
International Journal of Emerging Trends in Computer Science and Information Technology 

ISSN: 3050-9246 | https://doi.org/10.56472/ICCSAIML25-126  

Eureka Vision Publication | ICCSAIML'25-Conference Proceeding 

 
Original Article 

 

Hybrid AI on IBM Z: Options and Technical Insights 
 

Chandra Mouli Yalamanchili  

Independent Researcher from USA. 

 

Abstract - The rapid growth of AI (Artificial Intelligence) and ML (Machine Learning) over the last few years has enabled 
organizations to seamlessly integrate real-time decision models into their existing applications for more efficient processing. In 

response to this growth in AI, IBM has increasingly built upon its mainframe architecture most notably IBM Z by incorporating 

newer technologies like support for Python, containerized workloads through zCX, and virtualization layers like z/VM and zKVM. 

The introduction of the Telum processor, with built-in AI acceleration, further positions IBM Z as a strong candidate for running 

AI workloads right where the data resides. This paper explores several options that can be used to deploy ML model training and 

inference on IBM Z's ecosystem. It highlights how IBM Z's performance, security, and co-location with enterprise data make it an 

ideal environment for hybrid AI workloads. This paper takes an example use case of real-time credit card fraud detection and 

explores how predictive models can be deployed on IBM Z using Python. This paper also explores the full transaction flow to 

reflect the integration between existing COBOL, HLASM, or Java applications and how the Python-based fraud scoring service 

would work in practice.  

 
Keywords - Hybrid AI architecture; IBM Mainframe; IBM Z; Predictive Modeling; Fraud detection; Python on IBM Mainframe; 

zCX; Telum; z/OS; z/VM; zKVM; ONNX; PMML; MLz; Cloud Pack for Data. 

 

1. Introduction 
AI (Artificial Intelligence) and ML (Machine Learning) have revolutionized the enterprise computing environment over 

the last few years. What started as data science exploration has grown into the production of real-time fraud detection, transaction 

analysis, and automated decision-making at scale. As organizations operate in today's high-stakes environments, where 

milliseconds translate to millions, they are more concerned with moving AI closer to their data for governance and performance.  

The IBM Z platform is known for its high reliability, scalability, and security in transactional processing, and it has evolved over 

the years to support modern AI and ML demands on the IBM Z platform. In the earlier days, running ML models often meant 

offloading mainframe data to external platforms for processing. While operational, this approach introduced latency in mission-

critical workloads, increased overall architecture complexity, increased cost due to additional distributed infrastructure, and raised 

compliance concerns around data movement. 

 
Recognizing these limitations, IBM introduced a series of enhancements to make AI more native to the IBM Z environment: 

 IBM z13 and z14 systems added support for embedded analytics and leveraged zIIP (z Integrated Information Processor) 

processors to offload eligible workloads efficiently. 

 IBM z15 extended the platform's capabilities with stronger containerization support and built-in data privacy and 

encryption features at scale. 

 Most notably, in 2021, IBM announced the Telum processor, which introduced on-chip AI acceleration. For the first time, 

inferencing tasks could be executed directly within the CPU pipeline, allowing AI models to run alongside transactional 

workloads without leaving the platform. [1] 

 

With Telum and the supporting software stack, IBM Z now enables low-latency, real-time inference natively, eliminating 

the need to ship data elsewhere and making it an ideal environment for high-volume, time-sensitive use cases such as credit card 
fraud detection. 

 

This paper explores how a hybrid AI architecture can integrate predictive modeling into IBM Z systems. We walk through 

the full machine learning lifecycle: training models in virtualized environments such as z/VM and zKVM and deploying them 

through Python-based RESTful services hosted on z/OS UNIX or within zCX containers. Using a unified use case real-time fraud 

detection we demonstrate how AI and traditional workloads coexist on the mainframe, delivering insight and action with minimal 

latency and maximum control. 
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2. Benefits of Building, Training, and Running Machine Learning Models on IBM Z Hardware 

IBM Z hardware offers several unique advantages that position it as a highly effective platform for executing machine learning 

workloads across the entire model lifecycle: 

 Proximity to Enterprise Data: Most enterprise data already reside on IBM Z systems in databases like Db2, VSAM 

datasets, or transactional logs such as SMF. Running ML workloads close to this data reduces the need for costly and 

complex data movement, which is necessary for real-time applications like fraud detection and anomaly analysis. [1][6] 

