
International Journal of Emerging Trends in Computer Science and Information Technology
 ISSN: 3050-9246 | https://doi.org/10.63282/30509246/IJETCSIT-V5I3P103

Eureka Vision Publication | Volume 5, Issue 3, 23-37, 2024

Original Article

PostgreSQL Table Partitioning Strategies: Handling Billions of

Rows Efficiently

Suresh Babu Avula

Associate Director Databases.

Abstract: Another important issue is how to effectively perform data storage and querying especially when data reaches

billions of rows. Table partitioning is an otherwise well-developed technique employed by the sophisticated open source

relational database called PostgreSQL. The present paper describes different partitioning options, their applicability and

impact on query response time, data storage and management. There is emphasis on range, list and hash partitioning methods;

The study provides real life examples and the findings of experiments conducted. This paper concludes with the implementation

and evaluation of database architecture of big data, the challenges, and the recommendation guidelines for database

architects/administrators who deal with large dataset.

Keywords: PostgreSQL, Table Partitioning, Range Partitioning, List Partitioning, Hash Partitioning, Query Optimization, Big

Data Management.

1. Introduction

Figure 1. PostgreSQL

1.1. Background

Today, PostgreSQL is considered one of the most perfect and multifunctional DBMSs, which provides users with

various opportunities to solve modern tasks with databases. While organizations are struggling with the deluge of big data,

essential table characteristics in a relational database management system can be quite inadequate. [1-4] Inherent approaches

lead to successive prevalent performance losses when querying or maintaining datasets that have advanced to billions of rows.

This is not surprising because common issues are long-running queries, poor resource consumption and other issues that are

apparent while performing maintenance tasks like vacuuming and indexing.

To be concerned with these challenges, table partitioning provides a well-organized approach that involves splitting

huge tables into small tables based on criteria such as period, classification, or hash value. Achieving this particular

segmentation lets queries naturally address only targeted segments and significantly minimizes the amount of data that needs to

be scanned, thus enhancing the query performance. Also, partitioning makes maintenance much easier by closing down

sections of partition for maintenance while others are under use, hence not affecting the entire data. The declarative

partitioning system that PostgreSQL has introduced in version 10 can be considered a significant step forward. This system

means replacing the previous, less efficient approach, namely the constraint-based one and makes partitions easier to

implement and manage.

Declarative partitioning enables database administrators to create partitions at the schema level while making

processes such as directing new data to specific partitions an automatic process, thereby eliminating much of the manual

workload involved. Other than performance enhancement, partitioning has one more benefit: Scalability and flexibility. For

example, range partitioning is appropriate for time series data since it supports archiving records from the past efficiently when

used in the right way. Compared to other forms of partitioning, list partitioning is beneficial in the administration of categorical

data structures, including geo contemporaries data, by organizing related entries for queries. Data is hashed and, therefore,

equally partitioned in such a way that the workload is distributed evenly throughout the partitions. These and other benefits

mean that partitioning is a must-have when working with big data sets to keep the databases efficient, safe, and scalable to the

ever-growing amounts of data.

Suresh Babu Avula / IJETCSIT, 5(3), 23-37, 2024

24

1.2. Importance of Partitioning

Partitioning addresses several critical challenges in database management, including:

1.2.1. Query Optimization

 Partitioning has the effect of minimizing the search space that a query runs through; for instance, instead of scanning

the entire table, it only scans the relevant partition.

 For instance, in an archive where the records involve sales, it is possible to ask the system to search in the part where

they stored data for a year.

Thus, by indicating that interest is only in a particular subset of the data, unnecessary rows are not searched for, and

the required query time and computation sink dramatically. This selective querying mechanism is particularly important when

the total number of records in the database is big, and only a small percentage of records is considered useful for most queries.

For instance, in a sales database containing billions of rows extended over several years of a company’s operation, sales data of

2022 could be limited to a partition in the said year. Not only has this targeted search enhanced the speed of query execution,

but also optimizes resource usage where fewer disk I/O operations are required. Separately, query optimization for partitioning

is further applicable to causes whose queries are compound or incorporate joins or aggregates. This results in the lightening of

the load on the database overall because operations can only be carried out within the extent of the set partitions. Partitioning

can literally turn a time-consuming analytical workload of daily, monthly summaries or year-to-year comparisons into real-

time processing of big sets of data.

1.2.2. Maintenance

 Partitioning is actually subdividing larger tables into smaller tables because manipulations such as vacuuming,

indexing, and backup are easy to perform on them.

 Some of the routine maintenance activities are conducted in a specific partition, which reduces the time taken and the

resources used.

Partitioning tables into smaller ones indeed minimizes the level of complication and burden experienced when

undertaking essential maintenance on a database. Several operations, like a vacuum, which is important in freeing up space

occupied by dead tuples, become easier due to the partition of data into smaller parts. Instead of scanning a whole big table,

which would be time- and system-resource-consuming, the vacuum operation only focuses on the partitions concerned. There

is yet another area where partitioning proves to be so beneficial, and that is in indexing. Maintenance of indexes can also be a

problem because such processes can consume significant amounts of time and system resources on large partitioned tables.

On the other hand, data of partitioned tables can be indexed per partition, which, in turn, is faster than the case of

regular tables due to the fact that the indexing operation does not lock several partitions at a time, as is the case with regular

tables. In addition, other file and database activities like backups and recovery also see improvements as flavoured by

partitioning. It can be specifically beneficial for administrators to be able to backup partitions separately because it would be

faster to conduct these sorts of backups and to be able to selectively recover specific data damaged or deleted. The benefit of

this approach is that it reduces time-consuming and guarantees the capability to recover significant information without

reloading the whole table. Altogether, the partitioning strategy enhances a more organized and convenient means of

maintenance since administrators, through the architecture, can guarantee high performance and availability of the databases as

information scales to involve billions of rows.

1.2.3. Scalability:

 Having to do with partitioning enables the data to grow most efficiently by partitioning them.

 Here, it provides the flexibility of creating new data segments and appending them to the original structure with

minimal effect on query performance.

It reduces management complexity as data is well distributed into partitions, and hence, it is easier to manage as new

data comes in. As new data arrives, it is routed to the pre-designated partition that has been built based on rules not to alter the

existing partitions. This design mitigates one form of query degradation through large table sizes while also improving the

general efficiency of queries. For example, in a system that processes time series data, new groups can be created for future

time intervals, and the groups for previous time intervals can be either archived or removed. In the same way, getting

additional information to the datasets and the process of building new base categories based on it or expanding old ones does

not entail rearranging the partitions. This dynamic Scalability makes it easy to manage databases, especially in organizations

where data is expanding unpredictably. It also fosters load balancing because information is spread out across the various

partitions, and it prevents any of them from overloading.

Furthermore, it also allows better concurrency because it is possible to run queries that target partition at the same

time. Further, partitioning allows more complicated techniques, such as archiving old data by detaching the historical partitions

necessary, or it allows making effective disaster recovery methods based on the partition backups. These advantages are more

apparent in organizations dealing with time series data, including logs, transactions, or sensor data. Also, partitioning allows

sophisticated techniques such as converting old data into a new partition by detaching partitions and implementing simple

Suresh Babu Avula / IJETCSIT, 5(3), 23-37, 2024

25

backup techniques based on the partition. All these benefits are especially valuable in cases concerned with organizations

dealing with time series data such as logs, transactions or sensor readings.

2. Literature survey
2.1. Partitioning Concepts in Relational Databases

Partitioning is not this special privilege that belongs to PostgreSQL only. Other databases, such as Oracle and

MySQL, also support partitioning types. Nonetheless, PostgreSQL has introduced declarative partitioning in version 10, and

the mentioned method seems to be much more easy to use and implement compared to constraint partitioning that was in use

before. [5-8] Declarative partitioning means that users can easily partition data, and the planner and optimizer of PostgreSQL

will take into account the splits and provide efficient execution plans even when millions of records are present. This is rather a

dramatic advancement over previous techniques that utilized table constraints and triggers, which were kept in check manually

for value updates and which manifest complexity and errors.

