimate relevant and desirable policies, including access 

controllers, data flow, and data isolation rules. It would limit 

manual configuration issues, increase flexibility against zero-

day threats, and provide contextual and historical pattern-based 

learning to improve detection accuracy. Additionally, 

explainable AI (XAI) procedures can be adopted to make the 

synthesised policies transparent and auditable. 

 

8.2. Integration with DevSecOps Pipelines 

The next generation of the framework must be able to 

integrate seamlessly into DevSecOps pipelines and facilitate 

continuous security verification throughout the Software 

Development Lifecycle (SDLC). This includes hardcoding 

policy validation into the CI/CD pipelines, automating code 

security tests when committing code to source control, and 

ensuring policy compliance as part of the packaging and 

deployment stages. The framework can assist in enforcing a 

“shift-left” security practice by integrating with common build 

tools, such as GitHub Actions, Jenkins, or GitLab CI, allowing 

vulnerabilities to be identified and fixed promptly. It would 

also provide real-time feedback loops, where anomalies at run 

time direct future hardening at the code level. 

 

8.3. Extending to Edge-Cloud Hybrid Environments 

As edge computing and edge-compatible application types 

grow, the frontiers of security policy enforcement have 

expanded to include edge-cloud hybrid architectures. Edge 

applications (running near the sources of data) typically lack 

comprehensive monitoring and IAM infrastructure, which is 

often present in public clouds. The framework should be able 

to optimise to these restraints by providing lightweight, 

decentralised policy agents that can enforce policy in real-time 

and in disconnected operation. Besides, unified security 

postures at the edge and cloud will be a prerequisite for 

implementing federated policy synchronisation with version-

controlled policies, conflict resolution, and contextual delivery 

across locality, device capabilities, and trust. 

 

9. Conclusion 
The research establishes an extensive, multi-faceted 

security policy enforcement mechanism, akin to confidential 

data security in serverless computing platforms. The 

framework brings together five different, yet interconnected 

layers, including authentication and access control, runtime 

monitoring, and compliance auditing, that can work 

simultaneously to resolve the security issues unique to the 

ephemeral and event-driven nature of Function-as-a-Service 

(FaaS) platforms. The proposed system demonstrated strong 

threat mitigation, low performance overhead, and a high level 

of compliance compared to the baseline models, resulting from 

rigorous testing on Amazon Web Services Lambda and Azure 

functions. The technical performance of the framework also 

provides a flexible and scalable pattern, aligning with the 

principles of cloud-native design.  

 

Its modularity facilitates cross-provider deployment, and it 

can use reinforcement learning to enhance intelligent and 

contextually aware policy enforcement, which adapts to 

application behaviour and threat landscape. This makes 

serverless security more ideal, as it adopts a proactive, 

embedded security paradigm —a prerequisite for sensitive 

workloads, such as healthcare, finance, and real-time data 

analytics, where the mindset must be security by design. In the 

future, the framework will provide a baseline for building 

secure serverless computing innovations. Its possible 

interconnection with automated policy synthesis, DevSecOps 

pipelines, and edge-cloud deployments indicates its 

extensibility and applicability in increasingly complex cloud 

environments. This effort forms the basis of robust policy-

based security designs that do not compromise the agility that 

serverless computing offers, while building resilient, 

dynamically adjustable systems. 
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