 Security and Data Governance: IBM Z is well known for its state-of-the-art security features, including pervasive 

encryption and compliance-focused access controls. These features of IBM Z enable organizations to avoid exporting data 

to less secure environments by implementing training and inference directly on the IBM Z secure environment, thereby 

ensuring regulatory compliance with standards like GDPR and HIPAA. [6] 

 Performance and Scalability: With hundreds of cores, massive I/O throughput, and massive memory bandwidth, IBM Z 

provides the performance to run ML pipelines at scale. The newly introduced Telum processor has on-chip AI inferencing 

capabilities allowing inference to happen alongside transaction processing and reducing scoring latency from milliseconds 
to microseconds. [1] 

 Resilience and Availability: IBM Z systems are built for high availability (99.999%), making them ideal for mission-

critical AI scenarios without downtime. This resiliency ensures smooth training schedules and frequent model 

deployments. 

 Flexible Execution Environments: As with any other implementation, IBM Z provides a range of environments like 

running Python on z/OS UNIX, deploying containers using zCX or leveraging more powerful ML platforms like Cloud 

Pak for Data (CP4D) on Z, and many more options that provide flexibility to data scientists and ML engineers to choose 

any option that's more suitable for their existing ecosystem.  [1][2][3] 

 Integrated AI Tooling: The integration with Watson Machine Learning, AutoAI, and OpenShift-based orchestration 

offers an enterprise-ready path to manage models, track their lineage, perform versioning, and automate deployment in a 

CI/CD pipeline. 

 Real-Time Inference Potential: For use cases like credit card fraud detection, IBM Z’s combination of low-latency 

transaction processing and native inferencing support with Telum chips creates a seamless environment to detect and 

respond to fraud as transactions occur. [4] 

 

These benefits collectively make IBM Z a viable platform for machine learning and a strategic one for enterprises looking 

to leverage AI without compromising security, performance, or compliance. 

 

3. ML Model Inference Options on IBM Z 
While the training of machine learning models can be performed across a range of environments including public cloud 

platforms and virtualized Linux systems the location of inference execution remains critical, particularly when the model's output 

is needed to support core IBM Z workloads. Offloading data to off-host scoring engines as part of real-time transaction processing 

applications introduces latency and potential compliance risk due to data transmission. Instead, having inference close to the 

transactional environment is preferred to ensure performance and data security. IBM Z offers various options for executing on-host 

inference workloads depending on model complexity, desired runtime environment, and operating system integration requirement 

 

Below are some of the prominent approaches: 

 z/OS UNIX (Python on USS - z/OS UNIX System Services): This lightweight and highly flexible approach allows 

Python scripts to run directly within the z/OS UNIX System Services (USS) environment. Using Rocket Python or 
Anaconda distributions, this option works well for implementing simple models and REST-style inference APIs. 

 z/OS Container Extensions (zCX): For applications currently benefitting containerized development, zCX enables 

Docker-compatible model containers built with frameworks such as Flask or FastAPI to run directly within z/OS. This 

option provides an isolated and containerized environment for model inference while integrating seamlessly into REST-

based enterprise workflows using same-host connectivity. [2] 

 z/VM with Linux (Ubuntu or RHEL): This configuration supports the execution of full ML stacks, including 

TensorFlow and PyTorch, making it a robust choice for training and inference. This option offers greater flexibility to 

organizations wanting to perform all model development, training, and deployment on the IBM Z platform. 

 zKVM (KVM for IBM Z): zKVM provides lighter Linux virtualization with lower overhead compared to z/VM. This 

option is suitable for running inference microservices or model deployment in light environments. 

 IBM Machine Learning for z/OS (MLz): MLz offers a structured, enterprise-grade solution for model deployment and 
scoring on z/OS. With REST APIs, model versioning, and lifecycle management features, MLz is ideal for teams 

requiring governance, auditability, and integration with enterprise DevOps pipelines [6]. 
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 Liberty JVM (within or outside CICS): Java applications can support inference logic via frameworks like 

DeepLearning4J within the Liberty runtime, deployed within CICS, or as a started task JVM. The strategy is beneficial for 

organizations that are adopting the Java platform. 