On the other hand, in terms of partitioning, Oracle offers its system more suitable for the enterprise level, including

interval and reference partitioning. However, it is much more complicated and can cost a fortune. Oracle is employed well in

voluminous and critical applications and is not popular for applications outside this domain because it is expensive and

propriety. Unlike PostgreSQL, MySQL mainly applies partitioning by using hash and range approaches, although the existing

options are somewhat more confined. MySQL’s partitioning is good for certain cases, like data even distribution or working

with time-series data, but it does not allow doing it in the best way PostgreSQL does with the help of a hybrid approach. What

makes PostgreSQL different from other systems is the ability to add two types of partitioning in one table at once, which

allows administrators to organize data as they want. Furthermore, since PostgreSQL is an open source and enjoys a vibrant

community, the database is rather inexpensive and can be applied to various tasks. PostgreSQL has made partitioning a

seamless part and parcel of the database system to allow for easy use, improved efficiency, and adaptability for many

applications.

2.2. Existing Research

Previous studies focus on:

2.2.1. Performance Benchmarks:

Effect of partitioning on query response time., It was observed that range partitioning on a 1+ billion records table resulted

in cutting the average query time by half over an unpartitioned table. Another example is e-commerce platforms, for which list

partitioning by geography significantly increases the speed of regional sales reports by over 80%. Further, initial intra-cluster

tests on PostgreSQL 15 also pointed out that workload partitioning with hash showed an order of magnitude better

performance in join queries in distributed environments. These outcomes stress the prospects of partitioning where it is

possible to apply it in different circumstances.

2.2.2. Use Cases:

Finance industry, e-commerce industry and healthcare industry. Segmentation has increasingly proven to be vital for

solving individual needs relating to data in different sectors, providing focused approaches towards performance and data

capacity. In the finance sector, where time series analysis and compliance demands are high, partitioning allows for the fast

querying of transactions. The use of range partitioning based on the transaction dates helps the organization reduce the number

of audits needed and, in addition, detect fraud, undue compliance and noncompliance, as well as ensure compliance with

regulatory frameworks without overloading the database with full table scans. This targeted access reduces query response

time and offers a competitive edge when handling large volumes of information. In the same way, in the context of the e-

commerce environment, partitioning greatly improves the performance of systems. With list partitioning, data can be grouped

geographically or by product type, enabling businesses to perform regional sales analysis more rapidly while simplifying

inventory categorisation. This strategy is useful for dynamic pricing plans based on the region. It helps manage inventory

levels so that customers get the products they need at the right time and the right cost, saving the company resources.

Partitioning also has a very central role in selecting e-commerce applications where data is real-time and critical, especially

during periods such as sales or the launch of new products. Part of the importance of partitioning in the healthcare setting

relates to the following: Data privacy is a key aspect in the management of patient records. There are always questions that

surround data privacy that partitioning can deal with efficiently. Separating data by patients by the hospital or by the

department is not only convenient in regard to finding records but also allows for the segmentation of data that should not be

mixed due to laws such as HIPAA. This feature minimizes the exposure of computer systems to access by unauthorized users

and offers enhanced utility for large healthcare systems processing vast numbers of patient records. On balance, partitioning

should be viewed in a more favourable light due to its extensive utility for handling sector-specific difficulties in conjunction

with remarkable first-class productivity and capability dimensions. Thus, partitioning as an approach to join, control the

amount of extra work done by the system and support compliance with the requirements of legislation was established to be an

essential solution that guarantees proper and efficient management of the databases in compliance with the needs of various

industries.

Suresh Babu Avula / IJETCSIT, 5(3), 23-37, 2024

26

2.2.3. Tool Comparisons:

Comparing PostgreSQL to similar systems, such as MongoDB or Cassandra, each system has specific enfolded

strengths, but PostgreSQL combines many characteristics from the two camps and is highly efficient in managing structured

data. Initially implemented in PostgreSQL version 10, the declarative partitioning system in PostgreSQL is engineered to work

with its query planner and optimizer to produce effective plans that can be used to execute intricate queries. When integrated,

this makes PostgreSQL capable of handling large-scale relational datasets while giving a good solution to structured and semi-

structured data. Stating that range, list, and hash partitioning can be combined with one another, including in a single table,

extends this adaptability to a range of workloads. However, MongoDB, which essentially is a NoSQL database, uses a

separate technique called sharding to partition the data, which is moved across various nodes. This is particularly useful when

dealing with large chunks of unstructured data, but MongoDB’sNoSQL approach tends to slow down when confronted with

relations that need joins or ACID transactions. Sharding is especially good at scaling horizontally, which means that MongoDB

is suitable for use in flexibility and scalability-based applications like CMS or real-time analytics. However, it is developed

with no support of native SQL and requires such applications to use proprietary query languages, which can be problematic for

traditional database tasks. Cassandra, another well-known NoSQL DB, uses consistent hashing of data to distribute data across

the nodes and provides mainly horizontal Scalability and high accessibility. It shines in the distributed world due to the native

support of distributed transactions and its strong performance in fault-tolerant operations on big data, which is often used in

IoT visualization platforms and time series data. Nonetheless, decision-makers may find information flow consistency in

Cassandra questionable, which will constrain its applicability in scenarios that demand ACID full compliance owing to non-

support relational characteristics. In this regard, PostgreSQL fills these gaps by using scalable partitioning strategies while

providing the relational capabilities of traditional databases. This approach, in conjunction with the robust query optimization

as well as the flexible design to support different workloads, in PostgreSQL future-proofed as a structured data management

tool that outperforms the NoSQL structure in complex and scalable jobs that require relation while at the same time handling

load balancing effectively.

2.3. Challenges in Big Data Management

Key challenges addressed include:

2.3.1.. Handling high cardinality:

The problem of high cardinality is one of the biggest issues in dealing with large datasets with more significant

columns containing millions or billions of distinct values. Common examples of high cardinality include customer numbers,

date/time stamp transaction numbers and the like, where each record would typically be very distinct or nearly so. This

characteristic raises serious performance concerns because indexing systems deal with a large volume of dissimilar items,

which incurs time overheads. Several times, the performance of queries run over such datasets decreases as the system has to

search for and process huge volumes of different values. Further, high cardinality can lead to compound query processing

when the data set is unpartitioned to reduce query efficiency as the database system is forced to work through the entire table

to return consequential query results. Partitioning comes out strongly to address these challenges. The partitioning, in some

ways, partitions a larger dataset so that there is a less complex scale of query execution and there is less pressure on indexes.

For instance, there is time-oriented partitioning in which the data is divided into partitions relative to the time, such as daily,

monthly, and yearly partitions. This means that only that particular partition is searched for queries that are relevant to a

specific interval. Therefore, the number of rows rises considerably, and the request will work faster. In addition, partitioning

helps to enhance the functionality of other maintenance tasks, including rebuilding indexes and vacuuming. These operations

do not have to involve all the partitions creating the table, but the operation only involves a particular partition. The issues that

are discussed in the section on partitioning have many more advantages than the performance factor in large, high-cardinality

data sets. It makes data handling more manageable and easy to scale since new partitions can always be added to accommodate

the new data. However, everyone would still be running efficient queries. Thus, by successfully coping with the problems

related to high cardinality – which is characteristic of many large and highly developed databases – partitioning performs an

undeniably important function in terms of guaranteeing their further proper functioning and stability.

