International Journal of Emerging Trends in Computer Science and Information Technology
ISSN: 3050-9246 | https://doi.org/10.56472/ICCSAIML25-121
*w* Eureka Vision Publication | ICCSAIML"25-Conference Proceeding

Leveraging Generative Al for Actionable Insights in Cloud
Computing: Innovations and Applications

Pavan Nithin Mullapudi
Senior Applied Scientist Amazon, Seattle, WA

Abstract - Generative Al (GenAl) has emerged as a transformative tool in cloud computing, enabling advanced predictive
analytics, explainable decision-making, and context-aware recommendations. This paper synthesizes academic research and
industry advancements to explore four critical applications of GenAl: (1) time series classification for customer growth and churn
prediction, (2) explainability in machine learning propensity models, (3) retrieval-augmented generation (RAG) systems for
augmented insights, and (4) domain-specific fine-tuning for action recommendations. Drawing on peer-reviewed studies, we
demonstrate how transformer-based architectures achieve 89% accuracy in churn prediction, counterfactual explanations improve
stakeholder trust by 41%, and RAG systems reduce hallucinations in cost-optimization tools by 16%. Challenges such as data
quality, ethical governance, and real-time scalability are analyzed alongside solutions like semi-supervised learning and hybrid
indexing. The paper concludes with future directions, including multimodal RAG and federated explainability frameworks,
positioning GenAl as a cornerstone of next-generation cloud analytics.

1. Introduction

Cloud computing’s exponential growth has generated vast datasets, necessitating advanced tools for predictive analytics
and decision-making. Generative Al (GenAl) addresses these needs through temporal pattern recognition, transparent modeling,
and context-aware recommendations. According to recent forecasts, the global cloud computing market is projected to reach
$342.5 billion by 2025, driven by AlI/ML integration™.

This paper examines four pillars of GenAl deployment in cloud environments, supported by methodologies from 15 peer-
reviewed studies. Section 2 evaluates time series classification for churn prediction, Section 3 analyzes explainability in propensity
models, Section 4 explores RAG systems, and Section 5 discusses fine-tuning for action recommendations. Challenges and future
directions are synthesized in Sections 6 and 7.

2. Time Series Classification for Growth/Churn Prediction
2.1 Temporal Pattern Recognition Architectures

Transformer-based models, such as Long Short-Term Memory (LSTM) networks, outperform traditional methods in
capturing nonlinear cloud usage patterns. A study on AWS client data demonstrated LSTMs achieve 89% accuracy in predicting
churn 60 days in advance by analyzing API call frequencies and virtual machine (VM) uptime logs®2. The TSMODEL framework
enables distributed time series analysis, reducing 1/0 bottlenecks through auto-partitioning and accumulation techniques®. Hybrid
edge—cloug] deployments further reduce prediction latency from 900 ms (pure cloud) to 120 ms, critical for loT-driven SaaS
platforms™.

2.2 Hybrid Neural Networks for Churn Mitigation

The CCP-Net architecture combines Multi-Head Self-Attention, Bidirectional LSTM (BIiLSTM), and Convolutional
Neural Networks (CNN) to address sample imbalance and feature extraction challenges™. On telecom and banking datasets, CCP-
Net achieved precision scores of 92.19% and 91.96%, respectively, outperforming baseline models by 3%. The ADASYN
sampling algorithm balances churned and non-churned customer samples, mitigating bias in training data“!.

3. Explainable Al for Propensity Modeling
3.1 Counterfactual Explanation Frameworks

The GenXAl framework generates natural-language rationalizations (e.g., “15% faster response times boost retention
probability by 20%”) while quantifying feature attribution through SHAP values™®. In healthcare applications, SHAP-based
fairness constraints reduced racial bias in loan approval models by 21%, improving disparate impact ratios from 0.72 to 0.93%!,

3.2 Visual Interpretability Techniques
Guided Gradient-weighted Class Activation Mapping (G-Grad-CAM) combines backpropagation and Grad-CAM to
highlight critical regions in medical imaging, achieving 95% agreement with clinician annotations'3. Saliency maps, derived from
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prediction score gradients, identify input pixels most influential to model decisions, enhancing transparency in convolutional neural
networks (CNNs)® .,

4. Retrieval-Augmented Generation (RAG) Systems
4.1 Contextual Grounding for Hallucination Mitigation

Pure large language models (LLMs) hallucinate 23% of cloud cost-saving recommendations when tested on unverified
data. RAG systems mitigate this by grounding responses in real-time logs (e.g., Kubernetes autoscaling histories) and vendor
documentation (e.g., AWS Well-Architected Framework)™. A hybrid indexing approach using FAISS and RedisCache reduces
query latency to 320 ms, meeting 500 ms service-level agreements (SLAs)E..

4.2 Hierarchical Attention for Document Analysis

For 200+ page AWS migration plans, hierarchical attention mechanisms prioritize critical sections through two-stage
retrieval: BM25 selects 50 documents, and a cross-encoder re-ranks passages by semantic relevance®.. This approach reduced VM
selection errors by 64% in enterprise deploymentstl.

5. Fine-Tuning GenAl for Action Recommendations
5.1 Parameter-Efficient Adaptation

Low-Rank Adaptation (LoRA) fine-tunes 0.3% of Llama-3 parameters, achieving 91% of full tuning performance at
1/20th the GPU cost!!. The HindRec framework uses hindsight preference optimization to boost recommendation adoption by
33% over GPT-4 in cloud cost audits™.

5.2 Ethical and Regulatory Considerations

Unsupervised fine-tuning risks amplifying biases in historical incident reports. Semi-supervised techniques like FixMatch
improved action proposal precision from 71% to 89% by cleaning 120,000 mislabeled tickets’®.. GDPR Article 22 compliance
audits at SAP showed adding SHAP values to GenAl-driven recommendations reduced legal challenges by 57%..

6. Implementation Challenges

e Data Quality and Labeling: Noisy labels in historical incident reports degrade recommendation accuracy. FixMatch’s
semi-supervised learning cleans mislabeled data by leveraging consistency regularization and pseudo-labeling, improving
precision by 18%..

o Real-Time Retrieval Latency: Hybrid ANN indices (e.g., FAISS + RedisCache) answer RAG queries in 320 ms for 99th
percentile latency, meeting 500 ms SLA requirementst.

e Ethical Governance: Federated SHAP explanations enable cross-institutional model audits without sharing raw data,
reducing bias in healthcare diagnostics by 32%!.

7. Future Directions
e Multimodal RAG: Integrating log streams with infrastructure diagrams for root cause analysis, as demonstrated in smart
city frameworkst®.,
e Causal Inference: Moving beyond correlation-based predictions using directed acyclic graphs (DAGs) to model resource
allocation dependencies in edge-cloud systemst®l.
e Federated Fine-Tuning: Preserving data privacy across AWS, Azure, and GCP through secure multi-party computation,
reducing cross-cloud data transfer costs by 42%.

8. Conclusion

GenAl bridges the gap between cloud scalability and actionable insights through temporal transformers, explainability
frameworks, and context-aware RAG. Academic benchmarks demonstrate its potential while highlighting the need for standardized
evaluation metrics and ethical guardrails. As 83% of cloud providers plan GenAl-optimized instances by 2027, interdisciplinary
collaboration will determine whether these tools drive sustainable innovation or exacerbate existing biases.
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