 Cloud Pak for Data on Z: As a full-featured platform built on OpenShift, Cloud Pak for Data provides end-to-end 

support for the ML lifecycle including model training, deployment, monitoring, and governance. While resource-

intensive, it offers unmatched completeness for enterprise AI pipelines [7]. 

 ONNX (Open Neural Network Exchange) on IBM Z: ONNX is an open standard for representing machine learning 

models across frameworks. IBM Z supports ONNX model execution by converting them into optimized C code using 

IBM's Deep Learning Compiler (ONNX-DLC) or GitHub-supported tools [8]. This method eliminates the need for Python 

or Java runtimes at inference time, offering high performance with minimal overhead. 

 PMML Conversion: Predictive Model Markup Language (PMML) is an appropriate option for simpler models. PMML-

encoded models can be executed within COBOL, Java, or C environments on IBM Z. It is a low-friction and accessible 

solution best suited for legacy modernization strategies [8] 

 

4. Comparison of Inference Deployment options on IBM Z 
Table 1. Comparison of different options for deploying ML models on IBM Z. 

Option Runtime Type Language(s

) 
Setup 

Complexit

y 

Suitable for Real-

Time 

Capable 

On-chip 

AI 

Support 

Notes 

z/OS UNIX 

(Python) 
Script-based Python Low Lightweight 

inference, 

scripting 

Yes No Requires 

Rocket/Anacond

a Python; great 

for REST APIs 
zCX (Docker 

Containers) 
Containerized Python, 

REST 
Medium Microservices

, 

RESTful 

APIs 

Yes No Docker-style 

deployment 

needs TCP/IP 

routing config 
z/VM + 

Linux 
Full VM Python, 

Java, and 

others. 

Medium–
High 

Training & 
batch 

inference 

Not ideal 
for real-

time 

No Flexible, but 
outside the 

transactional 

context 
zKVM(Linu

x KVM) 
Lightweight VM Python, 

Java, and 

others. 

Medium Inference 

microservices 
Yes 

(with 

tuning) 

No Leaner than 

z/VM; can host 

Docker or 

RREST-based 

APIs 
IBM MLz Managed z/OS 

service 
REST 

(model 

agnostic) 

Medium Structured 

model serving 

with 

versioning 

Yes No Full lifecycle 

control; ideal for 

regulated 

environments 
Liberty JVM 

(CICS or 

standalone) 

Java runtime Java Medium Java app 

integration 
Yes No Supports 

DeepLearning4J; 
good for Java EE 

workloads 
Cloud Pak 

for Data on 

Z 

Kubernetes/OpenShif

t 
Python, R, 

Java, and 

others. 

High Full lifecycle 

incl. training 
Yes No Enterprise-grade 

MLOps; good 

for hybrid 

pipelines 
ONNC 

(ONNX to 

C) 

Compiled native C Medium–

High 
Lightweight, 

fast scoring 
Yes Yes (via 

Telum) 
Requires ONNX 

model; minimal 

runtime 

dependencies 
ONNX 

(Compiled to 

C) 

Compiled native C Medium - 

High 
Lightweight, 

fast scoring 
Yes Yes 

(Telum-

optimized

Converts ONNX 

to C for native 

inference using 
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) IBM DLC or 

GitHub tools 
PMML Transpiled / 

interpreted 
COBOL, 

Java, C 
Medium Legacy 

integration 
Yes (if 

wrapped

) 

No Great for simple 

models, 

especially in 

COBOL/Java 
 

5. Use Case – Credit Card Fraud Detection 
Credit card fraud detection is a critical use case where milliseconds matter. [5] Every transaction must be evaluated in 

real-time during an authorization request originating from a point-of-sale, ATM, website, or mobile app. The system must detect 

fraudulent activity without delaying the transaction response to the originating source. However, the underlying fraud detection 

system must evaluate several factors like behavioral patterns, risk factors, and transaction parameters to make this decision all 

within a few milliseconds. ML can help in this scenario by making this decision faster while avoiding the need for complex rules-

based systems currently used for fraud detection. 

 

5.1 The Need for On-Platform AI 
Running fraud detection models directly on IBM Z can significantly reduce the latency added to assess risk. Traditional 

approaches often require data movement to external scoring engines (cloud or distributed), introducing latency and increasing the 

risk of data exposure. We eliminate that overhead by bringing inference closer to the transaction processing system. The proximity 

inference solution makes IBM Z where most financial institutions already run authorization flows an ideal platform for embedding 

ML scoring. 