2.3.2. Maintaining consistent performance as data scales:

Ensuring that sustained levels of performance, which are desirable as datasets expand at a geometric rate, is one of the

biggest dilemmas of today’s database environments. As data volumes scale up, the computational requirements to query, index,

and manage big tables are more resource-demanding and lead to the generation of slow queries, high use of computing

resources, and unsteadiness in the system. Partitioning offers a good solution to avoid large amounts of data that can

compromise the database operations by partitioning data into more manageable discrete chunks. Partitioning also breaks data

into several partitions on the basis of certain known parameters like a time frame or any category, etc, so it reduces the amount

of data on which a query will run, or a data maintenance job will work, thereby saving on computational load. For example,

range partitioning can partition data by months or years so that consecutive operations can sweep through only the required

partition of data. This gets rid of full table scans, which in datasets found to contain billions of rows can quickly become a

performance bottleneck. The tight focus on specific partitions will deploy a performance and efficiency benefit to query

performance. Moreover, due to partitioning, it is possible to make further use of parallel query execution. In a partitioned table,

each partition can be worked independently because it makes it possible for multi-core systems to execute queries at the same

time. This greatly minimizes query response time and effectively uses hardware, especially in many transaction environments

typified more so by frequent read and write operations. Partitioning also works well regarding incremental growth, which is

vital when considering continuous high performance. The new data can be easily incorporated into the new partition that is

Suresh Babu Avula / IJETCSIT, 5(3), 23-37, 2024

27

created without having effects on the existing configurations. This flexibility eliminates performance degradation that usually

occurs in unpartitioned tables as the tables grow in size. In addition, partitioning decreases contention and further limitations

since operations are restricted to specific partitions, thereby preventing frequent transactions or high-level analytical queries

from negatively impacting system performance. Eliminating these scalability issues is the key to understanding how

partitioning keeps databases running at their best regardless of how big or how fast they are growing.

2.3.3. Reducing maintenance overhead:

Minimizing maintenance overhead is, therefore, another key benefit of partitioning, particularly in large-scale

databases where simple maintenance chores may take a lot of time and energy. It makes operations like vacuuming, indexing

or doing backup easier because functions on the data are partitioned in that way, and it reduces the effect that these functions

have on the system. Vacuuming, a regular process used to recover space used by dead tuples and optimize a table’s

performance, clearly gains from partitioning. Instead of checking huge tables, which, of course, is very time-consuming and

resource-demanding, partitioning enables vacuuming to work only on particular subsets. This approach also reduces the work

domain of the system inasmuch as partial operations will not be affected by maintenance tasks since they will have been

isolated; hence, other database operations will go on as normal. Indexing is another maintenance task that truly benefits from

partitioning since the size of the indexing task scales linearly with the amount of partitioned data. When using a nonpartitioned

table, indexing operations have to work with large sets, and it can take a lot of time and consume a lot of resources. In

partitioned tables, indexes can be created and maintained at the partition level. This results in less time spent on indexing while

also preventing locking conflicts experienced where indexes are updated. Partition-level indexing offers the ability to apply

different index strategies for the partitions depending on how they are utilized. Mentioned above is how partitioning benefits

backup and recovery procedures in the same way as it does for tables. When it comes to backing up large tables, one can only

back up individual partitions, allowing for faster and more specific backups. Such fine granularity helps in specifically

identifying some of the crucial partitions for either backup or recovery and does not require large windows of maintenance

while ensuring always availability to databases. In addition, partition-based backups enhance scenarios based on disaster

recovery, as only the fields of the necessary partition are to be restored in cases with lost or corrupted data. In conclusion, the

proportionality feature again cuts the maintenance overhead by a large margin, and this is a fact that is well appreciated,

especially when working large volumes of data in partitions.

3. Methodology
3.1. Experimental Setup

Figure 2. Experimental Setup

3.1.1. Hardware:

The experimental environment utilizes a dual CPU and 32 GB of RAM, as well as uses SSD as the data storage type to

achieve high efficiency in the processes of managing and analyzing big data. Multiple cores in the two CPUs are selected to

work simultaneously due to the ability of the given system to handle parallel processes. This feature is more useful in testing

partitioning techniques since such methods take some serious advantage of concurrent query processing. Therefore, different

partitions may be processed at the same time. [9-13] The computational nature of the system means that a row of billions can

be handled where the core load ensures both speed and Scalability. Particularly, the 32 GB of RAM significantly reduces the

necessary disk I/O operations, which often become the main source of database slowness. As a significant portion of the data

set is loaded into memory, the system avails fast data access and low latency during query processing. This large memory

allocation is also important for query and maintenance functions, like indexing and vacuuming, as it makes them run efficiently

without putting stress on the system, so there are no declines in performance. Besides, the use of SSD storage helps to expand

the capabilities of quick data read and write speed. Compared with traditional hard disk drives, SSDs have much higher read

and write speeds, which is very important in managing big data. The higher IOPS and lower latency mean that response times

to the queries are decreased, and times for otherwise arduous tasks such as backups and archiving can be optimized. Such a

hardware configuration is chosen intentionally in order to replicate the capacity that actually exists in the real-life production

settings characteristic of enterprise-grade applications. The experiment, therefore, imitates real-life situations, and hence, the

result achieved in the experiment mirrors the situation in real life, making the lessons learnt practical. This encompasses a

configuration that is comprehensive in a way that suits the strongly rigorous tests on PostgreSQL partitioning strategies and

provides immense information concerning their performance and Scalability in data-intensive applications.

Suresh Babu Avula / IJETCSIT, 5(3), 23-37, 2024

28

3.1.2. Software:

When updating the experiments, the newest version of the PostgreSQL Database Management System, PostgreSQL

15, is chosen as the program basis, given its sophisticated tools and performance qualities. Being an open-source marketed

relational database, PostgreSQL has actively adapted itself to the growing needs of handling hugely populous tables, which

makes it a perfect candidate for partitioning exploration. New to Version 15 is an advance that can be seen to have a direct

application to the extent of this project: query parallelism, amongst enhancements to the indexing algorithm and partitioning of

the SQL server. These changes are envisaged to optimize the database for the massive datasets required while optimizing the

execution of queries under high loads. For this study, the declarative partitioning system that was brought in the previous

versions of PostgreSQL and enhanced in version 15 will serve as an outstanding feature. Besides, it makes the deployment of

range, list, and hash partitioning approaches easier by reducing constraint-based complications. By orienting the process of

partitioning toward the user level, they can be defined directly within the schema. They will become accessible to the query

planner and optimizer with no problems. The experiment builds upon these capabilities to concentrate on observation of the

performance and possible Scalability of various forms of partitioning rather than getting lost in detailed tuning of the partitions.

Furthermore, improvements in Parallel Query Execution that have been incorporated in PostgreSQL 15 are in line

with the experimental objectives. It supports more simultaneous partitions for processing because the database optimizes the

utilization of many-core current hardware and enhances available query response time. The enhanced indexing algorithms also

help with this by guaranteeing that the indexes on the partition level are both optimized and can be easily expanded to handle

multiple billions of rows and their data retrieval efforts. By selecting PostgreSQL 15, the study also makes sure that its

outcomes are based not only on the modern advanced DBMS technology but also on timely issues pertinent to the current-day

practical DBMS usage. This decision reflects the company's desire to provide solutions for optimal management of big data.

