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Abstract - Adversarial attacks pose an important threat to the security and trustworthiness of large language models (LLMs). 

These models are vulnerable to carefully engineered input designed to exploit their weaknesses, degrade system performance, and 

extract private information. Practical countermeasures need a strong offensive strategy that includes adversarial scenarios 

simulation to test how models hold up in various conditions. Adversarial data poisoning and evasion techniques are particularly 
useful as they can reveal strengths during training and inference processes, respectively. Through systematic identification and 

mitigation of every vulnerability, organizations can strengthen the model's robustness to real-world attacks. This technical 

framework also emphasizes the need to embed adversarial simulations into the security cycle of LLMs to prevent risks associated 

with malicious actors. Via iterative analysis, an organization can increase the robustness of a model and build a resilient 

infrastructure for secure implementation of LLMs in sensitive/high-level environments. 
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1. Introduction  
Artificial intelligence is bringing Large Language Models to the fore and has made them one of the biggest areas of tech 

innovation  - a trend that is going to prevail for the next several years. Advanced AI models driving generative AI applications like 

ChatGPT are changing the relationship between humans and technology [1]. The LLMs are giant models that draw from extensive 

data sets and immense computational power to offer revolutionary capabilities such as generating text indistinguishable from natural 

text and providing the ability to perform tasks requiring natural language comprehension. Applications of these models have been 

developed across a wide range of software and apps. 

 

Like any disruptive technology, LLMs raise important safety, privacy, and ethical issues. The models have been shown, 
under certain circumstances, to leak private information, generate falsehoods or misleading information, and, in particular cases, be 

manipulated into generating deleterious outputs by malicious users and sometimes inadvertently by ordinary users [2]. Strong 

safeguards and guardrails should be introduced within LLM-powered applications against such risks. The architecture and 

development of mechanisms for abuse prevention ensure these AI-driven tools operate securely, ethically, and responsibly. 

 

2. Background of Security Concerns of LLMs 
2.1 Toxicity and Offensive Content Generation 

One of the prevalent issues with LLMs is that they are equally capable of producing toxic, harmful, or unethical output. A 

research study of GPT-3.5 and GPT-4 determined that even neutral prompts resulted in models that became toxic at a rate of 

approximately 32% [3]. Adversarial prompts challenging the models to "generate toxic language" increased the risk of toxic 

response to 100% for each of the two models. It even goes down to the models' text. Adversarial input-abusive prompts, for 

example, could be used to hack LLMs. Probably one of the best-known attacks is called a PI attack, or prompt injection, where, 

through craftily contrived input messages, the model is tricked into abandoning its RLHF alignment and safety to generate unsafe or 

malicious content [4]. 

 

2.2 Security Risks from Malicious Inputs and Prompt Injection 

The most critical issue for the security of LLMs is their vulnerability to attacks because of malicious inputs such as prompt 

injection attacks. This kind of attack is based on exploiting weaknesses in how the model takes model inputs to hack the safety 
mechanisms of the model and create unsafe/uncontrollable outputs. In particular, the interactive applications of LLMs, like chatbots, 

are more susceptible because these applications depend on sequences of evolving user interactions [5]. An attacker can poison the 

instructions with toxic/harmful content to elicit toxic outputs or make the model unusable. This erodes user trust and leaves a wide-

open door for malicious or misinformation to go viral.  
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2.3 Model Alignment and Data Leakage Threats 

While base models are pre-trained on a high amount of textual data, fine-tuning, or other techniques, e.g., Reinforcement 

Learning from Human Feedback, they ultimately allow the models to behave as defined with a parametric set of parameters. 

Alignment of this type aims to make the model behave in a more controlled way, for example, by simply refusing to give answers 

to questions, which could potentially facilitate the disclosure of information about people in the training data. Although this may be 

theoretically demonstrated to be so, several studies have shown that powerful, general-purpose language models with large-scale 
pre-training are still prone to leaking of training data available [6]. 

 

2.4 Data Privacy and Memorization Risks 

State-of-the-art LLMs are pre-trained on a variety of web-crawled or otherwise internet-sourced data sets. The data is 

typically a few billion tokens but sometimes even trillions. Nevertheless, the specification of the training data for most 

commercially available SOTA LLMs is scarce and proprietary. Organizations that build these models do not want to be 

forthcoming about their data collection efforts to safeguard proprietary methodologies and licensing agreements for nonpublic data 

purchased via exclusive arrangements. LLMs can capture long parts of their training data and personal details such as email 

addresses or phone numbers [7]. Such amnemonic data also appear in model outputs, and this is a major privacy issue. 