 

As highlighted in reference [4], fraud detection models commonly leverage features such as: 

 Historical transaction frequency per merchant category. 

 Spending pattern deviations. 

 Location changes. 

 Time-of-day patterns. 

 Device or card-present behavior. 

 

These behavioral vectors are generally built on established cardholder profiles and are best maintained and stored in IBM 

Z databases or VSAM files. Inference execution on IBM Z allows such features to be computed and scored based on established 

workflows without introducing extrinsic dependencies or redundancy data storage. 

 

5.2 Model Lifecycle: Traditional vs. IBM Z 

Below is a conceptual comparison between traditional and IBM Z-native deployment models for fraud detection scoring. 

 

5.2.1 Traditional Architecture (depicted in Figure 1): 

 Transaction arrives in CICS/IMS. 

 Metadata is sent over the network to the external scoring engine. 

 External API executes inference. 

 The risk score is returned to the mainframe app. 

 Decision logic is executed. 

 

Below are some challenges with this approach: 

 Added latency (network round trip). 

 Potential security/compliance risk due to data movement. 

 Dependency on distributed AI infrastructure. 

 Doesn’t take benefit of AI-acceleration via Telum chip. 

 
5.2.2 IBM Z-Native Architecture (e.g., z/OS UNIX Python or zCX) (depicted in Figure 2): 

 Transaction arrives in CICS/IMS. 

 CICS invokes local REST API (running on USS or in zCX). 

 The model inference is executed on-platform. 

 The score is returned immediately. 
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 Decision logic continues without leaving LPAR (Logical Partition). 

 

Below are some benefits with this approach: 

 Minimal latency (no network hops). 

 Simplified architecture. 

 Easier audit/compliance. 

 Co-location with data, code, and business logic. 

 AI-acceleration through Telum chip. 

Figure 1. Traditional transaction fraud scoring with off-host inference
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Figure 1. IBM Z native transaction fraud scoring using USS-based Python inference taking benefit of same-host XM (cross-

memory) call from CICS as well as AI-acceleration from Telum chip 

 

5.2.3 Model Inference through multiple options on IBM Z 

Below is how the same fraud detection use case could be executed using different IBM Z inference mechanisms: 

 Python on z/OS UNIX: Python script loads the model, accepts a REST call, and returns a fraud score. CICS or Java 
applications running on IBM Z invoke the Python inference service during transaction processing using EZA sockets or 

HTTP clients. Feature data is passed in JSON. 

 zCX (IBM z/OS Container Extensions) Container: The fraud scoring service is containerized using Flask or FastAPI. 

The CICS app routes transaction metadata via REST to the zCX endpoint. zCX performs inference and responds. 

 MLz Service: The model is deployed and versioned inside MLz. z/OS app invokes a model scoring endpoint via REST. 

MLz handles lifecycle management and audit logging. 

 z/VM or zKVM (Linux): Training may occur here. If inference is hosted here as well, it requires network configuration 

to take benefit of HiperSockets and reduce latency. REST API on Linux guest accepts scoring requests from z/OS. 

 ONNX → C with DLC: The pre-trained ONNX model is compiled into a C program via DLC. This C executable can be 

invoked by z/OS batch or COBOL as a callable program, allowing extremely fast scoring with minimal dependencies. [8] 

 PMML Model: A simple model is exported in PMML format and embedded in a COBOL or Java scoring engine. No 
external runtime is required; scoring occurs in line with application logic. [8] 

 

6. Sample code depicting the z/OS UNIX-based Python application to implement the Fraud detection 

use case 
This section demonstrates how machine learning inference can be executed directly on IBM Z; this section also outlines a 

working example that runs a model scoring service on z/OS UNIX (USS) using Python. CICS or batch applications written in 

COBOL or Java can invoke this REST API for real-time fraud detection scoring. This example assumes that the model has been 
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pre-trained (either off-platform or on a z/VM environment) and exported as a serialized .pkl file. The model is then deployed to the 

USS file system alongside a lightweight Python inference service built with Flask. 