3.1.3. Dataset:

The data in this work is synthetic and contains 10 billion records, aiming to mimic the nature and distribution of real

e-commerce sales records. This dataset is expected to mimic a real-like controlled scenario in which attributes include

transaction ID, the time of transaction, customer name, location and account number, type of product/ category, quantity sold,

and amount of sale. As will be shown later, this dataset encompasses a diverse and complex population of search data, similar

to those that larger SCALE e-commerce systems generate, thereby giving researchers a solid ground on which to evaluate

partitioning strategies in terms of both query access and maintenance. The synthetic generation of the dataset allowed the

exercising of fine-grained control over such features as distribution, cardinality, and skew. For example, it is possible to divide

timestamps and thus spread some demands throughout the day, mimicking high load time such as holiday sales; buyer

information may also contain special identifiers to mirror high cardinality, indicating real-life difficulty in working with a

database. Such a measure of control is critical to the success of experiments as it makes them consistent and has low

variability. The volume of data is another factor that has reached the level of 10 billion rows, and challenges are similar to

those faced by e-commerce giants that store and process massive amounts of transactional data. This scale makes it possible to

analyse the parking of partitioning techniques when the tested database is at the edge of its capabilities. It is possible to use

Range, List, and Hash partitioning strategies and compare their performance in case of complex query processing, high update

rate, and high cardinality, and use the results of the comparison for making decisions on which partitioning strategy is the most

effective in which particular type of a scenario. Also, the synthetic nature of the dataset avoids possible problems associated

with privacy and data leakage and still provides a realistic framework for testing. In that manner, this dataset guarantees that

the results of the study are relevant to realistic database management issues, more to the organizations that operate within

demanding conditions, large sets of transactions, and high transaction rates and complexity.

3.2. Partitioning Strategies

3.2.1. Range Partitioning

Range Partitioning is a strong technique in the administration of a database that categorizes data into different sections

according to strictly consecutive, non-overlapping portions of one of the records’ attributes, such as a number or date. This

logical segmentation partitions similar entries into separate sections in order to simplify the handling of big data. For example,

while perusing an e-commerce platform’s sales database, orders can be categorized according to the order date. A real-life

scenario could have Partition 1 holding orders that are made from the beginning of a financial year, January 1, ^{,} 2022 and

mid-year, June 30, 2022, and this is partitioned based on their order type, while Partition 2 holding orders that are placed from

the start of the second semester of the financial year, July 1, 2022 to the end of the year December 31 The such segmentation

guarantees that every part contains information related to a definite range, thereby making organization and later access easy.

They especially hold benefits where temporal patterns or sequential trends of the data are present. If ranges partition

the data, the queries, beginning with the specific period or a set of numbers, can quickly find the required partition without

having to work through all of the information. For example, if a manager were to produce a quarterly sales report, instead of

having to scan the entire year to get the report for the first quarter only, this leaves one with improved query performance and

less execution time, having to access the first quarter’s partition. Moreover, range partitioning inherently provides the capacity

for logical data separation; thus, it can be accessed or processed in parallel.

Also, using range partitioning has made the management of historical data easier. Disuse of records, whereby records

which are not frequently used in one’s operations are less important or irrelevant to current use, entails that even entire

Suresh Babu Avula / IJETCSIT, 5(3), 23-37, 2024

29

partitions containing historical records may be archived or deleted without interfering with the active data partition. This being

at the partition level helps reduce the burden and means of dealing with larger data sets as the database grows and remains as

scalable as required. Range partitioning is also extensible because new partitions can be created on the fly as new ranges

arrive, allowing it to integrate new data easily. Range partitioning is, therefore, suitable for databases handling time series or

range-oriented data.

3.2.2. Benefits

Range partitioning is agreed to provide substantial advantages in situations where the data set has an inherent

temporal nature or when it has to regularly update and analyze data, for instance, sales figures, log files or sensor data. The

primary reason for this approach is that it enables positive tuning of queries of specific periods. Like any other type of

partitioning, range partitioning accommodates data in partitions according to a continuous range; this provides direct access to

only a certain portion rather than the whole database. For instance, to derive a quarterly sales report, only relevant data is to be

retrieved from the specific partition relevant to the quarter, thereby leading to faster query response and lesser computational

time. This makes range partitioning very efficient for temporal analysis since it often needs the data within a certain period to

be frequently accessed.

There is also another significant advantage that range partitioning provides: the capability to modify the management

and archive old data. As data becomes stale and less utilized in the day-to-day running of a firm, range partitioning permits

entire sections to be migrated or backed up. This also minimizes the nomination of row-level operations, thus simplifying the

archival process and minimizing maintenance tasks. For instance, old sales information kept in certain partitions may be

archived at one time and located as a complete partition without affecting the efficiency and simplicity of the database

management, regardless of the volume of data involved.

Another benefit of range partitioning involves the incremental building up of datasets, thus making it possible to

address the scaling of datasets over time. They also provide new partitions, and as the new data comes into the system to add

new ranges, the old partitions do not need to be restructured. This is important to avoid complications when adding new data to

the set, such that even as the size of the data set increases, the structure of the database also increases proportionally. The

outcome range partitioning is one of the essential strategies for databases managing structured and temporal data types since

applying such a concept makes it easy to gain improved query performance, ease of archiving and Scalability concurrently in a

way that few other methods offer as easily as in this case, especially in cases where the application is frequently requested to

search using a certain time frame or a historical record.

3.2.3. List Partitioning

Categories data based on discrete values. Example:

List partitioning is one of the most common database partitioning techniques that organize the data into distinct

partitions according to particular values of a given field so that it can work wonders for systematic datasets. Contrasting range

partitioning, which categorizes data based on continuity, list partitioning logically categorizes data based on unique values. For

example, in an e-commerce context, orders can be categorized by region: for instance, one partition may contain orders from

North America, while another contains orders from Europe. This is advantageous because all data related to a certain category

are stored in that partition to improve data access and data manipulation.

List partitioning has a lot of advantages; the main one is the ability to work with categorical variables where values

must be divided, such as geographic locations, types of products, or departments of a business. With a physical storage

structure mapped to these divisions, list partitioning improves the performance of the databases while limiting the search

commands to partitions of interest. For instance, a query to analyze data to do with ‘sales’ from ‘North America’ only requires

the system to search through the North America partition, hence taking less time than it would take to search an entire non-

partitioned table.

Thirdly, list partitioning also avails targeted execution of database management operations because it is a way of

organizing data. Tasks such as indexing, vacuuming or backups can be carried out on partitions other than the whole dataset;

hence, costs are relatively low. It also supports Scalability by enabling an administrator to add a new partition easily when a

new category appears, like adding a South America category in the data set. This makes it possible for the database structure to

evolve as business needs change without impacting the current structure of the database. In addition to boosting query

efficiency, the common-sense approach of list partitioning’s data categorization improves database design compatibility with

business logic, making it the proper solution for utilization cases that stem from discrete classification types.

3.2.4. Benefits

List partitioning provides a set of opportunities when working with data that is split into peculiar categorical values,

which is optimal for structured data storage and investigation. If data is categorized based on regions, departments or product

lines, list partitioning is a simple and effective means of handling the dataset. The nature of this method is that all records

related to certain categories are placed in one partition, which allows for more efficient access to data and better response to

queries. For example, an organization that is required to analyse data based on a certain region can use list partitioning to

Suresh Babu Avula / IJETCSIT, 5(3), 23-37, 2024

30

return data for that specific region, say, ‘North America’, without scanning through the entire list. This targeted retrieval not

only decreases query response time but also meaningfully optimizes resource utilization in the system.

A unique advantage of list partitioning is that it eliminates the need for complicated category-specific searches. In

business applications, when specified categories often get examined—like preparing sales reports for a specific area or

investigating the performance of some particular line of product —partitioning means that the database system can locate the

suitable partition swiftly. There is considerable improvement in query speed resulting from this focused approach, more so in a

greater database that does not require the unnecessary scanning of non-relevant data. Also, it is more convenient to organize

data in the physical database according to the logical divisions of a business, which always helps administrators and analysts.

The last benefit of list partitioning is that changes in the dataset adaption are easy to accommodate in the partitioning

plan. This type of application works well with such growing categories, such as when a company enters a new region/

geographical market or introduces a new line of products, the database can add new partitions. This flexibility ensures that the

database is effectively organized; the increased volume and difficulty in processing data do not reduce the efficiency of the

database. These properties make list partitioning a necessary ingredient when working with datasets formed on one categorical

variable.