 

3. Guardrails Defense Techniques for Protecting Web Applications 
LLMs are extremely powerful tools with numerous applications; however, by the same measure, they also possess serious security 

weaknesses. These models can also be used to create malicious, biased, or misleading content by malicious individuals. Because of 

this, it is still critical to have strong guardrails while building secure LLM-based apps.  

 

Guardrails are safety features that prevent abuse and facilitate responsible usage [8]. With guardrails, you are able to: 

 Identify and Mitigate Risks: Guardrails outline various ways of detecting and mitigating the different risks that come with 

LLMs. For instance, guardrails may identify when a model is likely to: generate biased or misleading output and stop the 
process. 

 Compliance with Security Policies: Guardrails are designed to ensure compliance with security policies in texts created to 

align with established policies. These block the creation of hate speech and discriminatory or otherwise offensive 

language. 

 Safeguard Data and Systems: Guardrails protect sensitive data and systems. They can be installed to limit an LLM from 

accessing classified data or running potentially harmful code. 

 

3.1 Offensive Defense Approaches 

3.1.1 Guardrails Hub for Intercepting LLM Inputs and Outputs 

Large Language Models (LLMs) demand strong validation processes to mitigate security vulnerabilities, abide by 

requirements, and produce organized output. Output and input guardrails fortify model trust by filtering out possibly destructive, 
non-conformant, and improperly formatted output. Guardrails Hub can integrate with a CLI for deploying guardrail layers, with 

ease supporting integration with pre-configured and custom guardrails. Users can then initialize the environment (guardrails 

configure) and install guardrails from the repository (guardrails hub install hub://guardrails/regex_match) following installation 

(pip install guardrails-ai). Developers use Guard API to instantiate an instance of a Guard and apply guardrails such as 

RegexMatch, imposing the correct format for structured input. For instance, imposing phone number format (regex="\(?\d{3}\)?-? 

*\d{3}-? *-?\d{4}") will cause incorrect format to yield OnFailAction. EXCEPTION. In a similar manner, a mix of a variety of 

guardrails can be composed together with Guard()_.use many() for competitor mentions and toxicity filtering, disapproving 

unauthorized disclosures and offensive language in LLM output. 

 

Beyond filtering, Guardrails enables schema-enforced output creation. Defining a Pydantic model (BaseModel) constrains 

LLM output to a schema, producing syntactically correct and semantically meaningful output. 

Guard.for_pydantic(output_class=Pet, prompt=prompt) pairs model output with schema requirements, optimizing LLM behavior 
through function calls or refinement of prompts. Hosting Guardrails as a service with Flask (guardrails start) even enables RESTful 

validation routes, working seamlessly with OpenAI’s SDK by configuring openai.base_url. Real-time API-constrained validations 

and high-performance production with Docker and Gunicorn are supported by such a mechanism. Such defensive guardrails boost 

security, maintain compliance with regulators, and make LLM-powered software more resilient by constraining output and policy-

conformant output. 
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3.1.2 Garak LLM Vulnerability Scanner 

Garak serves as a comprehensive vulnerability scanner tailored for large language models (LLMs). It systematically 

probes models for security failures such as hallucinations, prompt injections, data exfiltration, and adversarial exploits. Garak 

operates similarly to tools like Metasploit and Nmap but is specifically designed to evaluate the resilience of LLMs by executing 

static, dynamic, and adaptive adversarial probes. Supporting a wide range of deployment environments, Garak can assess models 

via REST APIs, Hugging Face’s inference pipelines, OpenAI’s chat/completion endpoints, and various self-hosted or API-based 
LLM architectures. It integrates seamlessly with encoding-based evasion tactics, risk card frameworks, and jailbreak 

methodologies to determine susceptibility levels, making it invaluable for organizations seeking to harden AI implementations 

against exploitation. 