 

6.1 Python Fraud scoring API service (app.py) 

from flask import Flask, request, jsonify 
import joblib 

 

app = Flask(__name__) 

model = joblib.load("fraud_model.pkl") 
 

@app.route("/score", methods=["POST"]) 

def score(): 

    data = request.get_json() 

    features = data["features"]  # list of features: [txn_amt, time_delta, ...] 

    prediction = model.predict([features]) 

    score = prediction[0] 

    return jsonify({"fraud_score": int(score)}) 

 

if __name__ == "__main__": 

    app.run(host="0.0.0.0", port=5000) 

 

This API listens on port 5000 and expects JSON input with a features array. It returns a fraud score as a simple integer 

response. 
 

6.2 JCL to run the Python service as the started task 

//PYAPI   JOB (ACCT),' START PYTHON API',CLASS=A,MSGCLASS=X 
//STEP1   EXEC PGM=BPXBATCH 

//STDPARM DD * 

SH cd /u/youruser/fraud-api && python3 app.py 

 

 

 6.2.1 JCL Details: 

 BPXBATCH runs Python under USS.  

 Ensure that Rocket Python or Anaconda is installed and Python3 is available in PATH. 

 The fraud_model.pkl and app.py files should be deployed in /u/youruser/fraud-api/. 

 

6.3 COBOL Client that invokes the Python REST API 

       IDENTIFICATION DIVISION. 
       PROGRAM-ID. FRAUDCALL. 

       DATA DIVISION. 

       WORKING-STORAGE SECTION. 

       01  JSON-REQUEST    PIC X(200) VALUE 

           '{"features":[125.50, 30, 2, 0, 1]}'. 
       01  RESPONSE        PIC X(100). 

       PROCEDURE DIVISION. 

           CALL 'EZACIC02' USING 

               'POST'                      *> HTTP Method 

               'http://127.0.0.1:5000/score' *> URL 

               JSON-REQUEST 

               LENGTH OF JSON-REQUEST 

               RESPONSE 

               LENGTH OF RESPONSE. 

           DISPLAY "Returned Score: "RESPONSE 

           STOP RUN. 
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6.3.1 COBOL Program Details: 

 This program uses the EZA HTTP client within CICS or batch to call the REST service. 

 EZA is the standard IBM supplied TCP/IP client for CICS and batch programs. 

 Java or Python-based callers can substitute this COBOL client code in Java EE or Liberty environments. 

 

This Python-based implementation is ideal for lightweight, scriptable integration and fast prototyping. However, the same scoring 
logic can be migrated to other environments discussed earlier: 

 Deployed as a container in zCX. 

 Wrapped in Java logic for use in Liberty JVM. 

 Converted to native code using ONNX-DLC. 

 Packaged into MLz for full lifecycle control. 

 

The right choice depends on the use case requirements, runtime constraints, and integration needs. 

 

7. Conclusion 
As AI and machine learning evolve, the need to execute intelligent models where the data lives and where decisions are 

made has never been more important. With its history of powering mission-critical workloads, IBM Z is uniquely positioned to 

support AI-driven transformation without sacrificing performance, compliance, or operational integrity. This paper demonstrated 

that inference can be brought natively into the IBM Z ecosystem using a wide range of integration options from Python scripts 

running on z/OS UNIX to full-service containers deployed via zCX, from compiled ONNX models accelerated by the Telum  

processor to enterprise-managed scoring services like MLz. Each  option has its own strengths, and the flexibility offered allows 

organizations to adopt the one that best fits their application architecture, team skills, and deployment goals. By applying this 

architecture to a real-world use case credit card fraud detection, we showcased how low-latency, high-frequency transactional 

environments can benefit from embedded intelligence without adding complexity or offloading sensitive data. 
 

  More importantly, this paper highlighted that IBM Z is no longer a system that hosts applications it can now reason, 

evaluate, and decide. As IBM pushes the boundaries with initiatives like AI on Z, Telum-enabled hardware acceleration, and 

further integration with open-source machine learning environments the ability to infuse conventional enterprise systems with 

intelligence grows. To data science professionals and enterprise architects, the message is one of certainty: There is no longer any 

necessity to trade-off between rich, current artificial intelligence capability or tried-and-tested stability of existing infrastructure. 

With IBM Z, both are within reach securely, at scale, and without compromise. 
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