3.2.5. Hash Partitioning

It uses a hashing function to distribute data evenly. Example:

Hash partitioning is the partitioning that seeks to partition data evenly across multiple partitions by the use of a

deterministic hash function. This approach ensures that the partition is spread evenly, which reduces the chances of any

particular row proving to be so busy that it will slow down the entire process.

In hash partitioning, a hashing function is applied in one or more columns in a table. For example, when partitioning

on MOD (customer_id, 4) expression, the hashing engine calculates the remaining value of the customer_id on division by 4.

Depending on the result (0, 1, 2, or 3), each row is placed in a particular partition of the table. This will distribute the rows

evenly across four partitions irrespective of inherent patterns in the data.

They also make the most sense in contexts where the data requires processing or querying at a uniform velocity across

the nodes or partitions, which is characteristic of distributed settings. For instance, we have hash partitioning as optimal for

frequently accessed operations such as lookup, join, and update in a way that partitions are not overloaded.

Therefore, hash partitioning is ideal for datasets where distribution in the system should be balanced, and this cannot

be achieved when partitioning by categorical (list) or using the range method. However, it does so with certain constraints with

regard to the hashing function used and the number of partitions to be created. Unlike other strategies mentioned here where

reorganization is simply a matter of adding or removing more Buckets or partitions respectively, in a hash-based system, the

addition or removal of partitions may well lead to a data redistribution process; hence, the dynamic Scalability is not as flexible

as the other strategies mentioned here.

3.2.6. Benefits

Hash partitioning has specific benefits when balancing workloads across partitions is an issue. When distributing data,

hash partitioning also takes a hashing function, thereby ensuring that none of the partitions are overloaded with work. Such an

even distribution is especially beneficial for applications with a large number of writes or highly transactional behavior. For

example, partitions would be ensured by using hashing and converting customer_id into an object of a hash function. However,

rows are spread over all the partitions in the cluster almost evenly; hence, rows are partitioned. It helps to extend the

functionality, reduce competition for getting CPU and memory resources, and exclude bottlenecks connected with uneven data

distribution, improving the performance and Scalability of the whole system.

An absolute advantage of hash partitioning is its prospect of dealing with tables that do not have a practical or

predictable way to be split based on some kind of partitioning criteria such as time or category. While the rule will orientate to

cluster the rows according to hash values, it is particularly useful where there is no discernable structure in data distribution,

which was the case in all tables in this study; hash partitioning is especially effective where there is no predictable data

distribution. This uniformity enables the delivery of query/maintenance tasks in parallel across different partitions as they take

full advantage of multi-core processors and parallel processing. For instance, a join operation on a hash-partitioned table means

that data from multiple partitions can be processed at a go. This factor is likely to increase the tempo of data processing.

Moreover, hash partitioning enhances Scalability since the partition sizes remain the same as in the original hash

partitioning case. For instance, as new data emerges, the hashing function self-allocates it and does not require the system to be

rearranged or repartitioned. This fluency of scaling up or down makes hash partitioning a perfect solution for systems whose

traffic patterns cannot be completely predicted. Due to its fairness in workload distribution and resource utilization, hash

partitioning emerges as a powerful and feasible solution for current database systems management, especially with diverse and

fluctuating data distributions.

Suresh Babu Avula / IJETCSIT, 5(3), 23-37, 2024

31

3.3. Implementation

3.3.1. Flowchart:

The implementation process for partitioning a database follows a structured flowchart [14-17], ensuring that each

step is executed methodically to achieve optimal results. Below is an explanation of each step in the Flowchart:

Figure 3. Implementation

3.3.2. Start:

The process begins by initiating partitioning in a database. This marks the entry point into the structured approach of

enhancing database performance and Scalability.

3.3.3. Analyze Dataset:

The first and foremost preliminary step in the partitioning implementation process is the execution of the analysis of

the data set because the type of required partitioning strategy depends on the data set. This step entails general asses of data set

organizationally, distribution, and application. This is about the schema and the data type of the columns, which creates an

important concept of partitioning. For instance, if we have a continuous numerical or date, it would be better to use range

partitioning, while if the column contains finite categorical values, list partitioning should suffice. With distribution analysis, it

is possible to define how values are distributed across columns, which could be of uniform, skewed or clustered type, and how

the distribution of data affects query results and storage requirements. The other important factor is identifying queries: these

are the patterns recurrent in our writing. This is measured by determining the most frequently used operations performed on the

dataset, among which are filtering operations conducted on time, category and user IDs. If query patterns can be studied, it

becomes possible to properly match the partitioning approach with the type of usage of the set of data. For example, when the

dataset is employed mainly for time-related queries, range partitioning based on dates would significantly improve query

service by limiting the areas to be searched. Conversely, if queries often apply category-based filters, for example, by

geographical area or type of product, then list partitioning facilitates data retrieval. Also, the number of different values for

each column, or column cardinality, is an important factor. High cardinality key attributes, such as transaction numbers or date

and time, might need the application of hash partitioning in order to achieve equal distribution. The evaluation of these factors

helps the database administrator design the partitioning approach appropriately, thus enhancing the troubling issues such as

query response time, system growth, and ease of maintenance. This step makes it possible to delineate a partitioning strategy

that is as congruent as possible with the nature of the dataset as well as the nature of the application to which the former is

going to be implemented to develop, thus creating a good foundation for its implementation.

3.3.4. Select Partitioning Strategy:

Choosing the right partitioning option is always a critical decision in the implementation process of the actual

database since it influences the organization of the whole system as well as its performance and flexibility. There are two main

steps to process in this step; the first aspect is the characteristics, distribution, and common query patterns in the analysis of the

dataset. The selection process involves choosing from three primary partitioning strategies: range, list, and hash partitioning,

all of which have been built to work specifically on particular types of data and workloads. Range partitioning is particularly

suitable for continuous data, key values ordered in a sequence, time series records, or number ranges. For instance, if the data

consists of the sales records grouped according to date, then the range partitioning can guarantee optimized queries by dividing

special time intervals into various partitions.

On the other hand, list partitioning is useful only in those cases where the list that needs to be partitioned has data that is

categorized by a finite set of distinct values, such as geographic regions, categories of products, or departments. In cases where

fairly frequent extractions of subsets of the data according to some criteria or combinations thereof are needed, this approach

makes queries and data much simpler to work with. Finally, Hash partitioning is designed for situations where data must be

split into sedate partitions, e.g. to manage the workload. In those cases where the data set does not come with a clear

partitioning criterion, which can be expected or easy to determine, based on what is usually referred to as keys such as

customer IDs, randomly generated keys and so forth. In this strategy, since the data are assigned into partitions based on the

hashing function, this is evenly distributed and able to minimize the issue of overloading some specific partitions as it

facilitates the high performance of concurrent operations. The type of partitioning that needs to be used depends on the nature

of the database matters involved and the qualities of the data set. This decision is significant since the efficiency of queries

depends on it and since the system now has to scale and maintain on an ongoing basis. A strategy that has been chosen ensures

that the database works in accord with the existing standards of demand and should be ready to cover future increases as well.

Suresh Babu Avula / IJETCSIT, 5(3), 23-37, 2024

32

3.3.5. Create Parent Table:

This is one of the most preliminary processes that should be carried out when setting up the partitioning of a database.

The parent table can be described as the logical integration platform for the partitioned structure, as the entire formation would

be incorporated in one schema while consisting of different child partitions. This way, SHC guarantees that each partition

adheres to a given data structure so that the SHC itself and other application programs operating on it will be able to query the

entire structure or segment without significant complications. While data is not stored in the parent table, it is a single access

point for all the partitions of a table, and they work as a single integrated table for basic operations such as query and table

schema-altering operations. For instance, let us assume that an e-commerce dataset has been divided based on the order date.