 

The tool enables automated security testing through a modular CLI with fine-grained vulnerability probe selection 

options. Users can run tests for specific failure scenarios, including encoding manipulations (e.g., MIME evasion), adversary token 

insertions (e.g., DAN exploits), or API misconfigurations. Garak’s reporting module generates structured JSONL output, reporting 

success rates for probes, uncovered failure modes, and reproducibility statistics for additional forensic analysis. Adaptive attack 

sequencing is supported in the framework, with successful exploit chains driving future probe selection and optimizing attack 

surface coverage. Logs and diagnostics for failures are captured in structured forms to allow security researchers to develop and 

adapt countermeasures iteratively. With continued community contribution and integration with platforms such as GitHub and 

PyPI, Garak continues to serve as an ongoing security framework critical for AI red-teaming and LLM strengthening. 
 

3.1.3 Safety Guard Models for AEGIS2.0 

The AEGIS2.0 framework incorporates five safety guard models that serve as security guardrails for Large Language 

Models (LLMs). These models employ parameter-efficient fine-tuning (PEFT) on the LLAMA3.1-8B-INSTRUCT backbone, 

leveraging supervised learning from human and LLM annotations to classify prompts and responses as safe or unsafe. The primary 

function of these safety models is to mitigate harmful outputs by enforcing compliance with predefined security constraints and 

content moderation policies. 

 

The LLAMA3.1-AEGISGUARD model is trained using fine-tuned binary classification to distinguish between safe and 

unsafe responses. It achieves this by integrating fine-grained category labels into the training taxonomy, enhancing its capacity to 

detect nuanced risks such as phishing, malware propagation, unauthorized advice, and privacy violations. Training is conducted 
using the AEGIS2.0 train split, where weakly supervised annotations from an ensemble of LLMs significantly improve response 

moderation performance. 

 

Benchmarking against existing industry baselines demonstrates the superiority of LLAMA3.1-AEGISGUARD in 

detecting unsafe responses. Performance evaluations are conducted across multiple datasets, including WILDGUARDTEST, 

XSTest, and the OpenAI Moderation Dataset. The model consistently outperforms LLAMAGUARD3-8B, LLAMAGUARD3-1B, 

and LLAMAGUARD2-8B, as well as OpenAI’s Moderation API, by achieving higher F1 scores in harmful content detection.  

 

The incorporation of fine-grained risk categories significantly improves moderation accuracy, unlike traditional models 

that rely solely on core category taxonomies. LLAMA3.1-AEGISGUARD benefits from the expanded risk taxonomy introduced in 

WILDGUARDMIX. This dataset includes granular classifications for cyber threats, misinformation, and ethical violations, 

allowing the model to enforce more precise safety guardrails. 
 

AEGIS2.0 safety guard models employ multiple techniques to enforce LLM security: 

 Content Filtering: Automated classification of responses using a refined binary taxonomy, reducing the likelihood of 

generating unsafe outputs. 

 Refusal Mechanisms: Integration of refusal data ensures that the model appropriately declines to respond to harmful 

queries rather than generating misleading or hazardous content. 

 Contextual Risk Assessment: The model leverages topic-following mechanisms to identify content requiring stricter 
moderation, improving compliance with regulatory and ethical standards. 

 

4. Conclusion 
Security in LLM web applications is an area where innovation should constantly be created to match the dynamic threats 

and emerging vulnerabilities. Future efforts need to zero in on developing intelligent, adaptive guardrails that enable real-time 

detection and response. The systems should make use of dynamic monitoring for adversarial input or exploitation attempt 

identification and mitigation without compromising performance. More emphasis on automated vulnerability detection and self-
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healing architecture would reduce dependence on manual interventions, letting the models rapidly adjust to new attack vectors. 

Research into explainable AI also needs to be at the front and center, given the added transparency in understanding how LLMs 

process data and respond to malicious inputs. This could give security teams a chance to devise more targeted interventions and 

help in enhancing system reliability. 

 

A multidisciplinary approach from AI research to cybersecurity innovation, passing through regulatory frameworks-will 
be necessary for long-term protection in web applications. Proactive adversarial testing and iterative strengthening of model 

resilience will be a firm bedrock to base these models' usage in sensitive and high-stakes environments. Embedded in a multilayer 

security mechanism, adaptive defense will be used to minimize risks while ensuring the reliability and security of these 

technologies. As such, this will protect them from known threats and future-proof the LLM-based systems from the continuously 

changing landscape of cyberattacks, making widespread and responsible adoption possible. 
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