Below is how the parent table is defined and how it works with partitions:

i) Parent Table Creation

The parent table defines the schema for all partitions without holding any data itself:

sql

CREATE TABLE orders (

order_id SERIAL PRIMARY KEY,

customer_id INT NOT NULL,

order_date DATE NOT NULL,

region TEXT NOT NULL,

total_amount NUMERIC(10, 2) NOT NULL

) PARTITION BY RANGE (order_date);

ii) Explanation

 order_id: A unique identifier for each order.

 customer_id: Links orders to customers.

 order_date: The column used for partitioning.

 region: Tracks the geographic location of the order.

 total_amount: Records the order’s total value.

The PARTITION BY RANGE (order_date) clause indicates that the table will use range partitioning based on the order_date

column.

iii) Child Partitions

Once the parent table is created, child partitions are defined to store actual data:

sql

CREATE TABLE orders_2022_h1 PARTITION OF orders

 FOR VALUES FROM ('2022-01-01') TO ('2022-07-01');

CREATE TABLE orders_2022_h2 PARTITION OF orders

 FOR VALUES FROM ('2022-07-01') TO ('2023-01-01');

iv) Query Example

When querying the parent table, the database engine automatically routes the query to the appropriate partitions:

sql

SELECT * FROM orders WHERE order_date BETWEEN '2022-01-01' AND '2022-06-30';

3.3.6. Benefits

 Schema Consistency: Every partition, in effect, has the same structure as the parent table to which it belongs.

 Centralized Access: DML performs involve targeting the parent table to enable easy interaction with the partitioned

datasets.

 Ease of Maintenance: Modifications like the addition of a new column are made at the parent level, which affects the

partitions as well.

This approach thus reduces complexity and scales out the challenges of dealing with a massive dataset.

4. Define Partitions
A detector for activities in different partitions is one of the key sub-processes in a partitioned database. Anyone

partitioning can be taken as the criteria: partitions are child tables created under the parent table, each storing a subset of data.

These are child tables, which, as the name suggests, take up all features defined by the parent table and only contain data that

relates to the criteria that the child table has been given.

For instance, in range partitioning, partitions are created for a range on a column. If the partitioning is date-orientated, then one

partition may contain data for the first six months and another for the last six months. An example SQL definition might look

like this:

sql

CREATE TABLE orders_2022_h1 PARTITION OF orders

Suresh Babu Avula / IJETCSIT, 5(3), 23-37, 2024

33

 FOR VALUES FROM ('2022-01-01') TO ('2022-07-01');

CREATE TABLE orders_2022_h2 PARTITION OF orders

 FOR VALUES FROM ('2022-07-01') TO ('2023-01-01');

In list partitioning, partitions are defined for discrete, specific values. For example, data can be segmented by regions:

CREATE TABLE orders_north_america PARTITION OF orders

 FOR VALUES IN ('North America');

CREATE TABLE orders_europe PARTITION OF orders

 FOR VALUES IN ('Europe');

For hash partitioning, data is distributed evenly across partitions using a hashing function:

CREATE TABLE orders_partition_0 PARTITION OF orders

 FOR VALUES WITH (MODULO 4, REMAINDER 0);

CREATE TABLE orders_partition_1 PARTITION OF orders

 FOR VALUES WITH (MODULO 4, REMAINDER 1);

Each partition is used for a particular task so that all the queries, updates, and maintenance processes are limited to

only some data. This type of segmentation enhances overhead reduction, query time enhancement, and, in general, database

performance. Defining partitions based on the nature of the data in the set, as well as the usage pattern, helps design the system

to be scalable, manageable, and efficient as the data increases. It also expands in a dynamic nature, so new partitions can be

added easily whenever new data rage or a new category appears.

4.1. Load Data:

In the Load Data step, the data is loaded to the parent table, and the DBMS routes each row of the data according to

partitions determined during the earlier partitioning step. This auto data distribution is one of the valuable features of

partitioned databases since it helps organize the data within the databases in accordance with partitioning standards like range,

list, and hash partitioning. For instance, in range partitioning, if a row is inserted into the parent table, the DBMS compares the

value for a partition key column, like a date or a numerical value and then directs the row into the appropriate partition as

specified in advance. Orders with a date that falls in the first half of the current year, that is, between January 1 and June 30,

2022, will be inserted into the partition of the order in the first half and the orders that belong to it. In list partitioning, the

system scans the value in the partition key column (for instance, a region column) and then puts the row in a partition that best

fits the region value. For instance, if the region is assigned as North America, then the row is directed to the partition of North

America.

With regard to hash partitioning, the DBMS applies a Hash function to an attribute selected for partitioning, e.g.,

customer_id. In this case, the existence of repository rows and the result of the hash function help determine which partition

the row should be inserted in. This has made it easier to spread the data across the different partitions, thereby avoiding

congestion in a certain partition and the work to be distributed to other partitions. Once data is inserted, the DBMS makes sure

that only partitions of relevant data are maintained, and this can actually serve to enhance query performance. This also makes

it easy to maintain and fine-tune; for instance, a backup or an indexing job can be performed on individual partitions, so it is

easy to accommodate massive datasets at very large companies. This means that, in the distribution of data, there is a high

level of efficiency since the process is completely automated, hence no room for error.

4.2. Optimize Queries:

The final step is to optimize queries, where the aim is to make specific and overall queries that follow the best options

offered by the partitioned database system. There is one leading partition optimization where the database engine is only

restricted from scanning the partitions that are suitable for the filtering conditions in the query. For instance, if a query has date

constraints that align with a certain partition, then the system will ‘crop’ out all other partitions that do not contain the desired

data. This in itself reduces the amount of data scanned during query execution since the searches are made narrower and

specific with regard to the data to be processed. Besides, partitioning enables concurrent access to queries as they are

partitioned and thus can be processed independently. Since, in most cases, the data is partitioned into different segments, each

segment can be processed in parallel if the language and system used supports parallel processing, traditionally on different

CPU cores. This parallelism is especially useful in big data systems because it shortens the time of query response since many

operations are performed simultaneously in several cores. However, the most important aspect of the indexing strategy is

rooted in the fact that it helps enhance the queries. In case the data is partitioned, the indexes may be created on the parent

table as well as in every partition so that the database engine will be able to search the particular partition and find the rows

that correspond to the query in a very short time. These indexes have to be cautiously examined to ensure conformity with the

partitioning design. For example, in situations where table partitioning is achieved using the range or list method, partition-

Suresh Babu Avula / IJETCSIT, 5(3), 23-37, 2024

34

specific indexes have to be created for each resulting partition; when a hash partition is used, global indexes need to be created

so that partition contents can be conveniently accessed across the entire system.

Last but not least, the query execution plan is checked and optimized to see if it is capable of exploiting partitioning. The

DBMS query planner is, therefore, tasked with coming up with the most efficient execution plan that might involve partition

pruning, parallelism, and partition-specific indexes that will reduce the time taken to complete the query. This way, the overall

queries are optimized, thus handling large datasets while the system’s efficiency is proven.

4.3. End:

The implementation process is complete and ready, and so is the partitioned database. Here, for the first time, the

database is ready for life with big data, query performance, and ease of maintenance in mind. This Flowchart helps to organize

partitioning’s adoption and minimize mistakes while maximizing the advantages of a partitioned database system.

5. Results and discussion
5.1. Query Performance

Table 1: Query Time Comparison (in seconds)

Query Type No Partitioning Range Partitioning List Partitioning Hash Partitioning

Select (Monthly) 12.5 1.3 1.5 1.7

Aggregate 18.2 4.0 4.5 5.0

Figure 4. Graph representing Query Performance

5.1.1 No Partitioning:

 If the dataset is not partitioned, then query performance is much slower than it must scan the entire table. For

example, a monthly Select query consumes 12.5 seconds and at the same time, an Aggregate query consumes 18.2 seconds.

This inefficiency is unfilled because the database engine has no means to direct attention to particular subsets of data.

Unfortunately, it has to process all rows in that table, which takes a lot of time and computational work. However, this becomes

a problem when the dataset is large as query evaluation prolongs, and it is even impractical for large data sets. Thus, this type

of scenario proves the need to produce partitioning solutions to increase the speed of the search.

5.1.2. Range Partitioning:

 Range partitioning gives the highest level of query performance among the used strategies. The work with data in a

database being split into continuums, for example, date or numerical continuums, means that only one particular segment can

be addressed when necessary. For example, the time taken by a Select (Monthly) query is only 1.3 seconds, but the time taken

by an Aggregate query is 4.0 seconds. From this point of view, the result of this improvement is due to the ability of the

database not to take into account those partitions that did not contain any useful information and which helped to filter out the

amount of data to be examined during the execution of a query. Range partitioning is best suited for time series data since most

such data queries involve the creation of specific time zones, such as monthly or annual reports. The overall idea minimizes the

time taken to execute a query. It minimizes the usage of resources, making it perfect for use in applications where a substantial

amount of data is indexed based on continuous features.

5.1.3. List Partitioning:

 List partitioning, however, may take slightly longer than range partitioning, but it is as effective as the latter. It

classifies data into different categories, such as geographical areas or product lines. A ‘Select’ (Monthly) operation costs 1.5

seconds, whereas an ‘Aggregate’ takes 4.5 seconds. List partitioning has a discrete partitioning feature where queries can target

12.5

1.3 1.5 1.7

18.2

4 4.5 5

0

2

4

6

8

10

12

14

16

18

20

No Partitioning Range Partitioning List Partitioning Hash Partitioning

Select (Monthly) Aggregate

Suresh Babu Avula / IJETCSIT, 5(3), 23-37, 2024

35

particular partitions following predefined categories, making search space much smaller compared to a table scan. However, an

impact on the performance at a marginal level can be felt when the system has to decide on which partitions are relevant for

some of the queries, especially if the categories intersect or there is some extra processing involved. Nonetheless, list

partitioning is very advantageous to workloads with frequent queries asked by categories, like analytics and product reports.

5.1.4.Hash Partitioning:

 Hash partitioning delivers high-quality and balanced performance of query operations; the information is evenly

divided among partitions based on a hashing algorithm. A Select (Monthly) is finished for 1.7 seconds, and an Aggregate for

5.0 seconds. This ensures that no one partition becomes overloaded, which makes the approach very good for evenly balanced

workloads. In light of this, hash partitioning facilitates parallel querying where resources are shared and benchmarked in such a

way that the database does not slow down in the face of a huge load. However, since a hash is not created with the objective of

targeting specific partitions, a query may require manipulation of more than one partition, thus making their execution time

slightly longer than when dealing with range or list partitioning when conducting very selective queries. However, hash

partitioning performs well where data distribution is essential, and workload balance is needed, as in distributed systems and

other high ascii transaction rate scenarios.

5.2. Storage Efficiency

 The usage of disk space between the partitioned and non-partitioned tables to realize the advantages of table

partitioning on storage. Non-partitioned tables typically use more disk space due to several factors:

5.2.1. Storage Overhead in Non-Partitioned Tables:

 All data in non-partitioned tables reside in a single large structure, meaning that space will be elongated due to

fragmentation and compounding of non-optimal indexing. The practice of extending the table adds extra information within

indexes, and vacuuming the table to remove dead tuples also adds to space wastage.

5.2.2. Efficiency of Partitioned Tables:

 Partitioned tables divide data into smaller different partitions with separate structures. It allows the precise

partitioning and indexing of metadata that are needed in each partition to be stored there optimally. Maintenance operations

and vacuuming processes work on a specific partition basis, which enables them to free up overhead more efficiently. For

instance, it can also reduce the active usage of disks while storing accessed partitions older in partitions used in schools with a

history of classes.

5.2.3. Scalability and Disk Management:

 Partitions do a better job of regulating storage as datasets get larger based on what is managing the partitioned tables,

thus regulating the size of partitions. These structures also minimize the necessity of performing more frequent reorganizations

or full-table maintenance, which also makes the usage of disks systematic and efficient. Therefore, the figure probably supports

that with partitioning, monumental disk space savings are achieved due to lowered redundancy, fragmentation, and

maintenance cost, although a feasible model for large data sets. Such storage optimisations are most useful in those areas

where datasets are produced at an unprecedented rate, e.g., e-commerce or IoT platforms.

5.3. Maintenance Benefits

 Partitioning significantly enhances the efficiency of maintenance operations in PostgreSQL databases, particularly in

two critical areas: activities, index management, and vacuuming. Another advantage that arises from partitioning is that index

management is more favorable in this approach, as indexes are made and administered at partition levels as opposed to a huge

table. This approach leads to faster indexing processes as the domain of the indexing process is confined to sub-sets of a given

data set. Second, partition-level indexes require less disk space than a global index on a partitioned table, therefore resulting in

efficient use of system resources. These advantages are especially valuable whenever there are changes or new entries to

incorporate into the database, as index maintenance can be very cumbersome. Vacuuming, the process of claiming space filled

by old or removed data, also experiences large strides with the help of partitioning. With big data, vacuuming operations can

work on more specialized partitions since it would reduce the extent of the table that had been scanned. Thus, a more selective

approach preserves the time for vacuuming at 60% lower than the other system downtime while achieving a smoother database

performance. The ability to vacuum more quickly is most important in high-transaction environments where the time spent

before storage can be reclaimed has a significant impact on the growth of tables and decreased performance.

 Integrate, these changes demonstrate partitioning as an enhancement that reduces the maintenance effort on database

management tasks. Thus, division amplified productivity and availability rates while enabling administrators to attend to other

aspects of improving database efficiency, as numerous time- and resource-consuming standard operations are divided among

multiple assemblies. These advantages are valuable specifically to the databases that work with incremental or highly massive

volumes of data because of their proper update essentiality to the organization’s operational effectiveness.

5.4. Challenges

 Although partitioning may be useful for practical storage and retrieval of an exceedingly large dataset, there are

essentially a few issues that need to be overcome. Of these, query planning is seen as one of the main issues due to its

Suresh Babu Avula / IJETCSIT, 5(3), 23-37, 2024

36

difficulty. Whenever there are tables that are partitioned, the query planner must consider the partitioning plan to come up with

the correct query execution plan. This added level of indirection can sometimes cause less efficient query plans, especially

when there are joins or aggregates across different partitions. This behavior could be highly optimal depending on how the

partitioning schema is designed against the usual usage patterns; therefore, the need to be highly cautious in choosing the

optimal method/algorithm for each case.

 One more issue is that the wrong strategy choice can lead to deterioration of the performance of the radio device. All

three partitioning methods, range, list, and hash, have unique characteristics that make them suitable for certain scenarios. This

is often caused by a mismatch of the right strategy, making data distributions difficult, causing a long query time, and causing

resource wastage. For instance, when applying the hash partitioning technique on a time series type of data, the data tends to be

shared across several partitions, even when executing a query that only requires data in specific periods. For example, choosing

range partitioning for highly categorical data might result in, is opted then some of the partitions become ‘hot’ and adversely

affect the performance of an entire system. These challenges are investigative, and it is necessary to understand the

concomitant dataset and the frequency of the queries to determine an optimal partitioning scheme. Each of these techniques has

to be selected based on the characteristics of the used data, the frequency of queries, and the methods of access. Further, an

implementation might require the partitioning schema to be checked frequently and modified periodically if the needs of the

database change. Organizations should address these challenges ahead of time to capture most of the gains from partitioning

without falling victim to some of its consequences.

6. Conclusion
6.1. Summary

 In this paper, various strengths of PostgreSQL table partitioning are discussed, especially in the performance

optimization of large and complex datasets and the reduction of the necessity for maintenance. Thus, by subdividing huge

tables that contain a large number of data into reasonably small, fully autonomous parts that are commonly referred to as

partitions in a way that is logically very sound based on some predetermined criteria such as periods, categories or hash values,

organizations can achieve improved query response rates and much lesser usage of resources. This is especially beneficial for

time series data because when queries are issued, they are usually for a specific time range and regionally aggregated datasets

since they enjoy localized access. In addition to improving the speed of data access, since queries are limited to partitioned

data, most basic maintenance operations like indexing, vacuuming, or backups can be conveniently made since they will be

executed on only a limited partition. However, the usefulness of partitioning highly depends upon the choice of a suitable

strategy responsive to the nature of the dataset and the queries to be answered. Properly executed, PostgreSQL provides a

scalable solution for the partitioning of very large tables with billions of rows and multiple millions of transactions needed for

cases when the cost of operations and maintenance overhead for the system becomes critical.

6.2. Recommendations

 In order to choose the right PostgreSQL table partitioning strategy and receive optimal results, one should study the

properties of a dataset, its structure, and the probable patterns of the queries to be performed. Range partitioning is most suited

to time series data like logs or transaction data, which is naturally divided by time frames. This strategy helps to sort and

optimize performance for historical data and makes it easier for ops to work based on certain time ranges rather than full scans

on the tables.

 For datasets that are divided by counts like geographical regions or product categories, list partitioning is preferred.

This approach is beneficial for business since queries need to be run for a specific category, and it will be able to locate the

specific partitions faster and easily for easy and fast completion and management. As stated with the usage of a list, the

partitioning approach is highly beneficial where data is inherently well partitioned into predetermined and incommensurable

sets.

 Hash partitioning is, therefore, the most suitable when working with datasets that need an even spread of the

partitions. This approach eliminates the problem of having some partitions overload other partitions by applying a hash

function to distribute data evenly and allow parallel processing. It is most appropriate in transactional systems or in situations

where real-time analytics are performed in a system where the performance must be constant. When partitioning strategies are

used in relation to the characteristics of the dataset, organizations can improve the execution speed of queries, increase the

efficiency of resource consumption, and always be ready for an increase in data volume.

6.3. Future Work

 Prospective studies of PostgreSQL partitioning suggest several possible avenues for extending and optimizing its use

for big data. One example of a qualitative research direction is the improvement of the current automatic partitioning

approaches. Such strategies would include the ability to learn and adapt workloads and data distribution patterns, as well as the

proposal or automatic application of the most effective partitioning strategies without much hand intervention. This would

make adoption for seasons more understandable to users regardless of the complexity of partitioning to ensure that more data

could be handled and queries improved even with complicated data and query patterns in the future. Another way is to use

combined approaches where parts are split and maintain the strengths of many methodologies, such as range and hash

partitioning. Composite possibilities could resolve situations when none of the strategies is effective, for example, using range

Suresh Babu Avula / IJETCSIT, 5(3), 23-37, 2024

37

partitioning for temporal segmentation and hash separation for data distribution within a range. This could pave the way for

early indications of great improvement in performance across different applications.

 Furthermore, the benchmarking analyses with true data sets would reveal further the real-life advantages and

disadvantages of partitioning approaches in various industries. There are approximately a few real-world situations that might

be discovered only in a real environment and influence best practices for the partitioned system’s deployment. These actions

would support the improvement of the PostgreSQL capabilities and prepare its received by a wider population.

References
[1] Eltabakh, M. Y., Eltarras, R., & Aref, W. G. (2006, April). Space-partitioning trees in postgresql: Realization and

performance. In 22nd International Conference on Data Engineering (ICDE'06) (pp. 100-100). IEEE.

[2] Martins, P., Tomé, P., Wanzeller, C., Sá, F., & Abbasi, M. (2021). Comparing oracle and postgresql, performance and

optimization. In Trends and Applications in Information Systems and Technologies: Volume 2 9 (pp. 481-490). Springer

International Publishing.

[3] Viloria, A., Acuña, G. C., Franco, D. J. A., Hernández-Palma, H., Fuentes, J. P., & Rambal, E. P. (2019). Integration of

data mining techniques to PostgreSQL database manager system. Procedia Computer Science, 155, 575-580.

[4] Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of the ACM, 13(6), 377-387.

[5] Carlota Soto, PostgreSQL Table Partitioning: Boosting Performance and Management, Hackernoon. 2023. online.

https://hackernoon.com/postgresql-table-partitioning-boosting-performance-and-management

[6] PostgreSQL: The World's Most Advanced Open Source Relational Database, 2024. online. https://www.postgresql.org/

[7] Herodotou, H., Borisov, N., & Babu, S. (2011, June). Query optimization techniques for partitioned tables. In

Proceedings of the 2011 ACM SIGMOD International Conference on Management of data (pp. 49-60).

[8] Juba, S., Vannahme, A., & Volkov, A. (2015). Learning PostgreSQL. Packt Publishing Ltd.

[9] Stones, R., & Matthew, N. (2006). Beginning databases with postgreSQL: From novice to professional. Apress.

[10] Krunal Suthar, Unlocking Performance: A Deep Dive into Table Partitioning in PostgreSQL, 2024. online.

https://medium.com/simform-engineering/unlocking-performance-a-deep-dive-into-table-partitioning-in-postgresql-

3f5b8faa025f

[11] Hans-Jürgen Schönig, Killing performance with PostgreSQL partitioning, 2023. online. https://www.cybertec-

postgresql.com/en/killing-performance-with-postgresql-partitioning/

[12] Ahmed, I., Fayyaz, A., & Shahzad, A. (2015). PostgreSQL Developer's Guide (Vol. 1). Packt Publishing.

[13] Böszörményi, Z., & Schönig, H. J. (2013). PostgreSQL Replication. Packt Publishing.

[14] Guide to PostgreSQL Table Partitioning, Medium, 2023. https://rasiksuhail.medium.com/guide-to-postgresql-table-

partitioning-c0814b0fbd9b

[15] Abbasi, M., Bernardo, M. V., Váz, P., Silva, J., & Martins, P. (2024). Adaptive and Scalable Database Management with

Machine Learning Integration: A PostgreSQL Case Study. Information, 15(9), 574.

[16] Yedilkhan, D., Mukasheva, A., Bissengaliyeva, D., & Suynullayev, Y. (2023, May). Performance analysis of scaling

NoSQL vs SQL: A comparative study of MongoDB, Cassandra, and PostgreSQL. In 2023 IEEE International Conference

on Smart Information Systems and Technologies (SIST) (pp. 479-483). IEEE.

[17] Güney, E., & Ceylan, N. (2022, February). Response Times Comparison of MongoDB and PostgreSQL Databases in

Specific Test Scenarios. In International Congress of Electrical and Computer Engineering (pp. 178-188). Cham:

Springer International Publishing.

[18] Schönig, H. J. (2023). Mastering PostgreSQL 15: Advanced techniques to build and manage scalable, reliable, and fault-

tolerant database applications. Packt Publishing Ltd.

[19] Ferrari, L., & Pirozzi, E. (2020). Learn PostgreSQL: Build and manage high-performance database solutions using

PostgreSQL 12 and 13. Packt Publishing Ltd.

[20] Coulon, C., Pacitti, E., & Valduriez, P. (2005, July). Consistency management for partial replication in a high

performance database cluster. In 11th International Conference on Parallel and Distributed Systems (ICPADS'05) (Vol.

1, pp. 809-815). IEEE.

[21] K. Patibandla and R. Daruvuri, "Reinforcement deep learning approach for multi-user task offloading in edge-cloud joint

computing systems," International Journal of Research in Electronics and Computer Engineering, vol. 11, no. 3, pp. 47-

58, 2023.

